Tom 28 № 2

УДК 517.51

О НЕРАВЕНСТВЕ КОЛМОГОРОВА ДЛЯ ПЕРВОЙ И ВТОРОЙ ПРОИЗВОДНЫХ НА ОСИ И ПЕРИОДЕ¹

П. Ю. Глазырина, Н. С. Паюченко

В работе изучается неравенство $\|y'\|_{L_q(G)} \le K(r,p,G) \|y\|_{L_r(G)}^{1/2} \|y''\|_{L_p(G)}^{1/2}$ на вещественной оси $G=\mathbb{R}$ и периоде $G=\mathbb{T}$ для значений параметров $q\in [1,\infty), r\in (0,\infty], p\in [1,\infty], 1/r+1/p=2/q$. Доказано, что точная константа $K(r,p,\mathbb{R})$ равна точной константе K_1 в неравенстве $\|u'\|_{L_q[0,1]} \le K_1 \|u\|_{L_r[0,1]}^{1/2} \|u''\|_{L_p[0,1]}^{1/2}$ по множеству выпуклых на [0,1] функций u, имеющих абсолютно непрерывную производную и удовлетворяющих условию u'(0)=u(1)=0. Как следствие этого утверждения равенство $K(r,p,\mathbb{R})=K(r,p,\mathbb{T}),$ установленное в 2003 г. В. Ф. Бабенко, В. А. Кофановым и С. А. Пичуговым для $r\geq 1$, распространено на $r\geq 1/2$. Также для $p=1, r\in [1,\infty)$ получено новое доказательство равенства $K(r,1,\mathbb{R})=(r+1)^{1/(2(r+1))}$ q=2r/(r+1), установленного в 1975 г. В. В. Арестовым и В. И. Бердышевым.

Ключевые слова: Неравенство Колмогорова, неравенства для норм функций и их производных, точные константы, вещественная ось, период.

P. Yu. Glazyrina, N. S. Payuchenko. On Kolmogorov's inequality for the first and second derivatives on the axis and on the period.

We study the inequality $\|y'\|_{L_q(G)} \leq K(r,p,G)\|y\|_{L_r(G)}^{1/2}\|y''\|_{L_p(G)}^{1/2}$ on the real line $G=\mathbb{R}$ and on the period \mathbb{T} for $q\in [1,\infty),\ r\in (0,\infty],\ p\in [1,\infty],$ and 1/r+1/p=2/q. We prove that the exact constant $K(r,p,\mathbb{R})$ is equal to the exact constant K_1 in the inequality $\|u'\|_{L_q[0,1]} \leq K_1\|u\|_{L_r[0,1]}^{1/2}\|u''\|_{L_p[0,1]}^{1/2}$ over the set of convex functions $u(x),\ x\in [0,1],$ having an absolutely continuous derivative and satisfying the condition u'(0)=u(1)=0. As a consequence of this statement, the equality $K(r,p,\mathbb{R})=K(r,p,\mathbb{T})$ established in 2003 by V. F. Babenko, V. A. Kofanov, and S. A. Pichugov for $r\geq 1$, is extended to $r\geq 1/2$. In addition, we give a new proof of the equality $K(r,1,\mathbb{R})=(r+1)^{1/(2(r+1))}$ for $p=1,\ r\in [1,\infty),$ and q=2r/(r+1), which was established by V. V. Arestov and V. I. Berdyshev in 1975.

Keywords: Kolmogorov's inequality, inequalities for norms of functions and their derivatives, exact constants, real axis, period.

MSC: 39B62

DOI: 10.21538/0134-4889-2022-28-2-84-95

1. Введение

Пусть G — вещественная ось \mathbb{R} , полуось $[0,\infty)$, отрезок или период \mathbb{T} , реализованный как отрезок $[0,2\pi]$ с отождествленными концами. Обозначим через $L^n_{r,p}(G)$ множество вещественнозначных функций $y\in L_r(G)$ таких, что все производные y до порядка n-1 локально абсолютно непрерывны на G и $y^{(n)}\in L_p(G)$. Для измеримого множества $H\subset\mathbb{R}$ и измеримой на H функции y полагаем

$$||y||_{p,H} = \left(\int\limits_{H} |y(x)|^p dx\right)^{1/p}, \quad 0$$

В работе изучается точная константа K(r, p, G) в неравенстве Колмогорова

$$||y'||_{q,G} \le K(r,p,G)||y||_{r,G}^{1/2} ||y''||_{p,G}^{1/2}, \quad y \in L_{r,p}^2(G),$$
 (1.1)

 $^{^{-1}}$ Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-31-90124.

на оси $G = \mathbb{R}$ и периоде $G = \mathbb{T}$ для показателей q, p и r, которые удовлетворяют ограничениям

$$1 < q < \infty, \quad 1/2 < r < \infty, \quad 1 < p < \infty, \tag{1.2}$$

и равенству

$$\frac{1}{r} + \frac{1}{p} = \frac{2}{q}. (1.3)$$

Отметим, что равенство (1.3) и условия $q, p \ge 1$ влекут $r \ge 1/2$.

Неравенство (1.1) и его аналоги для производных более высоких порядков

$$\|y^{(k)}\|_{q,G} \le \mathcal{K}^{n,k}(q,r,p,G)\|y\|_{r,G}^{\alpha}\|y^{(n)}\|_{r,G}^{1-\alpha}, \quad y \in L_{r,p}^{n}(G), \tag{1.4}$$

на числовой оси, полуоси и периоде имеют богатую историю. Исчерпывающий обзор результатов можно найти в [1;4]. В 1976 г. В. Н. Габушин [5] (см. также [4, п. 4.1, 4.2]) доказал критерий существования конечной константы в неравенствах (1.4) на оси и полуоси. А именно, для целых $0 \le k < n$ и вещественных $0 < p, q, r \le \infty, q \ne r$ при k = 0, неравенство (1.4) для $G = \mathbb{R}$ или $G = [0, +\infty)$ имеет место с конечной константой $\mathcal{K}^{n,k}(q,r,p,G)$ тогда и только тогда, когда $p \ge 1$,

$$\frac{n-k}{r} + \frac{k}{p} \ge \frac{n}{q}, \tag{1.5}$$

$$\alpha = \frac{n-k-1/p+1/q}{n-1/p+1/r} \quad \text{при} \quad n-1/p+1/r \ne 0,$$

$$\alpha = 1 \quad \text{при} \quad n - \frac{1}{p} + \frac{1}{r} = 0, \quad \text{т. e.} \quad \text{при} \quad n = 1, \quad k = 0, \quad p = 1, \quad r = \infty.$$

В силу этого критерия для любой функции $y \in L^2_{r,p}(\mathbb{R})$ ее производная $y' \in L_q(\mathbb{R})$ при 1/r + 1/p = 2/q и константа $K(r,p,\mathbb{R})$ в неравенстве (1.1) конечна.

