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BIPARTITE-THRESHOLD GRAPHS AND LIFTING ROTATIONS

OF EDGES IN BIPARTITE GRAPHS

V. A.Baranskii, T. A. Sen’chonok

A bipartite graph H = (V1, E, V2) is called a bipartite-threshold graph if it has no lifting triples (x, v, y) such

that x, y ∈ V1, v ∈ V2 or x, y ∈ V2, v ∈ V1. Every bipartite graph H = (V1, E, V2) can be transformed to a

bipartite-threshold graph by a finite sequence of such bipartite lifting rotations of edges. In our previous paper,

we studied the properties of bipartite-threshold graphs and noted their importance for the class of threshold

graphs. Now we want to show the importance of these graphs for the class of bipartite graphs. We will always

understand an integer partition as a nonincreasing sequence of nonnegative integers that contains only finitely

many nonzero terms. For any integer partitions α and β such that sum(α) = sum(β) and α ≤ β∗, where β∗ is the

conjugate partition of β, we denote by BG(α, β) the family of bipartite graphs H = (V1, E, V2) implementing the

pair of partitions (α, β), i.e., the family of all bipartite graphs for which the given pair of partitions is composed

of the degrees of vertices in the first and second parts of the graph, respectively, supplemented with zeros. In this

paper we describe the bipartite-threshold graphs from the family BTG↑(α, β) of all bipartite-threshold graphs

that can be obtained from the graphs of the family BG(α, β) by bipartite lifting rotations of edges. We also

find the smallest length of sequences of bipartite lifting rotations of edges transforming graphs from BG(α, β)
to graphs belonging to BTG↑(α, β), give an algorithm that finds a bipartite-threshold graph from BG(α, β),
and describe a procedure that generates all graphs in a family BG(α, β) from one graph of this family.
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