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BEST RESTRICTED APPROXIMATION OF SMOOTH FUNCTION CLASSES1
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We first discuss the relative Kolmogorov n−widths of classes of smooth 2π-periodic functions for which the

modulus of continuity of their r-th derivatives does not exceed a given modulus of continuity, and then discuss

the best restricted approximation of classes of smooth bounded functions defined on the real axis R such that

the modulus of continuity of their r-th derivatives does not exceed a given modulus of continuity by taking the

classes of the entire functions of exponential type as approximation tools. Asymptotic results are obtained for

these two problems.
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1. Introduction

Denote by Z+ the set of all nonnegative integers, N = Z+ \{0}, by R the set of all real numbers
or the real axis, and by C the set of all complex numbers or the complex plane.

Let Pr(λ) is an algebraic polynomial of degree r ∈ N in the form

Pr(λ) = (λ− λ1) · . . . · (λ− λr), (1.1)

where λk := αk + iβk, αk ∈ R, βk ∈ R, k = 1, 2, · · · , r. Denote by

Pr(D) :=
( d

dx
− λ1I

)

· . . . ·
( d

dx
− λrI

)

, D :=
d

dx
,

the linear differential operator of order r with respect to Pr, where I is the identity operator.

For the interval R ( or T = [0, 2π]) and 1 ≤ p ≤ +∞, let Lp = Lp(R) (or L̃p = L̃p(T)) denote
the Banach space of (or 2π-periodic) functions f : R → C to be p−power integrable on R (or on T)
with the usual Lp−norm ‖f‖Lp(or ‖f‖L̃p

).

For a nonnegative integer r ∈ Z+, denote by Cr (or C̃r) the collection of all functions f
for which the r-order derivatives f (r) (f (0) = f) are uniformly continuous (or 2π-periodic and
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corresponding author.
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continuous). Denote by WPr
p (or W̃Pr

p ) the collection of functions f ∈ Lp∩Cr (or f ∈ C̃r ) for which
have the locally absolutely continuous derivatives up to the (r − 1)st order and ‖Pr(D)f‖Lp ≤ 1

(or ‖Pr(D)f‖L̃p
≤ 1). Specially, when Pr(λ) = λr, write W r

p (or W̃ r
p ) instead of WPr

p (or W̃Pr
p ).

Let ω be a modulus of continuity. Set

W rHω =
{

f ∈ Cr : f (r) ∈ Hω
}

, W̃ rHω =
{

f ∈ C̃r : f (r) ∈ Hω
}

,

where f (r) ∈ Hω means

ω(f (r), t) = sup
{

|f (r)(x)− f (r)(y)| : x, y ∈ R, |x− y| ≤ t
}

≤ ω(t), t ≥ 0.

When ω(t) = tα, 0 < α ≤ 1, we write W rHα (or W̃ rHα) instead of W rHω (or W̃ rHω).
Let Eσ, σ ≥ 0, denote the class of entire functions of exponential type σ, that is, f ∈ Eσ if and

only if f : C → C is an entire function and for ∀ǫ > 0, ∃Aǫ > 0 such that

|f(z)| ≤ Aǫ exp((σ + ǫ)|z|), z = x+ iy ∈ C.

Denote by Eσ,p := Eσ,p, 1 ≤ p ≤ +∞, the collection of all f ∈ Eσ with f |R ∈ Lp. Here the
notation F (σ) ≍ σs (s < 0) means that there exist two positive real numbers C,D > 0 independent
of σ for which Dσs ≤ F (σ) ≤ Cσs for all sufficiently large σ (with the analogous meaning for
ns ≪ F (σ) ≪ ns, F (n) ≍ ns, etc).

Let W and V be two nonempty subsets of a normed linear space X endowed with the norm ‖·‖X .
Denote by

E(W,V )X := sup
w∈W

inf
v∈V

‖w − v‖X

the deviation (or approximation) of W from V in the space X. In 1984, Konovalov [7] raised the
problem to consider the relative n-width of W related to V in the space X is given by

dn(W,V )X := inf
L
E(W,L ∩ V )X ,

where the infimum is taken over all n-dimensional subspaces L of X. When V = X, dn(W,V )X =
dn(W )X is the usual n-width, in the sense of Kolmogorov, W in X. V.N.Konovalov in [7] proved
that

dn(W̃
r
∞, W̃

r
∞)∞ ≍ n−2, r ≥ 3.