В 2003 г. В. Ф. Бабенко, В. А. Кофанов, С. А. Пичугов [3; 4, п. 4.5] доказали равенство констант в соответствующих неравенствах (1.4) на оси и периоде в случае, когда (1.5) обращается в равенство и $q,r,p\geq 1$. В частности, для неравенства (1.1) при $q,r,p\geq 1$ справедливо $K(r,p,\mathbb{R})=K(r,p,\mathbb{T})$. В настоящей работе мы дополняем этот результат следующим образом.

Обозначим через $\mathcal{U}_{[a,b]}$ множество функций $u(x), x \in [a,b]$, имеющих абсолютно непрерывную производную и таких, что $u'(a) = u(b) = 0, u''(x) \ge 0$ почти всюду на [a,b]. Очевидно, что функции класса $\mathcal{U}_{[a,b]}$ являются неположительными, неубывающими и выпуклыми.

Теорема 1. Для показателей q, p, r, yдовлетворяющих ограничениям (1.2) u (1.3), справедливо равенство

$$K(r, p, \mathbb{R}) = K(r, p, \mathbb{T}) = \sup \left\{ \frac{\|u'\|_{q, [0, 1]}}{\|u\|_{r, [0, 1]}^{1/2} \|u''\|_{p, [0, 1]}^{1/2}} \colon u \in \mathcal{U}_{[0, 1]} \right\}.$$

Точные константы в неравенстве (1.1) для $G = \mathbb{R}$ известны в следующих случаях (см. [4, п. 9.2] и приведенную там библиографию):

$$\begin{split} q &= p = \infty, \, r > 0; \\ q &= \infty, \, r = p = 2; \\ q &= 2r, \, r \geq 1/2, \, p = \infty; \\ q &= 2r/(r+1), \, r \in [1, +\infty], \, p = 1; \\ q &= 2, \, r \in [1, \infty], \, p = r/(r-1); \\ q &\geq 2p, \, r = \infty, \, p \in [1, \infty]. \end{split}$$

Равенство (1.3) при $q=\infty$ влечет $r=p=\infty$. Поскольку в этом случае точная константа известна [8] (см. также [4, п. 1.2]), а доказательство теоремы 1 потребовало бы дополнительных выкладок, мы считаем его рассмотрение нецелесообразным.

В доказательстве теоремы 1 существенно используются идеи и методы Е. А. Зернышкиной из работы [6]. Аналог теоремы 1 для неравенства с положительной срезкой второй производной получен Н. С. Паюченко в работе [9].

Применяя теорему 1, мы вычисляем новым способом точную контанту в неравенстве (1.1) для p=1. Значение $K(r,1,\mathbb{R})$ (которое совпадает с $K(r,1,\mathbb{T})$) было установлено ранее Е. Стейном [10] для q=r=p=1, В. В. Арестовым и В. И. Бердышевым [2] для q=2r/(r+1), $r\in [1,+\infty], p=1$.

В заключение отметим, что при p=1 неравенство (1.4) естественно рассматривать на более широком в сравнении с $L_{r,1}^n(G)$ множестве функций $y \in L_r(G)$ таких, что $y^{(n-2)}$ локально абсолютно непрерывна и ее производная $y^{(n-1)}$ почти всюду на G совпадает с некотрой функций ограниченной вариации. Однако такое расширение множества не увеличивает значение точной константы. Для $G = \mathbb{T}$ этот вопрос рассмотрен в [7, § 2.5, п. 3].

2. Вспомогательные утверждения

Введем обозначения двух множеств функций, которые понадобятся в дальнейшем. Пусть $\mathcal{P}^0_{[a,b]}$ — множество кусочно-полиномиальных непрерывно дифференцируемых на [a,b] функций y(x) со свойством y'(a)=y'(b)=0. Пусть $\mathcal{P}^+_{[a,b]}$ есть множество кусочно-полиномиальных непрерывно дифференцируемых на [a,b] функций y(x) со свойствами y'(a)=y(b)=0, $y'(x)\geq 0$, $x\in [a,b]$.

Для измеримого множества $H \subset G$ и $y \in L^2_{r,p}(G)$ рассмотрим функционал

$$\Psi_H(y) = \Psi_H(y; r, p) = \frac{\|y'\|_{q, H}^2}{\|y\|_{r, H} \cdot \|y''\|_{p, H}}.$$

В рассматриваемых нами случаях равенство $||y''||_{p,H} = 0$ также влечет $||y'||_{p,q} = 0$, поэтому полагаем $\Psi_H(y) = 0$, если $||y''||_{p,H} = 0$. Очевидно, что

$$(K(r, p, G))^{2} = \sup \{ \Psi_{G}(y; r, p) \colon y \in L^{2}_{r, p}(G) \}.$$
(2.1)

Отметим, что для любой функции $y \in L^2_{r,p}[a,b]$, аффинного отображения x(t) = ((b-a)/(d-c))(t-c) + a отрезка [c,d] на отрезок [a,b] и числа k мы имеем $f(t) = ky(x(t)) \in L^2_{r,p}[c,d]$. Замена переменной в интегралах и равенство (1.3) показывают, что

$$\Psi_{[a,b]}(y) = \Psi_{[c,d]}(f). \tag{2.2}$$

Лемма 1. Пусть измеримое множество $H \subset G$ представлено в виде конечного или счетного объединения измеримых множеств $H_j,\ H = \bigcup_{j \in J} H_j,\$ где $\operatorname{mes}(H_k \cap H_j) = 0,\ k \neq j.$

