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BEST RESTRICTED APPROXIMATION OF SMOOTH FUNCTION CLASSES!

Yongping Liu, Guiqiao Xu, Jie Zhang

We first discuss the relative Kolmogorov n—widths of classes of smooth 27-periodic functions for which the
modulus of continuity of their r-th derivatives does not exceed a given modulus of continuity, and then discuss
the best restricted approximation of classes of smooth bounded functions defined on the real axis R such that
the modulus of continuity of their r-th derivatives does not exceed a given modulus of continuity by taking the
classes of the entire functions of exponential type as approximation tools. Asymptotic results are obtained for
these two problems.
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1. Introduction

Denote by Z the set of all nonnegative integers, N = Z \ {0}, by R the set of all real numbers
or the real axis, and by C the set of all complex numbers or the complex plane.
Let P,()) is an algebraic polynomial of degree r € N in the form

P) = =A) e (A=A, (1.1)

where Ag == ax + 0k, o €R, B € R, k=1,2,--- | r. Denote by

d d d
B(D) = <% _ )\1[> N (% _ )\TI), D:=—,
the linear differential operator of order r with respect to P,., where [ is the idegtity operator.
For the interval R ( or T = [0,27]) and 1 < p < 400, let L, = L,(R) (or L, = L,(T)) denote
the Banach space of (or 27-periodic) functions f : R — C to be p—power integrable on R (or on T)
with the usual L,—norm | f||r,(or ”f”ip)

For a nonnegative integer r € Z,, denote by C" (or CW) the collection of all functions f
for which the r-order derivatives f() ( fO = f) are uniformly continuous (or 2m-periodic and
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continuous). Denote by Wf " (or Wf ") the collection of functions f € L,NC" (or f € C" ) for which
have the locally absolutely continuous derivatives up to the (r — 1)st order and || P.(D)f|r, < 1
(or ”PT(D)JCHLP < 1). Specially, when P.(\) = A", write W (or VNVIj) instead of W/ (or VNVIfDT).

Let w be a modulus of continuity. Set
WrHS = {feCr: fO) e =)y, WH={fel": [ eH},
where f(") € H* means
w(f, 1) =sup {|f(x) = fO ()]s 2,y ER o —y| <t} Swit), 20,

When w(t) = t*,0 < a < 1, we write W"H® (or W"H®) instead of W"H* (or W"H).
Let E,, o > 0, denote the class of entire functions of exponential type o, that is, f € E, if and
only if f: C — C is an entire function and for Ve > 0, 3A, > 0 such that

|f(2)| < Acexp((o +€)|z]), z=z+iyeC.

Denote by E,, := Esp, 1 < p < 400, the collection of all f € E, with flg € L,. Here the
notation F'(o) < 0® (s < 0) means that there exist two positive real numbers C, D > 0 independent
of o for which Do® < F(o) < Co?® for all sufficiently large o (with the analogous meaning for
n® <« F(o) < n®, F(n) < n?®, etc).

Let W and V be two nonempty subsets of a normed linear space X endowed with the norm ||-||x.
Denote by

E(W,V)x := sup inf [[w—v|x
weWw veEV

the deviation (or approximation) of W from V in the space X. In 1984, Konovalov [7] raised the
problem to consider the relative n-width of W related to V' in the space X is given by

d,(W,V)x := irgf EW,LNV)x,

where the infimum is taken over all n-dimensional subspaces L of X. When V = X, d,,(W,V)x =
d,(W)x is the usual n-width, in the sense of Kolmogorov, W in X. V.N. Konovalov in [7] proved
that

dy(W2 W Yoo <n"2, >3

V.F.Babenko in [2] showed o
d (W7, W)y =n™2 r>3.

V.M. Tikhomirov in [22] generalized the above result in [7] from the positive integer r > 3 to the
positive real number « through a simpler proof.
For 1 < ¢ < oo, r € N, V.N. Konovalov in [8;9] proved

dn (WL, W) = n™ ™t 2),

d(W], W)y = ™ ™02 () £ (1, 00)
T 1T —min{r—14+21 7}

dn(W2,W2)qx n 2 ¢ 7,

Later, Wei Yang [25] considered the relative n-widths of two kinds of periodic convolution classes
whose convolution kernels: NCVD-kernel and B-kernel, and obtained the similar asymptotic esti-
mates.