V.F.Babenko in [2] showed
dn(W̃

r
1 , W̃

r
1 )1 ≍ n−2, r ≥ 3.

V.M.Tikhomirov in [22] generalized the above result in [7] from the positive integer r ≥ 3 to the
positive real number α through a simpler proof.

For 1 ≤ q ≤ ∞, r ∈ N, V.N.Konovalov in [8; 9] proved

dn(W̃
r
∞, W̃

r
∞)q ≍ n−min{r, 2},

dn(W̃
r
1 , W̃

r
1 )q ≍ n

−min{r−1+ 1
q
, 2}
, (r, q) 6= (1,∞)

dn(W̃
r
2 , W̃

r
2 )q ≍ n−min{r− 1

2
+ 1

q
, r}.

Later, Wei Yang [25] considered the relative n-widths of two kinds of periodic convolution classes
whose convolution kernels: NCVD-kernel and B-kernel, and obtained the similar asymptotic esti-
mates.

Tikhomirov [23] introduced the concept of the average dimension and Magaril-Il’yaev [16]
proposed the concept of the average width. More general statement was formulated by Professor
Yongsheng Sun in [21]. For the special case Lp, p ∈ [1,∞], we state the definitions of the average
dimension and average width as follows.
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Let L be a subspace of Lp and BL := {x ∈ L : ‖x‖Lp ≤ 1}. For any ǫ > 0, a > 0, let

N(ǫ, a) :=min
{

n ∈ Z+ : ∃ linear subspaceM ⊂ Lp[−a, a]
with dim(M) = n, s.t. E(BL|[−a,a],M)Lp[−a,a] < ǫ

}

.

It is easy to see that N(ǫ, a) is increasing in variable a and decreasing in variable ǫ. The number

dim(L;Lp) := lim
ǫ→0+

lim inf
a→+∞

N(ǫ, a)

2a

is said to be the average dimension of L in Lp. Specially, dim(Eσ,p;Lp) =
σ

π
(see [16]).

For σ > 0, the quantity

d̄σ(W )Lp := inf
{

E(W,L)Lp : L is a subspace of Lp with dim(L;Lp) ≤ σ
}

is called the average Kolmogorov σ−width of W in the space Lp.
On the average width of Sobolev classes WPr

p (R) (or Sobolev–Wiener classes W r
p,q(R)) in the

metric Lp(R) (or other classes of smooth functions on R or R
d(d > 1)), many exact results are

obtained by Magaril–Il’yaev [17;18], Dirong Chen [3], Yongping Liu [13], Heping Wang [20], Yanjie
Jiang [6], Guiqiao Xu [24], etc.

Combining the ideas of Magaril–Il’yaev[16] and Konovalov[7], Liu and Xiao [14] introduced the
problem to consider the quantity

d̄σ(W,V )Lp := inf
L
E(W,L ∩ V )Lp ,

where the infimum is taken over all subspaces L of Lp with dim(L;Lp) ≤ σ, and call it to be the
relative average Kolmogorov σ−width of W related to V in the space Lp. Obviously, when V = Lp,
d̄σ(W,V )Lp = d̄σ(W )Lp is the average Kolmogorov σ-width of W in the space Lp. In [14], Liu and
Xiao gave some exact results on some classes of functions in L2(R

d) as follows.
For α > 0, set

R
α
2

(

R
d
)

=

{

f ∈ L2

(

R
d
)

:

∫

Rd

|y|2α|f̂(y)|2dy ≤ 1

}

,

B
α
2

(

R
d
)

=

{

f ∈ L2

(

R
d
)

:

∫

Rd

(

1 + |y|2
)α |f̂(y)|2dy ≤ 1

}

.

Where f̂ denotes the Fourier transform of f, and |y| denotes the length of a vector y ∈ R
d defined

by |y| =
√

(y, y), while (x, y) denotes the inner product of two vectors x, y ∈ R
d.

