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POLYNOMIALS LEAST DEVIATING FROM ZERO WITH

A CONSTRAINT ON THE LOCATION OF ROOTS

A. E.Pestovskaya

We consider Chebyshev’s problem on polynomials least deviating from zero on a compact set K with a

constraint on the location of their roots. More exactly, the problem is considered on the set Pn(G) of polynomials

of degree n that have unit leading coefficient and do not vanish on an open set G. An exact solution is obtained

for K = [−1, 1] and G = {z ∈ C : |z| < R}, R ≥ ̺n, where ̺n is a number such that ̺2
n
≤ (

√
5− 1)/2. In the

case ConvK ⊂ G, the problem is reduced to similar problems for the set of algebraic polynomials all of whose

roots lie on the boundary ∂G of the set G. The notion of Chebyshev constant τ(K,G) of a compact set K with

respect to a compact set G is introduced, and two-sided estimates are found for τ(K,G).

Keywords: Chebyshev polynomial of a compact set, Chebyshev constant of a compact set; constraints on the

roots of a polynomial.
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9. Turán P. Über die Ableitung von Polynomen. Compositio Mathematica, 1939, vol. 7, pp. 89–95.
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