Тогда для любых показателей q, p, r, yдовлетворяющих (1.2) u (1.3), выполняется неравенство

$$\Psi_H(y) \le \sup_{j \in J} \Psi_{H_j}(y). \tag{2.3}$$

Доказательство. Обозначим $M=\sup_{j\in J}\Psi_{H_j}(y)$. Имеем

$$(\Psi_H(f)||f||_{r,H}||f''||_{p,H})^{q/2} = ||f'||_{q,H}^q = \sum_{j \in J} ||f'||_{q,H_j}^q$$

$$= \sum_{j \in I} (\Psi_{H_j}(f) \|f\|_{r,H_j} \|f''\|_{p,H_j})^{q/2} \le M^{q/2} \sum_{j \in I} \|f\|_{r,H_j}^{q/2} \|f''\|_{p,H_j}^{q/2}.$$
(2.4)

Если $r, p < \infty$, то, записывая для последней суммы неравенство Гельдера с показателями 2r/q и 2p/q (равенство (1.3) обеспечивает выполнение условия $(2r/q)^{-1} + (2p/q)^{-1} = 1$), получаем оценку

$$\sum_{j \in J} \|f\|_{r,H_j}^{q/2} \|f''\|_{p,H_j}^{q/2} \le \left(\sum_{j \in J} \|f\|_{r,H_j}^r\right)^{q/(2r)} \left(\sum_{j \in J} \|f''\|_{p,H_j}^p\right)^{q/(2p)} = \left(\|f\|_{r,H} \|f''\|_{p,H}\right)^{q/2}. \tag{2.5}$$

Неравенства (2.4) и (2.5) влекут (2.3). Если $r=\infty$, то $p<\infty$, q/(2p)=1 и последняя сумма в (2.4) оценивается как

$$\sum_{j \in J} \|f\|_{\infty, H_j}^{q/2} \|f''\|_{p, H_j}^{q/2} \leq \|f\|_{\infty, H}^{q/2} \sum_{j \in J} \|f''\|_{p, H_j}^p = \|f\|_{\infty, H}^{q/2} \|f''\|_{p, H}^p = \|f\|_{\infty, H}^{q/2} \|f''\|_{p, H}^{q/2}.$$

Отсюда вновь следует (2.3). Случай $p = \infty$ рассматривается аналогично.

Доказательство леммы завершено.

Лемма 2. Предположим, что функция y(x) абсолютно непрерывна на [a,b] и $y'(x) \in [0,M]$ почти всюду на [a,b]. Положим $\tau = (y(b)-y(a))/M$. Тогда при любых $q \in [1,\infty)$, $r \in (0,\infty)$ для функции g(x) = y(a) + M(x-a) справедливы неравенства

$$\int_{a}^{a+\tau} |g'(x)|^{q} dx \ge \int_{a}^{b} |y'(x)|^{q} dx, \qquad \int_{a}^{a+\tau} |g(x)|^{r} dx \le \int_{a}^{b} |y(x)|^{r} dx.$$

Доказательству леммы 3 в статье [9].

Лемма 3. Для любых q, p, r, yдовлетворяющих (1.2) u (1.3), справедлива оценка

$$\sup \{\Psi_{\mathbb{R}}(y) \colon y \in L^{2}_{r,p}(\mathbb{R})\} \le \sup \{\Psi_{[0,1]}(y) \colon y \in \mathcal{P}^{0}_{[0,1]}\}.$$

Доказательство леммы разобъем на три этапа.

1. Докажем, что $y(x) \to 0$ и $y'(x) \to 0$ при $x \to \pm \infty$ для любой функции $y \in L^2_{p,r}(\mathbb{R})$. Для A>0 рассмотрим функцию $f_A(x)=y(x+A)$. Функция $f_A\in L^2_{p,r}(\mathbb{R})$, тем более $f_A\in L^2_{p,r}[0,\infty)$. При $\widetilde{q}=\infty$ неравенство (1.5) $(n-k)/r+k/p\geq n/\widetilde{q}$ выполняется для всех p,r>0, в частности, для p,r, удовлетворяющих условиям леммы. Поэтому согласно критерию В. Н. Габушина для функции f_A справедливы неравенства на полуоси

$$||f_A||_{\infty,[0,\infty)} \le \mathcal{K}||f_A||_{r,[0,\infty)}^{\alpha} ||f_A''||_{p,[0,\infty)}^{1-\alpha}, \quad \alpha = \frac{2-1/p}{2-1/p+1/r}, \quad \mathcal{K} = \mathcal{K}^{2,0}(\infty, r, p, [0,\infty)), \quad (2.6)$$

$$||f'_A||_{\infty,[0,\infty)} \le \mathcal{K}' ||f_A||_{r,[0,\infty)}^{\beta} ||f''_A||_{p,[0,\infty)}^{1-\beta}, \quad \beta = \frac{1 - 1/p}{2 - 1/p + 1/r}, \quad \mathcal{K}' = \mathcal{K}^{2,1}(\infty, r, p, [0, \infty)). \quad (2.7)$$

Имеем $|y(A)| = |f_A(0)| \le ||f_A||_{\infty,[0,\infty)}$, $|y'(A)| \le ||f'_A||_{\infty,[0,\infty)}$. Из равенства (1.3) и условия $q < \infty$ следует, что хотя бы один из двух показателей p или r меньше ∞ . Если $p < \infty$, то по свойствам интеграла Лебега

$$||f_A''||_{p,[0,\infty)}^p = \int_0^\infty |f_A''(x)|^p dx = \int_A^\infty |y''(x)|^p dx \to 0, \quad A \to +\infty.$$

Если $r < \infty$, то

$$||f_A||_{r,[0,\infty)}^r = \int_A^\infty |y(x)|^r dx \to 0, \quad A \to +\infty.$$

Полученные соотношения и (2.6), (2.7) влекут, что |y(A)| и |y'(A)| стремятся к 0 при $A \to +\infty$. Таким же образом обосновывается стремление |y(A)| и |y'(A)| к 0 при $A \to -\infty$.