Theorem 1 [14].

dσ
(

R
α
2

(

R
d
)

,Rα
2

(

R
d
))

L2(Rd)
= dσ

(

R
α
2

(

R
d
))

L2(Rd)
= (ρ(σ))−α;

dσ
(

R
α
2

(

R
d
)

,MR
α
2

(

R
d
))

L2(Rd)
= ∞, 0 < M < 1.

dσ
(

B
α
2

(

R
d
)

,MB
α
2

(

R
d
))

L2(Rd)
= dσ

(

B
α
2

(

R
d
))

L2(Rd)
= 1−M0, M ≥M0;

d
(

R
α
2

(

R
d
)

,MR
α
2

(

R
d
))

L2(Rd)
= 1−M, 0 < M < M0.

Where M0 := 1 −
(

1 + (ρ(σ))2
)−α/2

, ρ(σ) =
√
4π
(

Γ
(d

2
+ 1
)

σ
)1/d

. SB2
ρ(σ)(R

d), the collection of

the entire functions of spherical exponential type σ ≥ 0, which as functions of the real vector x ∈ R
d

lie in L2(R
d), is an optimal space.
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On the exact order of relative average width d̄σ
(

WPr
p ,WPr

p

)

Lp
and the best restricted approxi-

mation E
(

WPr
p , Eσ ∩WPr

p

)

Lp
for p = 1, 2,∞, Ling and Liu obtained the following results.

Theorem 2 [12]. Let Pr be a polynomial in the form of (1.1) with r ≥ 1 and σ0 := inf{σ > 0 :

Pr(iλ) 6= 0,∀|λ| > σ}. Then d̄σ
(

WPr

2 ,WPr

2

)

L2
= E

(

WPr

2 , Eσ ∩WPr

2

)

L2
= 2πmax|y|≥σ

1

|Pr(iy)|
for

all σ > σ0.

It is worth to mention that the above theorem has been proved essentially in [14].
For r ∈ N, let Pr(λ) be an algebraic polynomial of degree r in the form of

Pr(λ) = λs
r−s
∏

j=1

(λ− λj) (1.2)

where s ≤ r and s ∈ {0, 1, 2}, and (Non pure imaginary) λj /∈ iR := {ix : x ∈ R}, j = 1, 2, · · · , r−s.
When r = s ∈ {0, 1, 2}, Ps(λ) = λs.

Theorem 3 [12]. Let Pr(λ) be an algebraic polynomial of degree r in the above form. Then

d̄σ
(

WPr
p ,WPr

p

)

Lp
≍ E

(

WPr
p , Eσ ∩WPr

p

)

Lp
≍ σ−r, r = 1, 2, 1 ≤ p ≤ +∞;

E
(

WPr
p , Eσ ∩WPr

p

)

Lp
≪ σ−min(2,r), 1 ≤ p ≤ +∞, r ∈ N;

E
(

WPr
p , Eσ ∩WPr

p

)

Lp
≫ σ−min(2,r), p = 1,+∞, r ∈ N.

Remark. Theorem 3 shows that d̄σ
(

WPr
p ,WPr

p

)

Lp
≍ d̄σ

(

WPr
p

)

Lp
≍ σ−r, r = 1, 2, 1 ≤ p ≤ +∞;

E
(

WPr
p , Eσ ∩WPr

p

)

Lp
≍ σ−min(2,r), p = 1,+∞, r ∈ N.

We conjecture that, under the assumption of Theorem 3, it also holds that

d̄σ
(

WPr
p ,WPr

p

)

Lp
≍ σ−min(2,r) for p ∈ {1,∞}.

2. Our main results

Theorem 4. Let 1 ≤ q ≤ +∞ and the modulus of continuity ω be concave. Then

d2n−1(W̃
rHω, W̃ rHω)L̃q

≍ E(W̃ rHω, Tn ∩ W̃ rHω)L̃q
≍
{

n−2, r ≥ 2,

n−rω
( 1

n

)

, r = 0, 1.
(2.1)

Where Tn denotes the linear manifold of trigonometric polynomials

a0
2

+

n−1
∑

k=1

(ak cos kx+ bk sin kx)

of degree n.