Tikhomirov [23] introduced the concept of the average dimension and Magaril-IU'yaev [16]
proposed the concept of the average width. More general statement was formulated by Professor
Yongsheng Sun in [21]. For the special case Ly, p € [1,00], we state the definitions of the average
dimension and average width as follows.
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Let L be a subspace of L, and By := {z € L: ||z[/z, < 1}. For any € > 0,a > 0, let

N(e,a) :=min {n € Zy: 3 linear subspace M C Ly[—a, a]
withdim(M) = n, s.t. E(BL‘[—a,a]a M)Lp[—a,a} < 6}.

It is easy to see that N (e, a) is increasing in variable a and decreasing in variable e. The number

- N
dim(L; L,) = lim lim inf Nie.a)

e—0t+ a—4o0 a

is said to be the average dimension of L in L,. Specially, dim(E,,; Ly) = g (see [16]).
™
For o > 0, the quantity

do(W)p, :==inf {E(W,L)p,: L is a subspace of L, with dim(L;L,) < o}

is called the average Kolmogorov o—width of W in the space L.

On the average width of Sobolev classes WpP "(R) (or Sobolev—Wiener classes Wy (R)) in the
metric L,(R) (or other classes of smooth functions on R or R%(d > 1)), many exact results are
obtained by Magaril-II’yaev [17;18], Dirong Chen [3], Yongping Liu [13], Heping Wang [20], Yanjie
Jiang [6], Guigiao Xu [24], etc.

Combining the ideas of Magaril-1I'yaev|[16] and Konovalov|7], Liu and Xiao [14] introduced the
problem to consider the quantity

d, (W, V)Lp = i%f E(W,LnNn V)Lp,

where the infimum is taken over all subspaces L of L, with dim/(L; L,) < o, and call it to be the
relative average Kolmogorov o—width of W related to V' in the space L,. Obviously, when V' = L,,
do(W, V), = de(W)p, is the average Kolmogorov o-width of W in the space L. In [14], Liu and
Xiao gave some exact results on some classes of functions in Ly(R?) as follows.

For a > 0, set

Ry (RY) = {f € Ly(RY): /Iylzalf(y)lzdy < 1},
Rd

B3 (RY) = {f € Ly(RY): /(1 + ) |f () Pdy < 1}.
Rd

Where f denotes the Fourier transform of f, and |y| denotes the length of a vector y € R? defined
by |y| = v/(y,y), while (z,y) denotes the inner product of two vectors z,y € R%.

Theorem 1 [14].

do (5 (R), 35 (RY)) 1, ) = o (95 (R)) , ey = (p(0))™

do (RS (RY), MRG(RY)) ) pay =00, 0<M <L

do (B (RY), MBS (RY)) | pay = do(BG (RY)) . pay =1 — My, M > My;

2(R9) 2(R9)

d(%5 (RY), MRZ(RY)) |, ey =1 - M, 0<M < M.

1/d
Where My :=1— (1+ (p(a))2)_a/2, plo) = \/E(F(% + 1)0> / . SB?)(U) (R%), the collection of

the entire functions of spherical exponential type o > 0, which as functions of the real vector € RY
lie in Lo(RY), is an optimal space.
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On the exact order of relative average width d,, (WpP r WpP ") L and the best restricted approxi-
P

mation F (prf', E, N Wf*) for p = 1,2, 00, Ling and Liu obtained the following results.
P

L

Theorem 2 [12]. Let P, be a polynomial in the form of (1.1) with r > 1 and ¢ := inf{oc > 0:

. 5 1
P.(i\) # 0,V|A| > o}. Then d, (W2PT, W, T)Lz = E(W2PT,EU N Wy T)Lz = 27 MaX|y|>, 2.(i9)| for
all o > oy.
It is worth to mention that the above theorem has been proved essentially in [14].
For r € N, let P,.(\) be an algebraic polynomial of degree r in the form of
B =X ][N =) (1.2)
j=1

where s <7 and s € {0,1,2}, and (Non pure imaginary) A\; ¢ iR := {iz: z € R}, j=1,2,--- ,r—s.
When r = s € {0,1,2}, Ps(\) = \°.