2. Возьмем $\varepsilon \in (0,1)$. Рассмотрим не равную тождественно нулю функцию $y \in L^2_{r,p}(\mathbb{R})$. Очевидно, что $\|y'\|_{q,\mathbb{R}} > 0$, $\|y''\|_{p,\mathbb{R}} > 0$. Значение функционала $\Psi(y)$ не меняется при умножении функции y на константу. Поэтому без ограничения общности можем предполагать, что

$$||y'||_{a,\mathbb{R}} > 2, \quad ||y||_{r,\mathbb{R}} > 2, \quad ||y''||_{p,\mathbb{R}} > 2.$$
 (2.8)

В силу свойств интеграла Лебега, (2.8) и п. 1 найдутся такие числа $\alpha < -1 < 1 < \beta$, что

$$\int_{\mathbb{R}\backslash[\alpha,\beta]} |y'(x)|^q dx < \varepsilon, \quad \|y\|_{r,[\alpha,\beta]} > 1, \quad \|y''\|_{p,[\alpha,\beta]} > 1, \tag{2.9}$$

$$|y'(\alpha)| < \varepsilon, \quad |y'(\beta)| < \varepsilon, \quad |y(\alpha)| < \varepsilon, \quad |y(\beta)| < \varepsilon.$$
 (2.10)

Из первого неравенства (2.9) следует оценка

$$\int\limits_{\mathbb{R}} |y'(x)|^q dx \le \int\limits_{[\alpha,\beta]} |y'(x)|^q dx + \varepsilon \le (1+\varepsilon) \int\limits_{[\alpha,\beta]} |y'(x)|^q dx,$$

которая в свою очередь влечет

$$\Psi_{\mathbb{R}}(y) \le \frac{\|y'\|_{q,[\alpha,\beta]}}{\|y\|_{r,[\alpha,\beta]} \|y''\|_{p,[\alpha,\beta]}} (1+\varepsilon)^{1/q}. \tag{2.11}$$

- 3. Построим функцию $f \in \mathcal{P}^0_{[a,b]}$, для которой значение $\Psi_{[a,b]}(f)$ близко к $\Psi_{[\alpha,\beta]}(y)$. Положим $s = \max\{1/r, 1/q\}, \ A = \beta \alpha$, отметим, что $A \geq 2$.
- 3.1. Пусть $1 \le p < \infty$. В этом случае множество алгебраических многочленов плотно в пространстве $L_p[a,b]$, поэтому найдется многочлен h, для которого

$$||h - y''||_{p,[\alpha,\beta]} < \frac{\varepsilon}{A^{2+s}}.$$
(2.12)

Положим

$$f'(x) = \begin{cases} y'(\alpha) + \int_{\alpha}^{x} h(t)dt, & x \in [\alpha, \beta], \\ f'(\alpha) + \operatorname{sign}(f'(\alpha))(x - \alpha), & x \in [\alpha - |f'(\alpha)|, \alpha), \\ f'(\beta) + \operatorname{sign}(f'(\beta))(x - \beta), & x \in (\beta, \beta + |f'(\beta)|], \end{cases}$$

$$a = \alpha - |f'(\alpha)|, \quad b = \beta + |f'(\beta)|, \quad f(x) = y(\alpha) + \int_{\alpha}^{x} f'(x)dx, \ x \in [a, b].$$

По построению функция $f \in \mathcal{P}^0[a,b]$. Оценим уклонение f' от y' и f от y на $[\alpha,\beta]$. Применяя неравенство Гельдера с показателями p и p', для $x \in [\alpha,\beta]$ мы получаем оценку

$$|f'(x) - y'(x)| = \left| \int_{\alpha}^{x} (h(t) - y''(t)) dt \right| \le ||h - y''||_{p,[\alpha,\beta]} A^{1/p'} < \frac{\varepsilon}{A^{1+s}}, \tag{2.13}$$

в частности,

$$|f'(\alpha)| = |y'(\alpha)| \le \varepsilon, \quad |f'(\beta)| \le |y'(\beta)| + \frac{\varepsilon}{A^{1+s}} \le 2\varepsilon.$$
 (2.14)

Неравенство (2.13) дает оценку

$$|f(x) - y(x)| \le \int_{[\alpha, \beta]} |f'(x) - y'(x)| dx \le \frac{\varepsilon}{A^s}.$$
 (2.15)

Для краткости положим $\delta = [a, \alpha] \cup [\beta, b]$, мера δ равна $|f'(\alpha)| + |f'(\beta)| \le 3\varepsilon$ (в силу (2.14)). Оценим значения f на δ . Для $x \in [a, \alpha]$ мы имеем

$$|f(x)| = \left| y(\alpha) + \int_{\alpha}^{x} f'(x) dx \right| \le \varepsilon + \left| \int_{\alpha}^{\alpha} f'(\alpha) dx \right| = \varepsilon + |f'(\alpha)|^{2} \le \varepsilon + (\varepsilon)^{2} \le 2\varepsilon,$$

и аналогично $|f(x)| \le \varepsilon + |f'(\beta)|^2 \le 5\varepsilon$ для $x \in [\beta, b]$. Таким образом, $|f(x)| \le 5\varepsilon$ для $x \in \delta$.

3.2. Сравним (квази)
нормы функций f и y и их первых и вторых производных.

Начнем с $\|f''\|_{p,[a,b]}$. Используя оценку меры δ из п. 3.1, мы получаем

$$||f''||_{p,\delta} = \left(\int_{\varepsilon} 1dx\right)^{1/p} \le (3\varepsilon)^{1/p}.$$

Применяя полученное неравенство, неравенство (2.12) и соотношение $\varepsilon \leq \varepsilon^{1/p} \leq ||y''||_{p,[\alpha,\beta]} \varepsilon^{1/p}$, заключаем, что

$$||f''||_{p,[a,b]} \le ||f''||_{p,\delta} + ||h - y''||_{p,[\alpha,\beta]} + ||y''||_{p,[\alpha,\beta]} \le (3\varepsilon)^{1/p} + \varepsilon + ||y''||_{p,[\alpha,\beta]}$$

$$\le ||y''||_{p,[\alpha,\beta]} + 4^{1/p}\varepsilon^{1/p} \le ||y''||_{p,[\alpha,\beta]} (1 + 4\varepsilon^{1/p}). \tag{2.16}$$