Corollary 1. Let α ∈ (0, 1] and 1 ≤ q ≤ +∞. Then

d2n−1(W̃
rHα, W̃ rHα)L̃q

≍ E(W̃ rHα, Tn ∩ W̃ rHα)L̃q
≍ n−min{2,r+α}.

Theorem 5. Let the modulus of continuity ω be concave and σ ≥ 2. Then

E(W rHω, Eσ ∩W rHω)L∞ ≍
{

σ−2, r ≥ 2,

σ−rω
( 1

σ

)

, r = 0, 1.
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Corollary 2. Let 0 < α ≤ 1 and σ ≥ 2. Then

E(W rHα, Eσ ∩W rHα)L∞ ≍ σ−min{2,r+α}.

We conjecture that, under the assumption of Theorem 5, it also holds that

d̄σ (W
rHω,W rHω)L∞

≍
{

σ−2, r ≥ 2,

σ−rω
( 1

σ

)

, r = 0, 1.

3. Proofs of the Theorem 4 and 5

The proof of Theorem 4. The upper estimate. For n ∈ N, let

(Jnf)(x) =

∫

T

f(x+ t)kn(t)dt.

Where kn(t) = Ln′(t)
(

n′ =
[n+ 1

2

])

, while Ln(t) = λ−1
n

(

sin
nt

2

sin
t

2

)4

, is the Jackson kernel.

Here λn is determined by the equality

∫

T

Ln(t)dt = 1. It is well-known that Jn(f) is a trigonometric

polynomial of degree < n.
If f ∈ W̃ rHω, it is easy to see that (Jnf)

(r) ∈ W̃ rHω. From Jackson theorem (see [4, Theorem 2.2
in Ch. 7]), there is some absolute constant C such that

‖Jnf − f‖L̃q
≤ Cω2

(

f,
1

n

)

L̃q

, (3.1)

where
ω2 (f, t)L̃q

= sup
|h|≤t

‖f(·+ 2h) − 2f(·+ h) + f(·)‖L̃q
, 0 ≤ t < +∞.

It is easy to see that when r = 0, 1, ω2

(

f,
1

n

)

L̃q

≪ 1

nr
ω
( 1

n

)

, when r ≥ 2, ω2

(

f,
1

n

)

L̃q

≪ 1

n2
‖f ′′‖L̃q

and there exists some absolute constant Cr dependent only on r such that

‖f ′′‖L̃q
≤ Cr. (3.2)

Thus, by these discussions, we obtain

d2n+1(W̃
rHω, W̃ rHω)L̃q

≤ E(W̃ rHω, Tn ∩ W̃ rHω)L̃q
≪
{

n−2, r ≥ 2,

n−rω
( 1

n

)

, r = 0, 1.
(3.3)

Next, we prove the lower estimate. When r = 0, 1, since dn(W̃
rHω)L̃q

≤ dn(W̃
rHω, W̃ rHω)L̃q

,

then (2.1) is verified by (3.3) and the following lemma.

Lemma 1 [15]. Let 1 ≤ q ≤ +∞. Then

1

nr
ω
( 1

n

)

≪ dn(W̃
rHω)L̃q

, r ∈ Z+. (3.4)

When r ≥ 2, since

d2n−1(W̃
rHω, W̃ rHω)L̃q

≥ d2n(W̃
rHω, W̃ rHω)L̃q

≥ d2n(W̃
rHω, W̃ rHω)L̃1

(2π)−1/q′ ,
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it is sufficient to prove that
d2n(W̃

rHω, W̃ rHω)L̃1
≫ n−2. (3.5)

To prove (3.5), we need the standard functions fn,r and ϕn,r and their properties. Let fn,r denote
the standard function which realized many extremal properties of the functions from W̃ rHω for the
concave modulus of continuity ω defined by the following way. Set

fn,0(x) = fn,0(ω, t) =











1

2
ω(2x), 0 ≤ x ≤ π

2n
,

1

2
ω
[

2
(π

n
− x
)]

,
π

2n
≤ x ≤ π

n
,

and fn,0(x) = −fn,0
(

x − π

n

)

,
π

n
≤ x ≤ 2π

n
, and fn,0(x) is a

2π

n
-periodic function. In addition,

γn,r =
π(1− (−1)r)

4n
. Further, let fn,r be the r-th 2π periodic integral of fn,0 with zero mean value

on the period interval [a, a+ 2π], a ∈ R, i.e.,

fn,r(x) =

x
∫

γn,r

fn,r−1(t)dt, r ∈ N.