Theorem 3 [12]. Let P.(\) be an algebraic polynomial of degree r in the above form. Then

dy (W), WpPr)LP < E (WS E,n WpPr)LP =oc", r=1,2 1<p<+4o0;

E (W[, E; n W)

Lp<<0_mi“(2”"), 1<p<+4o0, reN;

E(WfT,EoﬂWfT)L > o ™1 p =1 400, reN.
P

Remark. Theorem 3 shows that d,, (Wff, WET)L = d, (WET)L <o ", r=12,1<p<+oc;
P g P, — min(2,r) 1 G& !
EW " E, "W, ) < : = 00 .
( p e Wy )Lp o » P , F00, 1

We conjecture that, under the assumption of Theorem 3, it also holds that

dy, (Wfr, I/V;,fDT)Lp = g~ min2r) for p e {1, 00}.

2. Owur main results

Theorem 4. Let 1 < q < 400 and the modulus of continuity w be concave. Then

_ _ _ _ n?, r>2,
d2n_1(Wer’Wer)iq = E(W"H®,T, N Wer)iq = { n"‘w(l), F= 0.1, (2.1)
n

Where T,, denotes the linear manifold of trigonometric polynomials

1
+ » (ag coskzx + by sin kx)
1

3
|

ag
2

e
Il

of degree n.
Corollary 1. Let a € (0,1] and 1 < ¢ < 4o00. Then
don_1 (W"H®, WTHa)iq = E(W"H®, T, N WTHa)iq =~ min{2rta}
Theorem 5. Let the modulus of continuity w be concave and o > 2. Then
o2, r> 2,
EW'™H® E;,NW"H) = { _ (l)7 F= 0.1,

g
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Corollary 2. Let 0 < a <1 and o > 2. Then
E(W"H®, E, N\W"H®),, < o~ mn2rtal,

We conjecture that, under the assumption of Theorem 5, it also holds that

o "w

_ o2, r> 2,
de (W"HY, W"H®), = { <1>, . '
o

3. Proofs of the Theorem 4 and 5

The proof of Theorem 4. The upper estimate. For n € N, let

(Jnf)(@) = | f(z+t)kn(t)dt.
/

Where k,(t) = Ly (t) (n' _ [n—l—l

sin —\ 4
D, while L,(t) = A\t % , is the Jackson kernel.
sin§

Here A, is determined by the equality / L, (t)dt = 1. It is well-known that J,,(f) is a trigonometric
T
polynomial of degree < n.

If f € W"HY, it is easy to see that (J,, f)(") € W”H*. From Jackson theorem (see [4, Theorem 2.2
in Ch. 7]), there is some absolute constant C' such that

1
s = s, < Cen (1) (3.1)
where
wa (f,t)g, = sup If(-+2h) =2f(-+h) + f()llf, 0 <t < +oc.
<t
, 1 1 1 1 1,
It is easy to see that when r =0, 1, wg(f, —) < —w(—), when r > 2, wg(f, —) . <= llz
n/ Lq n" \n n/ Lq n a
and there exists some absolute constant C,. dependent only on 7 such that
171z, < Cr. (3.2)
Thus, by these discussions, we obtain
- - - - n=?, r>2,
rIyWw TITWY _ rITWw TITWY _
dop1 (W "HY  W"H )Lq <EW'HY,T,nW"H )Lq < n‘%u(l), r=0.1. (3.3)
n

Next, we prove the lower estimate. When r = 0, 1, since dn(W’"H"J)iq < dn,(WTH®, WTHW)LZ’
then (2.1) is verified by (3.3) and the following lemma.
Lemma 1 [15]. Let 1 < g < +o0. Then

