Content of Volume 31, no.3, 2025


Author(s) Title of the Article  Page 
A.A. Ageev, T.V. AntonovaStudy of separation-based methods for localization of discontinuity lines5   
A.R. Alimov, I.G. Tsar'kovProjection closed sets and Efimov–Stechkin spaces20   
B.I. Anan'evObservation control problem for differential equations36   
V.V. ArestovBest approximation of a fractional-order differentiation operator in the uniform norm on the axis on the class of functions with integrable Fourier transform of the highest derivative47   
V.I. BerdyshevStream of moving objects along a geodesic arc in $\mathbb{R}^2,$ $\mathbb{R}^3$ and an observer64   
E.Kh. Gimadi, E.N. Goncharov, A.A. ShtepaA primal-dual polynomial approximation algorithm for the uncapacitated facility location problem77   
S.I. Gladyshev, E.G. MusatovaHeuristic “Safe Jobs First” for stochastic single machine scheduling problem91   
P.G. EmelyanovOn junta problem for table-defined functions105   
V.I. Erokhin, G.Sh. Tamasyan, N.A. StepenkoAn accelerated Fej´er-type process for finding a non-negative solution to a system of linear algebraic equations121   
I.Ya. Zabotin, O.N. Shul'gina, R.S. YarullinA variant of the successive concessions method and its implementation based on cutting procedures138   
A.V. KolnogorovMinimax approach to the Gaussian multi-armed bandit150   
A.O. Leont'evaBernstein inequality for fractional powers of univariate Dunkl Laplacian and multivariate Laplace operator of entire functions167   
A.V. MakarovParametric families of regularizers for products of elementary generalized functions185   
A.V. OsipovOn the properties of completeness type of spaces of first functional class Lebesgue mappings200   
L.D. PopovPrinciples of construction and properties of penalty functions of composite type (on the example of linear programming problems)215   
T.Yu. SemenovaMethod of S.B. Stechkin and V.T.Gavrilyuk and its application233   
D.S. TelyakovskiiOn exceptional sets in the Newton-Leibniz formula250   
A.A. Uspenskii, P.D. LebedevFinding the value of the Chebyshev layer of a flat set using constructions of the theory of alpha sets and Efimov-Stechkin support balls264