Another standard function ϕn,r is the r-th 2π periodic integral of ϕn,0(x) = sgn sinnx with zero
mean value on the period interval [a, a + 2π], a ∈ R. When n = 1, we simply write fr, ϕr, γr in
stead of f1,r, ϕ1,r, γ1,r. Many properties of the standard functions fn,r and ϕn,r may be found in
Korniechuk’s books [10;11]. To read the article with ease, we list some properties of fr and ϕr which
will be used in the next proof. First,

sgnf0(x) = ϕ0(x) = sgn sinx =
4

π

+∞
∑

v=0

sin(2v + 1)x

2v + 1
. (3.6)

On the periodic interval [γr, γr + 2π], the two functions fr and ϕr have only three simple zeros

γr, γr + π, γr + 2π and have only two extremal points γr +
π

2
and γr +

3π

2
. Their absolute value

functions |fr| and |ϕr| are concave on the intervals [γr, γr + π] and [γr + π, γr + 2π], respectively.
To prove Theorem 4, similar to the four steps of Tikhomirov in his paper [22], we also need

several lemmas as follows.

Lemma 2 [10, Proposition 2.5.2]. Let F ⊂ Lp[a, b] (1 ≤ p <∞) be a convex and closed subset.

Then for any f ∈ Lp[a, b], and
1

p
+

1

p′
= 1, we have

e(f, F )Lp[a,b] = inf
g∈F

‖f − g‖Lp[a,b] = sup
‖g‖L

p′
[a,b]≤1

{ b
∫

a

f(t)g(t)dt− sup
u∈F

b
∫

a

u(t)g(t)dt

}

.

The following lemma belongs to Ismagilov(1968).

Lemma 3 [5; 15, Theorem 4.7 in Ch. 13]. Let ψ ∈ L2(T) be some fixed function with mean

value zero, and its Fourier series can be expressed as follows ψ(t) =

∞
∑

k=1

(ak cos kt+bk sin kt). Denote

by k(ψ) be the subset of L2(T) formed by the translates of ψ(·), that is

k(w) = {Tτψ(·)}τ∈T, Tτψ(t) = ψ(t+ τ).

Then, for n ∈ N, d2n(k(ψ), L2(T)) =
(

π

∞
∑

k=n+1

c∗2k

)1/2
, where c∗k denote the numbers ck = (a2k+b

2
k)

1/2

arranged in non-increasing order.
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The following lemma is called Neyman–Pearson lemma.

Lemma 4 [22]. Let y(·) ∈ C(△), y(t) ≥ 0, for any t ∈ △ = [t0, t1],

X =

{

x(·) ∈ L1(△) : 0 ≤ x(t) ≤ A, a.e.,

∫

△

x(t)dt ≥ B

}

.

Then
∫

△

x(t)y(t)dt ≥ A

∫

D(A,B)

y(t)dt, ∀x(·) ∈ X,

where D(A,B) = {t | 0 ≤ y(t) ≤ C(A,B)}, while the constant C(A,B) is chosen so as to have
∫

D(A,B)
dt =

B

A
.

For a fixed arbitrary subspace L2n ⊂ L̃1, using the dual theorem of the best approximation
by convex set, we find that for each fixed τ ∈ [0, 2π] the function Tτfr there holds the following
inequality

E(k(fr), L
2n ∩ W̃ rHω)L̃1

= sup
τ∈R

e(Tτfr, L
2n ∩ W̃ rHω)L̃1

≥ sup
τ∈R

{ 2π
∫

0

fr(t+ τ)sgnfr(t+ τ)dt− sup
h∈L2n∩W̃ rHω

2π
∫

0

h(t)sgnfr(t+ τ)dt

}

.