1 1 ~
—wl|— d(W"H®); | Zy. 3.4
nrw<n) L dn( )Lq re Ly (3.4)
When r > 2, since

don 1 (W H® W H?) ;> do(WWH®, W H?) ;> doy(W"H®, W H®) (27) 717,
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it is sufficient to prove that

don (W H, W H®); > n"2 (3.5)

To prove (3.5), we need the standard functions f, , and ¢, » and their properties. Lgt fn,r denote
the standard function which realized many extremal properties of the functions from W"H® for the
concave modulus of continuity w defined by the following way. Set

1
—w(2z), 0<z< — T
2 2n’
fn,O(x) - fn,O(wyt) - 1
—w[2(z—x>} 1< <z
2 n " on T T
T\ T 2m . 2m . . .
and fro(z) = —fno <:17 ——),— <2z < —, and f,o(z) is a —-periodic function. In addition,
n/’'n n n
1—(=1)
Yngr = M Further, let f, , be the r-th 27 periodic integral of f, o with zero mean value

on the per1od interval [a,a + 27],a € R, i.e.,
fnr /fnr 1 TGN

Another standard function ¢y, is the r-th 27 periodic integral of ¢, o(z) = sgnsinnz with zero
mean value on the period interval [a,a + 27],a € R. When n = 1, we simply write f,., ¢, in
stead of fi,, ¢1,, 71, Many properties of the standard functions f,, and ¢, , may be found in
Korniechuk’s books [10;11]. To read the article with ease, we list some properties of f, and ¢, which
will be used in the next proof. First,

+oo .
. 4 sin(2v + 1)z
= = = — —_— 7 3.6
sfu(a) = gole) = sgsing = 32T (3

On the periodic interval [v,,7, + 27|, the two functions f, and ¢, have only three simple zeros

3
Yy Vr + T, Y + 27 and have only two extremal points ~, + g and v, + ; Their absolute value
functions |f,| and |¢,| are concave on the intervals [y, 7, + 7] and [y, + 7,7 + 27, respectively.
To prove Theorem 4, similar to the four steps of Tikhomirov in his paper [22], we also need
several lemmas as follows.

Lemma 2 [10, Proposition 2.5.2|. Let F' C Lp[a,b] (1 < p < 00) be a convex and closed subset.
1 1
Then for any f € Lyla,b], and — + = = 1, we have
p p

b

e(f, )Lpab]—lanf Il (0 = |9|L,ab {/f dt—ilellg/ ()g(t)dt}.

a

The following lemma belongs to Ismagilov(1968).
Lemma 3 [5; 15, Theorem 4.7 in Ch. 13|. Let 1p € Lo(T) be some fized function with mean
[e.e]

value zero, and its Fourier series can be expressed as follows 1(t) = Z(ak cos kt+ by sin kt). Denote
k=1
by k(1) be the subset of Lo(T) formed by the translates of 1(-), that is

k(w) = {17 () }rer, Trp(t) = (t+ 7).
> 1/2
Then, forn € N, doy(k(¢), L2(T)) = (7r Z 22) / , where ¢ denote the numbers ¢y, = (a?+b?)/?

k=n+1
arranged in non-increasing order.
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The following lemma is called Neyman—Pearson lemma.

Lemma 4 [22]|. Let y(-) € C(A), y(t) > 0, for any t € A = [to, t1],

X = {:L'() € Li(A):0<x(t) <A, ae., /x(t)dt > B}.

A

Then
/:17 t)dt > A / y(t)dt, Vz(-) € X,
A D(A,B)

where D(A, B

J}%
/ dt = —.
D(A,B) A

For a fixed arbitrary subspace L?" C L, using the dual theorem of the best approximation
by convex set, we find that for each fixed 7 € [0,27] the function T’ f, there holds the following
inequality

= {t]0 < y(t) < C(A, B)}, while the constant C(A, B) is chosen so as to have

E(k(f.), L "W"H®); = supe(T, fr, L*" N W"H¥);
TER

2w

2T
> sup { /fr(t + 7)senf,(t + 7)dt — sup / h(t)sgnf,(t + T)dt}.
0

TER hELZnﬂWTHw 0

Let ¢, = (—1)+1/2 for odd 7 and (—1)"/? for even 7. It is easy to verify that the standard
functions ¢, and f, have the following sign properties

sgnf,(t) = sgnp,(t) = eysgnfo (t + ) = ersgneo (t+v-) = erpo (t+ V) = epsgnsin(t + ;).

