MSC: 30C10, 41A10, 30A10
DOI: 10.21538/0134-4889-2022-28-3-166-175

# POLYNOMIALS LEAST DEVIATING FROM ZERO WITH A CONSTRAINT ON THE LOCATION OF ROOTS 

A. E. Pestovskaya


#### Abstract

We consider Chebyshev's problem on polynomials least deviating from zero on a compact set $K$ with a constraint on the location of their roots. More exactly, the problem is considered on the set $\mathcal{P}_{n}(G)$ of polynomials of degree $n$ that have unit leading coefficient and do not vanish on an open set $G$. An exact solution is obtained for $K=[-1,1]$ and $G=\{z \in \mathbb{C}:|z|<R\}, R \geq \varrho_{n}$, where $\varrho_{n}$ is a number such that $\varrho_{n}^{2} \leq(\sqrt{5}-1) / 2$. In the case Conv $K \subset \bar{G}$, the problem is reduced to similar problems for the set of algebraic polynomials all of whose roots lie on the boundary $\partial G$ of the set $G$. The notion of Chebyshev constant $\tau(K, G)$ of a compact set $K$ with respect to a compact set $G$ is introduced, and two-sided estimates are found for $\tau(K, G)$.

Keywords: Chebyshev polynomial of a compact set, Chebyshev constant of a compact set; constraints on the roots of a polynomial.


## REFERENCES

1. Chebyshev P.L. Theory of the mechanisms known as parallelograms. In: Chebyshev P. L. Collected works. Vol. II. Mathematical analysis. Moscow; Leningrad: Acad. Sci. USSR, 1947, pp. 23-51 (in Russian).
2. Goluzin G.M. Geometric theory of functions of a complex variable. Translations of Mathematical Monographs, vol. 26, Providence, R.I.: American Mathematical Society, 1969, 676 p. doi: $10.1090 / \mathrm{mmono} / 026$. Original Russian text published in Goluzin G.M. Geometricheskaya teoriya funktsii kompleksnogo peremennogo: Uchebnoe posobie. Moscow; Leningrad: Nauka GITTL Publ., 1952, 628 p.
3. Milovanović G.V., Mitrinović D.S., Rassias T.M. Topics in polynomials: Extremal problems, inequalities, zeros. Singapore: World Scientific Publ. Comp., 1994, 821 p. ISBN: 981-02-0499-X .
4. Fischer B. Chebyshev polynomials for disjoint compact sets. Constr. Approx., 1992, vol. 8, no. 3, pp. 309-329. doi: 10.1007/BF01279022.
5. Peherstorfer F. Minimal polynomials for compact sets of the complex plane. Constr. Approx., 1996, vol. 12, no. 4, pp. 481-488. doi: 10.1007/BF02437504.
6. Bayramov E.B. Polynomials least deviating from zero on a square of the complex plane. Trudy Inst. Mat. i Mekh. UrO RAN, 2018, vol. 24, no. 3, pp. 5-15. doi: 10.21538/0134-4889-2018-24-3-5-15 (in Russian).
7. Borodin P.A. On a condition for a polynomial that is sufficient for its norm to be minimal on a given compactum. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 4, pp. 14-18 (in Russian).
8. Smirnov V.I., Lebedev N.A. Functions of a complex variable. Constructive theory. London: Iliffe Books Ltd., 1968, 488 p. Original Russian text published in Smirnov V.I., Lebedev N.A. Konstruktivnaya teoriya funktsii kompleksnogo peremennogo. Moscow; Leningrad: Nauka Publ., 1964, 438 p.
9. Turán P. Über die Ableitung von Polynomen. Compositio Mathematica, 1939, vol. 7, pp. 89-95.
10. Glazyrina P.Yu., Révész Sz.Gy. Turán type oscillation inequalities in $L^{q}$ norm on the boundary of convex domains. Math. Inequal. Appl., 2017, vol. 20, no. 1, pp. 149-180. doi: 10.7153/mia-20-11.
11. Glazyrina P.Yu., Révész Sz.Gy. Turán-Erőd type converse Markov inequalities on general convex domains of the plane in the boundary $L^{q}$ norm. Proc. Steklov Inst. Math., 2018, vol. 303, no. 1, pp. 78-104. doi: 10.1134/S0081543818080084.
12. Lax P.D. Proof of a conjecture of P. Erdős on the derivative of a polynomial. Bull. Amer. Math. Soc., 1944, vol. 50, no. 8, pp. 509-513. doi: 10.1090/S0002-9904-1944-08177-9 .
13. Akopyan R.R. Certain extremal problems for algebraic polynomials which do not vanish in the disk. East J. Approx., 2003, vol. 9, no. 2, pp. 139-150.
14. De Bruyn N.G. Inequalities concerning polynomials in the complex domain. Nederl. Akad. Watensh. Proc., 1947, vol. 50, pp. 1265-1272.
15. Rahman Q., Schmeisser G. $L^{p}$ inequalities for polynomials. J. Approx. Theory, 1988, vol. 53, no. 1, pp. 26-32. doi: 10.1016/0021-9045(88)90073-1.
16. Arestov V.V. Integral inequalities for algebraic polynomials with a restriction on their zeros. Anal. Math., 1991, vol. 17, no. 1, pp. 11-20. doi: 10.1007/BF02055084.
17. Malik M.A. On the derivative of a polynomial. J. London Math. Soc., 1969, vol. s2-1, no. 1, pp. 57-60. doi: $10.1112 / \mathrm{jlms} / \mathrm{s} 2-1.1 .57$.
18. Akopyan R.R. Turan's inequality in $H_{2}$ for algebraic polynomials with restrictions to their zeros. East J. Approx., 2000, vol. 6, no. 1, pp. 103-124.
19. Erdélyi T. Markov-type inequalities for constrained polynomials with complex coefficients. Illinois J. Math., 1998, vol. 42, no. 4, pp. 544-563. doi: 10.1215/ijm/1255985460.

Received April 8, 2022
Revised June 28, 2022
Accepted July 4, 2022
Funding Agency: This work was supported by the Russian Science Foundation (project no. 22-21-00526).
Alena Eduardovna Pestovskaya, graduate student, Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: a.e.pestovskaya@mail.ru.

Cite this article as: A. E. Pestovskaya. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 166-175.