Оценим $\|f\|_{r,[a,b]}$. Ввиду последней оценки в п. 3.1 и оценки меры δ

$$||f||_{r,\delta} \le (5\varepsilon)(3\varepsilon)^{1/r} \le (5\varepsilon)^{1+1/r}.$$
(2.17)

Если $r \in [1, \infty]$, то полученное неравенство и (2.15) дают

$$||f||_{r,[a,b]} \le ||f||_{r,\delta} + ||f - y||_{r,[\alpha,\beta]} + ||y||_{r,[\alpha,\beta]} \le (5\varepsilon)^{1+1/r} + \frac{\varepsilon}{A^s} A^{1/r} + ||y||_{r,[\alpha,\beta]}$$

$$\le 25\varepsilon + \varepsilon + ||y||_{r,[\alpha,\beta]} \le ||y||_{r,[\alpha,\beta]} (1 + 26\varepsilon). \tag{2.18}$$

Если $r \in [1/2,1)$, то, используя (2.17), неравенство $u^r - v^r \le (u-v)^r$ ($u \ge v > 0$) и (2.15), приходим к оценке

$$||f||_{r,[a,b]}^{r} - ||y||_{r,[\alpha,\beta]}^{r} = ||f||_{r,\delta}^{r} + \int_{[\alpha,\beta]} (|f(x)|^{r} - |y(x)|^{r}) dx \le (5\varepsilon)^{r+1} + \int_{[\alpha,\beta]} |f(x) - y(x)|^{r} dx$$

$$\le (5\varepsilon)^{r+1} + \frac{\varepsilon^{r}}{A^{sr}} A \le 26\varepsilon^{r}.$$

Следовательно,

$$||f||_{r,[a,b]} \le \left(||y||_{r,[\alpha,\beta]}^r + 26\varepsilon^r\right)^{1/r} \le ||y||_{r,[\alpha,\beta]} (1 + 26\varepsilon^r)^{1/r}. \tag{2.19}$$

Оценим $||f'||_{q,[a,b]}$. Если $1 \le q < \infty$, то, принимая во внимание (2.13), мы имеем

$$||y'||_{q,[\alpha,\beta]} \le ||y'-f'||_{q,[\alpha,\beta]} + ||f'||_{q,[\alpha,\beta]} \le \varepsilon + ||f'||_{q,[a,b]}, \qquad ||y'||_{q,[\alpha,\beta]} (1-\varepsilon) \le ||f'||_{q,[a,b]}. \quad (2.20)$$

Если $q \in (0,1)$, то аналогично случаю $r \in [1/2,1)$ с помощью (2.13) мы заключаем, что

$$||y'||_{q,[\alpha,\beta]}^q - ||f'||_{q,[\alpha,\beta]}^q \le \int_{[\alpha,\beta]} |y'(x) - f'(x)|^q dx \le \varepsilon^q,$$

$$||y'||_{q,[\alpha,\beta]}(1-\varepsilon^q)^{1/q} \le ||f'||_{q,[\alpha,\beta]} \le ||f'||_{q,[a,b]}.$$
(2.21)

Из неравенств (2.16), (2.18)–(2.21) следует оценка

$$\Psi_{[\alpha,\beta]}(y) = \frac{\|y'\|_{q,[\alpha,\beta]}}{\|y\|_{r,[\alpha,\beta]}\|y''\|_{p,[\alpha,\beta]}} \le \Psi_{[a,b]}(f) \frac{(1 + O(\varepsilon^{\min\{1,r\}})(1 + O(\varepsilon^{1/p}))}{1 + O(\varepsilon^{\min\{1,q\}})}.$$

Соединяя ее с (2.11), мы приходим к соотношениям

$$\Psi_{\mathbb{R}}(y) \leq \Psi_{[a,b]}(f) \frac{(1 + O(\varepsilon^{\min\{1,r\}})(1 + O(\varepsilon^{1/p}))}{1 + O(\varepsilon^{\min\{1,q\}})} (1 + \varepsilon)^{1/q}
\leq \sup \left\{ \Psi_{[0,1]}(y) \colon y \in \mathcal{P}_{[0,1]} \right\} \frac{(1 + O(\varepsilon^{\min\{1,r\}})(1 + O(\varepsilon^{1/p}))}{1 + O(\varepsilon^{\min\{1,q\}})} (1 + \varepsilon)^{1/q} .$$
(2.22)

Устремляя ε к 0, получаем утверждение леммы в случае $1 \le p < \infty$.

3.3. Пусть $p = \infty$. Найдется многочлен χ , для которого

$$\|\chi - y''\|_{1,[\alpha,\beta]} < \frac{\varepsilon}{A^{2+s}}.$$

Обозначим для краткости $k_1 = ||y''||_{\infty,[\alpha,\beta]} \ge 1$ и положим $h(x) = \max \{\min \{\chi(x), k_1\}, -k_1\}$. Ясно, что h является непрерывной кусочно-полиномиальной функцией, $|h(x)| \le k_1$ и

$$||h - y''||_{1,[\alpha,\beta]} \le ||\chi - y''||_{1,[\alpha,\beta]} < \frac{\varepsilon}{A^{2+s}}$$

Далее мы определяем функцию f так же, как в п. 3.1, все оценки при этом сохранятся (в промежуточном неравенстве в (2.13) нужно p заменить на 1, а 1/p' на 0). В п. 3.2 оценка (2.16) примет вид

$$||f''||_{\infty,[a,b]} \le \max\{||f''||_{\infty,\delta}, ||f''||_{\infty,[\alpha,\beta]}\} = \max\{1, ||h''||_{\infty,[\alpha,\beta]}\} \le ||y''||_{\infty,[\alpha,\beta]}.$$

Неравенства (2.18)–(2.21) сохраняются. Как следствие сохраняются и соотношения (2.22). В случае $p=\infty$ лемма также доказана.

3. Доказательство теоремы 1

Доказательство теоремы разобъем на три части.