Let εr = (−1)(r+1)/2 for odd r and (−1)r/2 for even r. It is easy to verify that the standard
functions ϕr and fr have the following sign properties

sgnfr(t) = sgnϕr(t) = εrsgnf0 (t+ γr) = εrsgnϕ0 (t+ γr) = εrϕ0 (t+ γr) = εrsgn sin(t+ γr).

Hence, we obtain that (−1)rεrsgnϕr(t + γr) = ϕ0(t). For h ∈ L2n ∩ W̃ rHω, using the integration
by parts for r times, we may see that there hold following equalities

2π
∫

0

fr(t+ τ)sgnfr(t+ τ)dt = εr

2π
∫

0

fr(t)ϕ0(t+ γr)dt, (3.7)

2π
∫

0

h(t)sgnfr(t+ τ)dt = (−1)rεr

2π
∫

0

h(r)(t− τ)ϕr(t+ γr)dt. (3.8)

Set

Hτ (t) =
1

4

{

h(r)(t− τ)− h(r)(−t− τ) + h(r)(π − t− τ)− h(r)(π + t− τ)
}

.

Then it is easy to verify that the 2π-periodic function Hτ is odd and satisfies

Hτ (π − t) = Hτ (t), x ∈ [0, π]; Hτ (t) = −Hτ (t− π), t ∈ [π, 2π];

|Hτ (t)| ≤ |f0(t)|, 0 ≤ t ≤ 2π. (3.9)

Here, we show the proof of the last inequality. Since the 2π-periodic and continuous function h ∈
W̃ rHω, then, when 0 ≤ t ≤ π/2, by |(t− τ) − (−t− τ)| = |(π + t− τ)− (π − t− τ)| = 2t, we see
that there are following inequalities

|Hτ (t)| ≤
1

4

{

|h(r)(t− τ)− h(r)(−t− τ)|+ |h(r)(π − t− τ)− h(r)(π + t− τ)|
}

≤ 1

2
w(2t).
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When π/2 ≤ t ≤ π, by |(π − t− τ)− (−π− t− τ)| = |(t− τ)− (2π − t− τ)| = 2π − 2t, we see that
there are following inequalities

|Hτ (t)| = |Hτ (π − t)| ≤ 1

4

{

|h(r)(π − t− τ)− h(r)(−π + t− τ)|+ |h(r)(t− τ)− h(r)(2π − t− τ)|
}

≤ 1

2
w(2(π − t)).

Thus, by above discussion and using the definition of f0 and the fact that Hτ (t) = −Hτ (t− π) for
t ∈ [π, 2π], we obtain (3.9).

Hence, using the properties of the standard function ϕr, there is the following equality

2π
∫

0

h(r)(t− τ)ϕr(t+ γr)dt =

2π
∫

0

Hτ (t)ϕr(t+ γr)dt. (3.10)

Define a sequence {Hτ,r}+∞
r=0 of 2π-periodic functions as follows

Hτ,0(t) = Hτ (t), Hτ,r(t) =

t
∫

γr

Hτ,r−1(t)dt, r ∈ N.

Hence, Hτ,r(γr) = Hτ,r(γr + π) = Hτ,r(γr + 2π) = 0.
Next, we can verify that

|Hτ,r(t)| ≤ |fr(t)|, t ∈ [0, 2π]. (3.11)

Using proof by contradiction. When r is even, suppose that there a point x0 ∈ (0, 2π), x0 6= π,

such that |Hτ,r(x0)| > |fr(x0)|. Let λ =
fr(x0)

Hτ,r(x0)
, |λ| < 1, and set φ(t) = fr(t) − λHτ,r(t). Then,

φ(x0) = φ(0) = φ(π) = φ(2π) = 0. Using the Rolle’s theorem for r times, we will see that φ(r)(t) =
f0(t)−λHτ (t) has at least 4 zeros on some closed periodic interval. In fact, without loss of generality,
suppose that 0 < x0 < π. Using the Rolle’s theorem on the 2π-periodic function φ, we see that

φ′ has at least 4 zeros on a closed periodic interval which may be written as x
(1)
j , j = 1, 2, 3, 4,

satisfying

0 < x
(1)
1 < x0 < x

(1)
2 < π < x

(1)
3 < 2π < x

(1)
4 = x

(1)
1 + 2π.

