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THE SPECTRUM OF ONE-DIMENSIONAL EIGENOSCILLATIONS

OF TWO-PHASE LAYERED MEDIA WITH PERIODIC STRUCTURE

V.V. Shumilova

We study the spectrum of one-dimensional eigenoscillations along the Ox1 axis of two-phase layered media
with periodic structure occupying the band 0 < x1 < L. The period of the media is a band 0 < x1 < ε
composed of 2M alternating layers of an isotropic elastic or viscoelastic material (the first phase) and a viscous
incompressible fluid (the second phase). It is assumed that the number of periods N = L/ε is an integer, and the
layers are parallel to the Ox2x3 plane. The spectrum is denoted by Sε and is defined as the set of eigenvalues
of a boundary value problem for a homogeneous system of ordinary differential equations with conjugation
conditions at the interfaces between the solid and fluid layers. These conditions are derived directly from the
initial assumption on the continuity of displacements and normal stresses at the interfaces between the layers. It
is shown that the spectrum Sε consists of the roots of transcendental equations, the number of which is equal to
the number of periods N contained within the band 0 < x1 < L. The roots of these equations can only be found
numerically, except for one particular case. In the case of multi-layered media with N ≫ 1, the finite limits of
the sequences λ(ε) ∈ Sε as ε → 0 are proposed to be used as initial approximations. It is established that the
set of all finite limits coincides with the set of roots of rational equations, denoted by S. The coefficients of these
equations, and hence the points of the set S depend on the volume fraction of the fluid within the layered medium
and do not depend on the number M of the fluid layers within the period. It is proved that for any M ≥ 1 the
spectrum Sε converges in the sense of Hausdorff to the set S as ε → 0. Keywords: spectrum of eigenoscillations,
layered medium, two-phase medium, elastic material, viscoelastic material, viscous incompressible fluid.
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