1. Покажем, что

$$\sup\{\Psi_{[0,1]}(y)\colon y\in\mathcal{P}^0_{[0,1]}\}\leq \sup\{\Psi_{[0,1]}(f)\colon f\in\mathcal{P}^+_{[0,1]}\}. \tag{3.1}$$

Рассмотрим не равную тождественно нулю функцию $y \in \mathcal{P}^0_{[0,1]}$. Разобъем [0,1] на отрезки с концами $0 = x_0 < x_1 < \ldots < x_n = 1$ такие, что y'(x) обращается в 0 на концах этих отрезков и либо строго положительна, либо строго отрицательна, либо тождественно равна 0 внутри. По лемме 1

$$\Psi_{[0,1]}(y) \le \max_{j=1,\dots,n} \Psi_{[x_{j-1},x_j]}(y). \tag{3.2}$$

Пусть [a,b] — один из отрезков $[x_{j-1},x_j]$, на котором достигается последний максимум. Без ограничения общности мы можем считать, что y'(x) > 0 внутри этого отрезка (иначе можно заменить y(x) на функцию -y(x)), а значит, y(x) строго возрастает на [a,b].

Рассмотрим три возможных случая.

- 1) Если $y(b) \le 0$, то положим f(t) = y(x(t)) + |y(b)|, где x(t) = (b-a)t + a, $t \in [0,1]$.
- 2) Если $y(a) \ge 0$, то f(t) = -y(x(t)) y(a), где x(t) = (b-a)(1-t) + a, $t \in [0,1]$.
- 3) Предположим, что y обращается в ноль в некоторой точке $c \in (a,b)$. По лемме 1 имеем $\Psi_{[a,b]}(y) \leq M = \max\{\Psi_{[a,c]}(y), \Psi_{[c,b]}(y)\}$. Если $M = \Psi_{[a,c]}(y)$, то положим f(t) = y(x(t)), где x(t) = (c-a)t + a, $t \in [0,1]$. Если $M = \Psi_{[c,b]}(y)$, то f(t) = -y(x(t)), где x(t) = (b-c)(1-t) + c, $t \in [0,1]$.

Во всех трех случаях мы будем иметь $f'(0)=f(1)=0,\ f'(x)>0,\ x\in(0,1),$ так что $f\in\mathcal{P}_{[0,1]}^+,$ кроме того в силу (3.2) и (2.2)

$$\Psi_{[0,1]}(y) \le \Psi_{[a,b]}(y) \le \Psi_{[0,1]}(f).$$

Таким образом, (3.1) установлено.

2. Докажем, что

$$\sup\{\Psi_{[0,1]}(f)\colon f\in\mathcal{P}_{[0,1]}^+\} \le \sup\{\Psi_{[0,1]}(u)\colon u\in\mathcal{U}_{[0,1]}\}. \tag{3.3}$$

Если $f''(x) \ge 0$ почти всюду на [0,1], то $f \in \mathcal{U}_{[0,1]}$. Допустим, что это не так. Пусть a — наименьшая точка (0,1], в которой f' достигает своего максимума на [0,1]. Если a=1, то полагаем $f_0=f$. Иначе положим

$$\tau = \frac{f(1) - f(a)}{f'(a)} = \frac{|f(a)|}{f'(a)}, \quad c_0 = a + \tau$$

и определим функцию

$$f_0(x) = \begin{cases} f(x), & x \in [0, a], \\ f'(a)(x - a) + f(a), & x \in [a, c_0] \end{cases}$$

По построению f_0 есть кусочно-полиномиальная непрерывно дифференцируемая функция на отрезке $[0,c_0]$ со свойствами $f_0(c_0)=f'(a)\tau+f(a)=f(1)=0,$ $f'_0(0)=f'(0)=0,$ $f'_0(c_0)=f'(a)$ и $\|f''_0\|_{p,[0,c_0]}\leq \|f''\|_{p,[0,1]}$. Если $r<\infty$, то по лемме 2 имеем

$$\int_{a}^{c_0} |f_0'(x)|^q dx \ge \int_{a}^{1} |f'(x)|^q dx, \qquad \int_{a}^{c_0} |f_0(x)|^r dx \le \int_{a}^{1} |f(x)|^r dx.$$

Если $r = \infty$, то первое неравенство сохраняется, а второе заменяется на $\max_{[a,c_0]} |f_0(x)| = |f(a)| \le \max_{[a,c_0]} |f(x)|$. Поэтому $\Psi_{[0,1]}(f) \le \Psi_{[0,c_0]}(f_0)$.

Предположим, что на $(0, c_0)$ есть интервалы, в которых $f_0''(x) < 0$. Обозначим через (a, a+r) один из таких интервалов с наибольшей длиной. В силу непрерывности f_0' найдется точка $b \in [a+r, c_0]$, в которой $f_0'(b) = f'(a)$. Положим

$$\tau = \frac{f_0(b) - f_0(a)}{f_0'(a)}, \quad c_1 = a + \tau + c_0 - b$$

и определим функцию

$$f_1(x) = \begin{cases} f_0(x), & x \in [0, a], \\ f'_0(a)(x - a) + f_0(a), & x \in [a, a + \tau], \\ f_0(x - a - \tau + b), & x \in [a + \tau, c_1]. \end{cases}$$

Вновь по построению f_1 — кусочно-полиномиальная непрерывно дифференцируемая функция на отрезке $[0,c_1]$ со свойствами $f_1(c_1)=f_0(c_0)=0,\ f_1'(0)=0$ и $\|f_1''\|_{L_p[0,c_1]}\leq \|f_0''\|_{L_p[0,c_0]}$. Если $r<\infty$, то по лемме 2 имеем

$$\int_{a}^{a+\tau} |f_1'(x)|^q dx \ge \int_{a}^{b} |f_0'(x)|^q dx, \qquad \int_{a}^{a+\tau} |f_1(x)|^r dx \le \int_{a}^{b} |f_0(x)|^r dx.$$

Если $r=\infty$, то первое неравенство сохраняется, а второе заменяется на $\max_{[a,c_1]}|f_1(x)|=|f_0(a)|\leq \max_{[a,c_1]}|f_0(x)|$. Поэтому и в этом случае $\Psi_{[0,c_0]}(f_0)\leq \Psi_{[0,c_1]}(f_1)$.