By induction, φ(r) has at least 4 zeros on a closed periodic interval which these zeros may be written

as x
(r)
j , j = 1, 2, 3, 4, satisfying

x
(r)
1 < x

(r)
2 < x

(r)
3 < x

(r)
4 = x

(r)
1 + 2π.

The so-called closed periodic interval may be chosen as
[

x
(r)
1 , x

(r)
1 + 2π

]

. However, the fact

|λH(r)
τ,r (t)| = |λHτ (t)| < |f0(t)|, t ∈ (0, 2π), t 6= π,

shows that the function f0(t) − λHτ (t) has only three zeros on the closed interval [0, 2π]:0, π, 2π.

Then, f0(t) − λHτ (t) has at most 3 zeros on the closed periodic interval
[

x
(r)
1 , x

(r)
1 + 2π

]

. This
produces a contradiction which shows that (3.11) is true. When r is odd, the proof of (3.11) is
similar.

In the right side of equality (3.10), using the integration by parts for r times again, we obtain
the following equality

2π
∫

0

Hτ (t)ϕr(t+ γr)dt = (−1)r
2π
∫

0

Hτ,r(t)ϕ0(t+ γr)dt. (3.12)
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Combination of (3.8) to (3.12) gives

2π
∫

0

h(t)sgnfr(t+ τ)dt =

2π
∫

0

fr(t)
Hτ,r(t)

|fr(t)|
dt.

Write

xτ (t) = εrϕ0(t+ γr)−
Hτ,r(t)

|fr(t)|
, y(t) = fr(t), t ∈ [0, 2π].

Since the function values of εrϕ0(t + γr) are 1 and −1 except t = 0, π, 2π on the interval [0, 2π],

and the functions

∣

∣

∣

∣

Hτ,r(t)

|fr(t)|

∣

∣

∣

∣

≤ 1, a.e. t ∈ [0, 2π], then

sgnxτ (t) = sgnϕr(t+ γr), |xτ (t)| ≤ 2, a.e. t ∈ [0, 2π],

and hence xτ (t)yτ (t) = |xτ (t)||yτ (t)|, a.e. t ∈ [0, 2π].
By a similar discussion as in [8] and [9], we can verify that there is a point τ0 such that

2π
∫

0

xτ0(t)y(t)dt =

2π
∫

0

|xτ0(t)||y(t)|dt ≥
c

n2
(3.13)

for some absolutely positive constant c dependent only on r. In fact, because

εrϕ0(t+ γr) =
4

π

+∞
∑

v=0

εr sin(2v + 1)(t+ γr)

2v + 1
, t ∈ [0, 2π],

and h will be taken over a subset L2n ∩ W̃ rHω of the 2n-dimensional subspace L2n of L2(T), then

the function
Hτ,r(t)

|fr(t)|
may be taken over a subset of some subspace of L2(T) with dimension ≤ 8n

and hence by Lemma 3, we may obtain the following estimates

sup
τ∈R

2π
∫

0

|xτ (t)|2dt ≥ d28n(k(εrϕ0), L2(T)) = π

+∞
∑

k=4n+1

1

(2k + 1)2
>

1

3nπ
.

Hence, we also obtain

1

3nπ
< d28n (k(εrϕ0), L2(T)) ≤ 2d8n (k(εrϕ0), L1(T)) ≤ 2 sup

τ∈R

2π
∫

0

|xτ (t)|dt.

Thus, by the 2π-periodicity of the function xτ on the variate τ, there exists a τ0 ∈ [0, 2π] such that

2π
∫

0

|xτ0(t)|dt ≥
1

6nπ
.

In Lemma 4, take A = 2, B =
1

6nπ
, δn =

1

48nπ
, x = xτ0 , y = |fr| and

∆ = [γr, γr + 2π], D(A,B) = [γr, γr + δn] ∪ [π + γr − δn, π + γr − δn] ∪ [2π + γr − δn, 2π + γr],

by the properties of fr, we have

∫

D(A,B)
dt = 4δn =

B

A
,

2π
∫

0

|x(t)y(t)|dt ≥ 2

∫

D(A,B)

|y(t)|dt = 8

γr+δn
∫

γr

|fr(t)|dt. (3.14)
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To give the estimate of

∫ γr+δn

γr

|fr(t)|dt, we need some properties of fr. Since the function |fr|

is concave and increasing on the interval [γr, γr +π/2], which γr is a zero of |fr| and |fr (γr + π/2)|
is the maximum value, then there exists an absolutely constant c > 0 such that

|fr(t+ γr)| ≥ ct, t ∈
[

0,
π

2

]

.