Hence, we obtain that (—1)"e,sgng,(t +7,) = @o(t). For h € L>» N W7"H“, using the integration
by parts for r times, we may see that there hold following equalities

2 2w
/fr(t + 7)sgufr(t + 7)dt = &, / fr(t)po(t + vr)dt, (3.7)
0 0

2 2

/ h(t)sen f(t + T)dt = (—1)e, / RO (8 — 7)o (t + 7). (3.8)

0 0

Set
H,(t) = i {h(’“)(t —7)=h"(—t =)+ B (m—t—7) =D (x4t — T)} .

Then it is easy to verify that the 2m-periodic function H, is odd and satisfies
H.(m—t)=H:(t), xzel0,n]; H:(t)=-H;(t—m), te]m?2n];

[H- ()] < [fo(®)], 0<t<2m (3.9)
Here, we show the proof of the last inequality. Since the 2m-periodic and continuous function h €
WT"HY, then, when 0 <t <7/2, by |[t—7)— (—t—7)|=|(r+t—7)— (m —t — 7)| = 2t, we see
that there are following inequalities

H ()] < ~ {]h(r(t—T) B (=t = 1)+ WO (x =t = 7) = KO+ £ = 7))} < Sw(22).
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When /2 <t <m by |(m—t—7)—(—7—t—7)|=|(t —7) — (2r —t — 7)| = 27 — 2¢, we see that
there are following inequalities

HL (1)) = | Ho (7 — 1)] < i [ —t = 7) = hO (4t =) + |1 (¢~ 7) — KO (2 —t— 7))}

< ~w((r —t)).

DO | =

Thus, by above discussion and using the definition of fy and the fact that H,(t) = —H(t — ) for
t € [m,27], we obtain (3.9).
Hence, using the properties of the standard function ¢,, there is the following equality

2 2

/ Wt — 1) (t + 7, )dt = / H,(t)o, (t 4 y)dt. (3.10)
0 0

Define a sequence {H;,},/25 of 2m-periodic functions as follows
t
H.o(t)=H:(t), H;r(t) = /Hw_l(t)dt, r € N.
Yr

Hence, HT,T’(’YT) = HT,T(’YT’ + 7T) = HT,T’(’YT + 27T) =0.
Next, we can verify that

(Hrp ()] < [/ (@)], ¢ €[0,2]. (3.11)

Using proof by contradiction. When r is even, suppose that there a point z¢ € (0,27),z9 # T,

such that |H; ,(zo)| > |fr(x0)|. Let A = ];L:(U;)), |A| < 1, and set ¢(t) = fr(t) — AH,,(t). Then,
7,7\ L0

d(20) = #(0) = ¢(r) = ¢(2r) = 0. Using the Rolle’s theorem for r times, we will see that ¢ (t) =
fo(t)—AH.(t) has at least 4 zeros on some closed periodic interval. In fact, without loss of generality,
suppose that 0 < xp < 7. Using the Rolle’s theorem on the 27-periodic function ¢, we see that
¢’ has at least 4 zeros on a closed periodic interval which may be written as :175-1), 7 =1,2,3,4,
satisfying

(1) (1)

0<zy’ <z < I3 %

<< (n _

<2m<zxy =uwm +2m.

By induction, ¢(") has at least 4 zeros on a closed periodic interval which these zeros may be written
(r)

asx; ', j =1,2,3,4, satisfying

a:gr) < a:g) < a:gr) < a:y) = a:&” + 2.

The so-called closed periodic interval may be chosen as [a:gr), xgr) + 277]. However, the fact

NHO@)] = NHA ()] < [fo®), te (0,2n), t#m,

,T

shows that the function fo(t) — AH,(t) has only three zeros on the closed interval [0, 27]:0, 7, 27.

Then, fo(t) — AH,(t) has at most 3 zeros on the closed periodic interval [xgr),xy) + 277]. This
produces a contradiction which shows that (3.11) is true. When r is odd, the proof of (3.11) is
similar.