Интервалов, на которых которых f''(x) < 0, конечное число. Поэтому за конечное число шагов, скажем, за k шагов, мы построим функцию $f_k \in \mathcal{U}_{[0,c_k]}$, для которой $\Psi_{[0,1]}(f) \le \Psi_{[0,c_k]}(f_k)$. Растяжение $u(x) = f_k(c_k x)$, $x \in [0,1]$, приводит к нужной функции $u \in \mathcal{U}_{[0,1]}$. Неравенство (3.3) доказано.

3. Равенство (2.1), лемма 3, неравенства (3.1) и (3.3) влекут оценку

$$(K(r, p, \mathbb{R}))^2 \le \sup \left\{ \Psi_{[0,1]}(u) \colon u \in \mathcal{U}_{[0,1]} \right\}. \tag{3.4}$$

Для получения обратного (3.4) неравенства для $u \in \mathcal{U}_{[0,1]}$ рассмотрим функцию

$$v(x) = \begin{cases} u(4x), & x \in [0, 1/4], \\ -u(2-4x), & x \in [1/4, 1/2], \\ v(1-x), & x \in [1/2, 1]. \end{cases}$$

Функция v(x) четна относительно точки x=1/2, кроме того, v(0)=v(1), v'(0)=v'(1)=0. Поэтому v можно продолжить до 1-периодической непрерывно дифференцируемой функции на \mathbb{R} . При этом в силу (2.2) мы имеем

$$\Psi_{[0,1]}(u) = \Psi_{[0,1/4]}(v) = \Psi_{[0,1]}(v).$$

Таким образом, $\sup \left\{ \Psi_{[0,1]}(u) \colon u \in \mathcal{U}_{[0,1]} \right\} \leq \sup \left\{ \Psi_{[0,1]}(v) \colon v \in L^2_{r,p}(\mathbb{T}) \right\} = (K(r,p,\mathbb{T}))^2$. Неравенство $K(r,p,\mathbb{T}) \leq K(r,p,\mathbb{R})$ для $1 \leq q,r \leq \infty$ доказано в теореме 4.5.2 [3] (см. также [4, 4.5]). Это доказательство остается верным и для $r \geq 1/2$.

Теорема доказана.

4. Случай L_1 -нормы второй производной

Для показателей $q \in [1, \infty), \ p = 1, \ r \in [1, \infty], \ 1/r + 1 = 2/q$ рассмотрим неравенство

$$\|y\|_{q,\mathbb{R}} \leq K(r,1,\mathbb{R}) \|y\|_{r,\mathbb{R}}^{1/2} \cdot \|y''\|_{1,\mathbb{R}}^{1/2}, \quad y \in L^2_{r,1}(\mathbb{R}).$$

Докажем, что

$$K(r,1,\mathbb{R}) = K(r,1,\mathbb{T}) = (r+1)^{1/(2r)}.$$
 (4.1)

При $r=\infty$ последнее равенство понимаем в предельном смысле, т. е.

$$K(\infty, 1, \mathbb{R}) = K(\infty, 1, \mathbb{T}) = \lim_{r \to \infty} (r+1)^{1/(2r)} = 1.$$

По теореме 1 $(K(r,1,\mathbb{R}))^2 = (K(r,1,\mathbb{T}))^2 = \sup\{\Psi_{[0,1]}(u) \colon u \in \mathcal{U}_{[0,1]}\}.$

Пусть $r<\infty$. Рассмотрим произвольную не равную тождественно нулю функцию $u\in\mathcal{U}_{[0,1]}$. Оценим сверху величину $\Psi_{[0,1]}(u)$. По лемме 2 для числа $\tau=(u(1)-u(0))/u'(1)=|u(0)|/u'(1)$ и функции g(x)=u(0)+u'(1)x выполняются неравенства

$$||g'||_{q,[0,\tau]} \ge ||u'||_{q,[0,1]}, \quad ||g||_{r,[0,\tau]} \le ||u||_{r,[0,1]}.$$
 (4.2)

Вычислим нормы

$$||u''||_{1,[0,1]} = \int_0^1 u''(x)dx = u'(1), \quad ||g||_{r,[0,\tau]} = \left(\int_0^\tau (-u(0) - u'(1)x)^r dx\right)^{1/r} = \frac{|u(0)|^{1+1/r}}{u'(1)^{1/r}(r+1)^{1/r}},$$

$$||g'||_{q,[0,\tau]} = \left(\int_0^\tau u'(1)^q dx\right)^{1/q} = u'(1)\frac{|u(0)|^{1/q}}{u'(1)^{1/q}} = u'(1)^{1-1/q}|u(0)|^{1/q}.$$

С учетом (4.2) получаем оценку

$$\Psi_{[0,1]}(u) \le \frac{\|g'\|_{q,[0,\tau]}^2}{\|g\|_{r,[0,\tau]}} \frac{1}{\|u''\|_{1,[0,1]}} = u'(1)^{2-2/q} |u(0)|^{2/q} \frac{u'(1)^{1/r} (r+1)^{1/r}}{|u(0)|^{1+1/r}} \frac{1}{u'(1)} = (r+1)^{1/r},$$

из которой следует неравенство $K(r,1,\mathbb{R}) = K(r,1,\mathbb{T}) \leq (r+1)^{1/(2r)}.$

Для $r=\infty$ нужно в вышеприведенных выкладках положить q=2 и заменить $\|g\|_{r,[0,1]}$ на $\|g\|_{\infty,[0,1]}=|u(0)|$, что приведет к неравенству $\Psi_{[0,1]}(u)\leq 1.$

Для получения обратного неравенства достаточно построить последовательность функций $u_n \in \mathcal{U}_{[0,1]}$, для которой $\Psi_{[0,1]}(u_n) \to (r+1)^{1/r}$, $n \to \infty$. Рассмотрим последовательность

$$u_n(x) = \begin{cases} \frac{n}{2}x^2 + \frac{1}{2n} - 1, & x \in [0, 1/n), \\ x - 1, & x \in [1/n, 1]. \end{cases}$$

Нетрудно проверить, что $u_n \in \mathcal{U}_{[0,1]}$. Вычислим пределы норм

$$\|u_n''\|_{1,[0,1]} = \int_0^{1/n} n \, dx = 1, \quad \|u_n'\|_{q,[0,1]} = \left(1 - \frac{q}{n(q+1)}\right)^{1/q} \to 1,$$
 (4.3)

$$||u_n||_{r,[0,1]} \to ||x-1||_{r,[0,1]} = \begin{cases} \frac{1}{(r+1)^{1/r}}, & 1 \le r < \infty \\ 1, & r = \infty. \end{cases}$$

$$(4.4)$$

Из (4.3) и (4.4) следует, что $\Psi_{[0,1]}(u_n) \to (r+1)^{1/r}$ при $n \to \infty$. Равенство (4.1) доказано.