Thus, we have
γr+δn
∫

γr

|fr(t)|dt =
δn
∫

0

|fr(t+ γr)|dt ≥
δn
∫

0

ctdt =
cδ2n
2

≫ 1

n2
.

Further, by (3.14), we conclude that

2π
∫

0

|x(t)y(t)|dt ≥ 2

∫

D(A,B)

|y(t)|dt ≫ 1

n2
,

which is (3.13). This shows that (3.5) is valid. We complete the proof of Theorem 4.

In the proof of Theorem 5, we need to use the following lemma.

Lemma 5 [1, Lemma 2 in Sect. 84]. Let f be a continuous function with the period 2π and if
there exists a function ψ ∈ Eσ such that sup

x∈R
|f(x) − ψ(x)| ≤ δ. Then there is a trigonometric

polynomial sum of the form φ(x) =

n
∑

k=−n

cke
ikx with n < σ, for which the relation

sup
x∈R

|f(x)− φ(x)| ≤ δ.

is likewise fulfilled.

Remark of Lemma 5. In the proof of Lemma 5, the sequence {ψN} of functions defined by

ψN (x) =
1

2N + 1

N
∑

k=−N

ψ(x+ 2kπ)

was applied. To discuss our problems, here we shortly listed the proof in Achieser’s monograph
[1, Sect. 84] as follows. By using the facts that in a subset M of Eσ if all the functions f in M

are uniformly bounded on the real axis R, then the functions in M are equi-continuous in every
bounded point set of complex plane, and hence every sequence in M contains a locally uniformly
convergent subsequence, we knew that some subsequence {ψNm} of the sequence {ψN} is locally
uniformly convergent.

Here the so-called a sequence of functions to be “locally uniformly convergent” means that
the sequence is uniformly convergent in every bounded point set of complex plane. And the limit
function φ of {ψNm} is likewise contained in Eσ and obviously has the period 2π.

The above facts may be seen also from Nikol’skii’s monograph [19, Theorem 3.3.6].
Further, for a function ψ ∈ Eσ ∩W rHω, by the above-mentioned process and the well-known

Bernstein inequality on the functions Eσ, we may see that
{

ψ
(r)
Nm

}

locally uniformly converge to

φ(r) and ψ ∈ W̃ rHω.

Proof of Theorem 5. Upper estimate. For σ > 0, let Jσ be the Jackson kernel defined by

Jσ(x) = λσ

(

sin
σx

4
x

)4

,
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where λσ is an absolutely constant dependent only on σ. Thus, if f ∈ W rHω, then it is easy to
verify that the convolution Jσ ∗ f of Jσ and f is an element of W rHω.

Similar to the period case, we can obtain that for f ∈W rHω there is the following estimate

sup
x∈R

|f(x)− Jσ ∗ f(x)| ≪







σ−rω
( 1

σ

)

, r = 0, 1,

σ−2, r ≥ 2, r ∈ N.

Lower estimate. By Lemma 5, Remark of Lemma 5, we have the following estimate

E(W rHω, Eσ ∩W rHω)L∞ ≥ E(W̃ rHω, Eσ ∩W rHω)L∞

= sup
f∈W̃ rHω

inf
{

sup
x∈R

|f(x)− ψ(x)| : ψ ∈ Eσ ∩W rHω
}

= sup
f∈W̃ rHω

inf
{

sup
x∈R

|f(x)− ψ(x)| : ψ ∈ Eσ ∩ W̃ rHω
}

= (W̃ rHω, Tn+1 ∩ W̃ rHω)L̃∞
,

where n ∈ N, σ − 1 ≤ n ≤ σ.
Sum up, by above discussion and Theorem 4, we complete the proof of Theorem 5.
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