In the right side of equality (3.10), using the integration by parts for r times again, we obtain
the following equality

27 21

[ Heonte it = 17 [ Hrp(e)nle + ) (3.12)
0 0
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Combination of (3.8) to (3.12) gives

21 21

/ h(t)sen fi(t + 7)dt = / PRO EsiOp

0 0

Write

2e(®) = £rgat +97) — T2 00 = £ (01t € 0,20

Since the function values of €,¢q(t 4+ 7,) are 1 and —1 except t = 0, 7,27 on the interval [0, 27],

H, . (t)
|fr(t)]

sgnz,(t) = sgne,(t+ ), |z-(t)] <2, a.e.t €]0,2n],

and the functions

< 1l,a.e.t € [0,2x], then

and hence z,(t)y-(t) = |z, (t)||ly-(t)|, a.e.t € [0, 27].
By a similar discussion as in [8] and [9], we can verify that there is a point 7y such that

21 2m
[anttte = [ fon @l = 5 (3.13)
0 0

for some absolutely positive constant ¢ dependent only on r. In fact, because

X ey sin(2v + 1)(t + )

+
4 Z
t = —

, tejo,2n],

and h will be taken over a subset L?* N W7"H* of the 2n-dimensional subspace L?" of Ly(T), then

H, . (t)

the function may be taken over a subset of some subspace of Ly(T) with dimension < 8n

| fr(t)]
and hence by Lemma 3, we may obtain the following estimates
2 +oo 1 1
(t)Pdt > d3, (k Lo(T :
sup [ a,(6) Pt 2 & (k(erio). La(T)) = " Y G
0 -

Hence, we also obtain

1
< 3, (K(erpo), La(D)) < 2y (k(erpo), La(T) <%wﬂwwt
nm TER

Thus, by the 2m-periodicity of the function x, on the variate 7, there exists a 7y € [0, 27] such that

/yg;m Vldt > ﬂ

1 1
In Lemma 4, take A=2, B=—,0, = ——, v =2, y = |f| and
6nm 48nm

A:[’Yr,’}/r—i-Q?T], D(AyB):[’Yra’}’r"i_(sn]u[ﬂ"’_’}’r_ény 7T+’Yr_6n]u[27r+'7r_571727("’_77’]7
by the properties of f,., we have

2 Yr +5n

/( it = n=§ / ()]t > 2 / ly()|dt = 8 / FOld. (3.14)

D(A,B)
0 D(A,B) Fr
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Yr+0n
To give the estimate of / | f(t)|dt, we need some properties of f,. Since the function |f,|

is concave and increasing on the interval [v,, v, + 7/2], which ~, is a zero of | f,| and | f, (v, + 7/2)|
is the maximum value, then there exists an absolutely constant ¢ > 0 such that

fo(t+7,)| > ct, te [0, g] .

Thus, we have

'Yr+6n (Sn 6n 52 1
/ (1)t :/|fr(t+%)|dt > /ctdt =%
Ir 0 0
Further, by (3.14), we conclude that
2m 1
[t =2 [ ylas 5,
0 D(A,B)

which is (3.13). This shows that (3.5) is valid. We complete the proof of Theorem 4.

In the proof of Theorem 5, we need to use the following lemma.

Lemma 5 |1, Lemma 2 in Sect. 84|. Let f be a continuous function with the period 2m and if
there exists a function ¢ € E, such that sup|f(x) — ¢(z)| < 8. Then there is a trigonometric
z€eR

n
polynomial sum of the form ¢(x) = Z cre’™ with n < o, for which the relation

k=—n

sup |f(z) — ¢(z)| < 0.

zeR

1s likewise fulfilled.

Remark of Lemma 5. In the proof of Lemma 5, the sequence {1} of functions defined by
1 N

YN (z) = SN 1 kZNl/J(x + 2k)

was applied. To discuss our problems, here we shortly listed the proof in Achieser’s monograph
[1, Sect. 84| as follows. By using the facts that in a subset 9 of E, if all the functions f in M
are uniformly bounded on the real axis R, then the functions in 91 are equi-continuous in every
bounded point set of complex plane, and hence every sequence in 9t contains a locally uniformly
convergent subsequence, we knew that some subsequence {¢y;,,} of the sequence {¢)n} is locally
uniformly convergent.

