MSC: 42A32, 33B30, 41A10, 11M06, 33B15
DOI: 10.21538/0134-4889-2022-28-4-177-190

UNIFORM WITH RESPECT TO THE PARAMETER $a \in(0,1)$ tWO-SIDED ESTIMATES OF THE SUMS OF SINE AND COSINE SERIES WITH COEFFICIENTS $1 / k^{a}$ BY THE FIRST TERMS OF THEIR ASYMPTOTICS

A. Yu. Popov, T. V. Rodionov

Uniform with respect to the parameter $a \in(0,1)$ estimates of the functions $f_{a}(x)=\sum_{k=1}^{\infty} k^{-a} \cos k x$ and $g_{a}(x)=\sum_{k=1}^{\infty} k^{-a} \sin k x$ by the first terms of their asymptotic expansions $F_{a}(x)=\sin (\pi a / 2) \Gamma(1-a) x^{a-1}$ and $G_{a}(x)=\cos (\pi a / 2) \Gamma(1-a) x^{a-1}$ are obtained. Namely, it is proved that the inequalities

$$
G_{a}(x)-\frac{x}{2}<g_{a}(x)<G_{a}(x)-\frac{x}{12}
$$

and

$$
F_{a}(x)+\zeta(a)+\frac{\zeta(3)}{4 \pi^{3}} x^{2} \sin (\pi a / 2)<f_{a}(x)<F_{a}(x)+\zeta(a)+\frac{1}{18} x^{2} \sin (\pi a / 2)
$$

are valid for all $a \in(0,1)$ and $x \in(0, \pi]$.
It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend $x / 2$ cannot be replaced by $k x$ with any $k<1 / 2$: the estimate ceases to be fulfilled for sufficiently small x and the values of a close to 1 . In the upper estimate, the subtrahend $x / 12$ cannot be replaced by $k x$ with any $k>1 / 12$: the estimate ceases to be fulfilled for the values of a and x close to 0 . In the lower estimate for the cosine series, the multiplier $\zeta(3) /\left(4 \pi^{3}\right)$ of $x^{2} \sin (\pi a / 2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for x and a close to 0 . In the upper estimate for the cosine series, the multiplier $1 / 18$ of $x^{2} \sin (\pi a / 2)$ can probably be replaced by a smaller number but not by $1 / 24$: for every $a \in[0.98,1)$, such an estimate would not hold at the point $x=\pi$ as well as on a certain closed interval $x_{0}(a) \leqslant x \leqslant \pi$, where $x_{0}(a) \rightarrow 0$ as $a \rightarrow 1-$. The obtained results allow us to refine the estimates of the functions f_{a} and g_{a} established recently by other authors.

Keywords: special trigonometric series, polylogarithm, periodic zeta function.

REFERENCES

1. Bieberbach L. Analytische Fortsetzung. Berlin: Springer-Verlag, 1955, 168 p. doi: 10.1007/978-3-662-01270-3 . Translated to Russian under the title Analiticheskoe prodolzhenie. Moscow: Nauka Publ., 1967, 240 p.
2. Zygmund A. Trigonometric series, vol. I, II. Cambridge: Cambridge Univ. Press, 1959; vol. I, 383 p.; vol. II, 354 p. Translated under the title Trigonometricheskie ryady, M.: Mir Publ., 1965, vol. I, 616 p; vol. II, 538 p .
3. Titchmarsh E.C. The theory of the Riemann zeta-function. Oxford: Oxford Univ. Press, 1987, 422 p. ISBN: 0198533691. Translated to Russian under the title Teoriya dzeta-funktsii Rimana, Moscow: Izd. Inostr. Lit., 1953, 407 p.
4. Erdélyi A. (ed.) Higher transcendental functions. Vol. 1. NY: McGraw Hill, 1953, 302 p.
5. Leau L. Recherches des singularités d'une fonction définie par un développement de Taylor. Journ. de Math. (5), 1899, vol. 5, pp. 365-425.
6. Liflyand E., Podkorytov A. Lebesgue constants of Riesz type means of negative order. J. Math. Anal. Appl., 2022, vol. 505, no. 2, art. no. 125618. doi: 10.1016/j.jmaa.2021.125618.
7. Lindelöf E.L. Le calcul des résidus et ses applications à la théorie des fonctions. Paris: Gauthier-Villar, 1905, 158 p.
8. Olver F.W.J. et al. (eds.) NIST handbook of mathematical functions. NY: Cambridge Univ. Press, 2010, 968 p. The online version: The NIST Digital Library of Mathematical Functions (DLMF): https://dlmf.nist.gov/.
9. Truesdell C. On a function which occurs in the theory of the structure of polymers. Ann. Math. (2), 1945, vol. 46, no. 1, pp. 144-157. doi: 10.2307/1969153.

Received May 19, 2022
Revised July 29, 2022
Accepted August 4, 2022
Funding Agency: The research of the first author (the results of Sections 2-3) was carried out at Moscow State University and supported by the Russian Science Foundation (project no. 22-2100545). The research of the second author (the results of Section 6) was carried out at Moscow State University and supported by the Russian Foundation for Basic Research (project no. 20-01-00584).
Anton Yur'evich Popov, Dr. Phys.-Math. Sci., Lomonosov Moscow State University and Moscow Centre of Fundamental and Applied Mathematics, Moscow, 119991 Russia, e-mail: station@list.ru .
Timofey Victorovich Rodionov, Cand. Sci. (Phys.-Math.), Lomonosov Moscow State University and Moscow Centre of Fundamental and Applied Mathematics, Moscow, 119991 Russia, e-mail: rodionovtv@mail.ru .
Cite this article as: A. Yu. Popov, T. V. Rodionov. Uniform with respect to the parameter $a \in$ $(0,1)$ two-sided estimates of the sums of sine and cosine series with coefficients $1 / k^{a}$ by the first terms of their asymptotics. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 4, pp. 177-190.