Благодарности

Авторы благодарны рецензенту за тщательное чтение работы и замечания, способствовавшие устранению ряда неточностей.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Арестов В.В.** Приближение неограниченных операторов ограниченными и родственные экстремальные задачи // Успехи мат. наук. 1996. Т. 51, вып. 6. С. 89–124. doi: 10.4213/rm1019.
- 2. **Арестов В.В., Бердышев В.И.** Неравенства для дифференцируемых функций // Методы решения условно-корректных задач: сб. науч. тр. Свердловск: Ин-т математики и механики УНЦ АН СССР, 1975. Вып. 17. С. 108–138.
- 3. **Бабенко В.Ф., Кофанов В.А., Пичугов С.А.** Сравнение точных констант в неравенствах для производных на вещественной прямой и окружности // Укр. мат. журн. 2003. Т. 55, № 5. С. 579–589.

- 4. **Бабенко В.Ф., Корнейчук Н.П., Кофанов В.А., Пичугов С.А.** Неравенства для производных и их приложения. Киев: Наукова думка, 2003. 590 с.
- 5. Габушин В.Н. Неравенства между производными в метриках L_p при 0 // Изв. АН СССР. Сер. математическая. 1976. Т. 40, вып. 4. С. 869–892.
- 6. **Zernyshkina E.A.** Kolmogorov type inequality in L_2 on the real line with one-sided norm // East J. Approx. 2006. Vol. 12, no. 2. P. 127–150.
- 7. Корнейчук Н.П. Сплайны в теории приближения. М.: Наука, 1984. 352 с.
- 8. Landau E. Einige Ungleichungen für zweimal differenzierbare Funktion // Proc. London Math. Soc. 1913. Vol. 13. P. 43–49. doi: 10.1112/PLMS/S2-13.1.43.
- 9. Паюченко Н.С. Редукция неравенства Колмогорова для положительной срезки второй производной на оси к неравенству для выпуклых функций на отрезке // Сиб. электрон. мат. изв. 2021. Т. 18, № 2. С. 1625-1638. doi: $10.33048/\mathrm{semi.2021.18.120}$.
- 10. **Stein E.M.** Functions of exponential type // Ann. Math. 1957. Vol. 65, no. 3. P. 582–592. doi: 10.2307/1970066.

Поступила 4.04.2022 После доработки 2.05.2022 Принята к публикации 4.05.2022

Глазырина Полина Юрьевна канд. физ.-мат. наук, доцент зав. кафедрой Институт естественных наук и математики Уральский федеральный университет г. Екатеринбург e-mail: polina.glazyrina@urfu.ru

Паюченко Никита Славич аспирант, ассистент Институт естественных наук и математики Уральский федеральный университет г. Екатеринбург e-mail: aueiyo@gmail.com

REFERENCES

- 1. Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems. *Russian Math. Surveys*, 1996, vol. 51, iss. 6, pp. 1093–1126. doi: 10.1070/RM1996v051n06ABEH003001.
- 2. Arestov V.V., Berdyshev V.I. Inequalities for differentiable functions. In: *Methods for solving conditionally correct problems: Collect. Sci. Works.* Sverdlovsk: IMM UNTs AN SSSR Publ., 1975, no. 17, pp. 108–138.
- 3. Babenko V.F., Kofanov V.A., Pichugov S.A. Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle. *Ukr. Mat. Zhurn.*, 2003, vol. 55, no. 5, pp. 579–589 (in Russian).
- 4. Babenko V.F., Korneichuk N.P., Kofanov V.A. and Pichugov S.A. Neravenstva dlya proizvodnykh i ikh prilozheniya [Inequalities for derivatives and their applications]. Kiev: Naukova Dumka, 2003, 590 p. ISBN: 966-00-0074-4.
- 5. Gabusin V.N. Inequalities between derivatives in L_p -metric for 0 . Izvestiya: Mathematics, 1976, vol. 10, no. 4, pp. 823–844. doi: 10.1070/IM1976v010n04ABEH001817.
- 6. Zernyshkina E.A. Kolmogorov type inequality in L_2 on the real line with one-sided norm. East J. Approx., 2006, vol. 12, no. 2, pp. 127–150.
- 7. Korneichuk N.P. *Splajny v teorii priblizheniya* [Splines in approximation theory]. Moscow: Nauka Publ., 1984, 352 p.
- 8. Landau E. Einige Ungleichungen für zweimal differenzierbare Funktion In: *Proc. London Math. Soc.*, 1913, vol. 13, pp. 43–49. doi: 10.1112/PLMS/S2-13.1.43.

- 9. Payuchenko N.S. Reduction of the Kolmogorov inequality for a non negative part of the second derivative on the real line to the inequality for convex functions on an interval. *Sib. Elektr. Matem. Izv.*, 2021, vol. 18, no. 2, pp. 1625–1638 (in Russian). doi: 10.33048/semi.2021.18.120
- 10. Stein E.M. Functions of exponential type. *Ann. Math.*, 1957, vol. 65, no. 3, pp. 582–592. doi: 10.2307/1970066.

Received April 4, 2022 Revised May 2, 2022 Accepted May 4, 2022

Funding Agency: The reported study was funded by RFBR, project number 20-31-90124.

Polina Yurevna Glazyrina, Cand. Sci. (Phys.-Math.), Docent, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: polina.glazyrina@urfu.ru.

Nikita Slavich Payuchenko, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: aueiyo@gmail.com.

Cite this article as: P. Yu. Glazyrina, N. S. Payuchenko. On Kolmogorov's inequality for the first and second derivatives on the axis and on the period. *Trudy Instituta Matematiki i Mekhaniki UrO RAN*, 2022, vol. 28, no. 2, pp. 84–95.