Here the so-called a sequence of functions to be “locally uniformly convergent” means that
the sequence is uniformly convergent in every bounded point set of complex plane. And the limit
function ¢ of {¢y,,} is likewise contained in F, and obviously has the period 2.

The above facts may be seen also from Nikol’skii’s monograph [19, Theorem 3.3.6].

Further, for a function ¢ € E, N W"H¥, by the above-mentioned process and the well-known
Bernstein inequality on the functions E,, we may see that {1/)](\%} locally uniformly converge to
") and ¢ € WTHY.

Proof of Theorem 5. Upper estimate. For ¢ > 0, let J, be the Jackson kernel defined by

oxr

: 4
Sl ——
To(x) = Acr( - ) :
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where A\, is an absolutely constant dependent only on o¢. Thus, if f € W"HY, then it is easy to
verify that the convolution J, * f of J, and f is an element of W"H%.

Similar to the period case, we can obtain that for f € W™H% there is the following estimate
sup | f(x) — Jo * f(2)] <
ZER o2, r>2 reN

Lower estimate. By Lemma 5, Remark of Lemma 5, we have the following estimate

EW'H® E, "\W"H%),_ > E(W"H*, E, N\W"H®)

= sup inf{sup]f(a:) —(z)] :p € E;N WTH“}

fewrHe zeR
= sup inf{sup|f(:1:)—1,b(:1:)| :Q,Z)GEUHWTH“}
fewrHe zeR

= (WTHM, Tht1 N VNVTHM)LOO,

wheren e Nyo—1<n<o.

Sum up, by above discussion and Theorem 4, we complete the proof of Theorem 5.

Acknowledgements: The authors would like to express their deepest appreciations and many

thanks to the two reviewers for their valuable suggestions and questions to correct some mistakes in
the manuscript. The first author would also like to express many thanks to the organizing committee
of the International S. B. Stechkin Workshop-Conference on Function Theory for their support
during the conference from August 1 to August 10, 2018, and many thanks to professor A. Babenko
for his kindly help in editing this article.

[N

10.

11.

12.

REFERENCES

N.I. Achieser. Theory of approximation. N Y: Dover Publications, INC., 1992, 307 p. ISBN: 0486671291 .
V.F.Babenko. Approximations in the mean with constraints on the derivatives of approximating
functions. In : Questions in Analysis and Approximations. Kiev: Akad. Nauk Ukrain. SSR, Inst. Mat.,
1989, pp. 9-18 (in Russian).

Dirong Chen. Average n-widths and optimal recovery of Sobolev classes in Ly(R). Chinese Ann. Math.
Ser. B, 1992, vol. 13, no. 4, pp. 396-405.

R. A.DeVore, G.G.Lorentz. Constructive approximation. Grundlehren der Mathematischen Wissen-
schaften [Fundamental Principles of Mathematical Sciences|, vol. 303, Berlin: Springer-Verlag, 1993,
449 p. ISBN: 3-540-50627-6 .

R.S. Ismagilov On n-dimensional diameters of compacts in a Hilbert space. Funct. Anal. Its. Appl., 1968,
vol. 2, no. 2, pp. 125-132. doi: 10.1007/BF01075946 .

Yanjie Jiang. Widths and optimal recovery of smooth function classes. PhD thesis, Beijing Normal
University, 1998.

V.N. Konovalov. Estimates of Kolmogorov-type widths for classes of differentiable periodic functions.
Math. Notes, 1984, vol. 35, no. 3, pp. 193-199. doi: 10.1007/BF01139916 .

V. N. Konovalov. Approximation of Sobolev classes by their finite-dimensional sections. Math. Notes,
2002, vol. 72, no. 3, pp. 337-349. doi: 10.1023/A:1020547320561 .

V. N. Konovalov. Approximation of Sobolev classes by their sections of finite dimension. Ukraine Math.
J., 2002, vol. 54, no. 5, pp. 795-805. doi: 10.1023/A:1021635530578 .

N. P. Korneichuk. FEkstremal’nye zadachi teorii priblizheniya [Extremal problems of approximation
theory]. Moscow: Nauka Publ., 1976, 320 p.

N. P. Korneichuk. Ezact constants in approximation theory. Cambridge: Cambridge University Press,
1991, Encyclopedia Math. Appl., vol. 38, 466 p. ISBN: 9781107094277 .

Bo Ling, Yongping Liu. Best restriction approximation of Sobolev classes by entire functions of
exponential type. Acta Mathematica Sinica, Chinese Series, 2017, vol. 60, no. 3, pp. 389-400.



294

Yongping Liu, Guiqgiao Xu, Jie Zhang

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Yongping Liu. Infinite dimensional widths and optimal recovery on the S —W spaces. PhD thesis, Beijing
Normal University, 1993.

Yongping Liu, Weiwei Xiao. Relative average widths of Sobolev spaces in Ly(R?). Anal. Math., 2008,
vol. 34, no. 1, pp. 71-82. doi: 10.1007/s10476-008-0107-8 .

G.G.Lorentz, M.V.Golitschek, Y.Makovoz Constructive approrimation. Advanced problems.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 304. Berlin: Springer-Verlag, 1996, 649 p. ISBN: 3-540-57028-4 .

G. G. Magaril-I’yaev. ¢o-mean diameters of classes of functions on the line. Russian Math. Surv., 1990,
vol. 45, no. 2, pp. 218-219. doi: 10.1070/RM1990v045n02ABEH002340 .

G. G.Magaril-I’'yaev. Mean dimension, widths, and optimal recovery of Sobolev classes of functions on
the line. Math. USSR-Sb., 1993, vol. 74, no. 2, pp. 381-403. doi: 10.1070/SM1993v074n02ABEH003352 .
G. G. Magaril-1l'yaev, V. M. Tikhomirov. Average dimension and v-widths of classes of functions on the
whole line. J. Complexity, 1992, vol. 8, no. 1, pp. 64-71. doi: 10.1016,/0885-064X(92)90034-9 .

S. M. Nikol’skii. Approximation of functions of several variables and embedding theorems. Berlin; N Y:
Springer-Verlag, 1975, 420 p. ISBN: 0387064427 .

Heping Wang. Approzimation and quadrature formula on function classes with mized smoothness. PhD
thesis, Beijing Normal University, 1996.

Yongsheng Sun, Yongping Liu, Dirong Chen. Extremal problems in approximation theory for some classes
of smooth functions defined on R?. J. Beijing Normal University (Natural Sciences), 1999, vol. 35(supp.),
pp. 79-144.

V.M. Tikhomirov. Some remarks on relative diameters. In: Approzimation and function spaces, Proc.
27th Semest., Warsaw/Pol. 1986, Banach Cent. Publ., 1989, vol. 22, pp. 471-474.

V.M. Tikhomirov. On approximation properties of smooth functions. Proc. Conf. on Differential
Equations and Numerical Mathematics, (Novosibirsk: Nauka Publ., 1980), pp. 183188 (in Russian).
Guiqgiao Xu. Widths and optimal recovery of multivariate smooth functions. PhD thesis, Beijing Normal
University, 2001.

Wei Yang. Relative widths of differentiable function classes and convolution classes with 2w periodic in
one variable case and hexagonal periodic in 2-dimensional case. PhD thesis, Beijing Normal University,
20009.

Received August 31, 2018
Revised October 25, 2018
Accepted October 29, 2018

Yongping Liu, Prof., School of Mathematical Sciences, Beijing Normal University, Beijing, 100875,
China, e-mail: ypliu@bnu.edu.cn.

Guigiao Xu, Prof., School of Mathematical Sciences, Tianjin Normal University, Tianjin, 300387,
China, e-mail: xuguiqiao@tjnu.edu.cn.

Jie Zhang, Dr., School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China,
e-mail: zhangjie91528@163.com .



