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ON A CLASS OF VERTEX-PRIMITIVE ARC-TRANSITIVE

AMPLY REGULAR GRAPHS 1,2

M. P.Golubyatnikov, N.V.Maslova

A simple k-regular graph with v vertices is an amply regular graph with parameters (v, k, λ, µ) if any two

adjacent vertices have exactly λ common neighbors and any two vertices which are at distance 2 in this graph

have exactly µ common neighbors. Let G be a finite group, H ≤ G, H = {Hg | g ∈ G} be the corresponding

conjugacy class of subgroups of G, and 1 ≤ d be an integer. We construct a simple graph Γ(G,H, d) as follows.

The vertices of Γ(G,H, d) are the elements of H, and two vertices H1 and H2 from H are adjacent in Γ(G,H, d) if

and only if |H1∩H2| = d. In this paper we prove that if q is a prime power with 13 ≤ q ≡ 1 (mod 4), G = SL2(q),
and H is a dihedral maximal subgroup of G of order 2(q − 1), then the graph Γ(G,H, 8) is a vertex-primitive

arc-transitive amply regular graph with parameters

(

q(q + 1)

2
,
q − 1

2
, 1, 1

)

and with Aut(PSL2(q)) ≤ Aut(Γ).

Moreover, we prove that Γ(G,H, 8) has a perfect 1-code, in particular, its diameter is more than 2.

Keywords: finite simple group, arc-transitive graph, amply regular graph, edge-regular graph, graph of girth

3, Deza graph, perfect 1-code.

М.П. Голубятников, Н.В.Маслова. О классе вершинно-примитивных транзитивных на

дугах вполне регулярных графов.

Обыкновенный k-регулярный граф с v вершинами называется вполне регулярным с параметрами

(v, k, λ, µ), если любые две смежные вершины имеют точно λ общих соседей, а любые вершины, нахо-

дящиеся на расстоянии 2 в этом графе, имеют точно µ общих соседей. Пусть G — конечная группа,

H ≤ G, H = {Hg | g ∈ G} — соответствующий класс сопряженности подгрупп группы G и 1 ≤ d — целое

число. Построим обыкновенный граф Γ(G,H, d) следующим образом: вершинами графа Γ(G,H, d) явля-

ются элементы класса H, и две различные вершины H1 и H2 из H смежны в Γ(G,H, d) тогда и только

тогда, когда |H1 ∩H2| = d. В данной работе мы доказываем, если q — степень простого числа такая, что

13 ≤ q ≡ 1 (mod 4), G = SL2(q) и H — диэдральная максимальная подгруппа группы G порядка 2(q− 1),
то граф Γ = Γ(G,H, 8) является вершинно примитивным транзитивным на дугах вполне регулярным гра-

фом с параметрами

(

q(q + 1)

2
,
q − 1

2
, 1, 1

)

, при этом Aut(PSL2(q)) ≤ Aut(Γ). Более того, мы показываем,

что Γ = Γ(G,H, 8) содержит совершенный 1-код, в частности, диаметр этого графа больше 2.

Ключевые слова: конечная простая группа, транзитивный на дугах граф, вполне регулярный граф,

реберно регулярный граф, граф обхвата 3, граф Деза, совершенный 1-код.
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Throughout the paper we consider only finite groups and simple graphs, and henceforth the
term group means finite group, and the term graph means simple graph (undirected graph without
loops and multiple edges). Our terminology and notation are mostly standard and can be found,
for example, in [2; 3; 5].

A simple k-regular graph with v vertices is an amply regular graph with parameters (v, k, λ, µ)
if any two adjacent vertices have exactly λ common neighbors and any two vertices which are at
distance 2 in this graph have exactly µ common neighbors. A class of amply regular graphs with
λ = µ is of a special interest; such graphs for λ = µ ≥ 2 have been studied by M. Mulder [11]. But

1The work is supported by the Russian Science Foundation (project no. 19-71-10067).
2This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups

and Graphs, Semigroups and Synchronization”.
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there are no many results about amply regular graphs with λ = µ = 1. At the same time, some
of such graphs due to their properties probably can be used in the architecture of multiprocessor
systems similarly to the Hypercubes and the Star graphs [1; 7; 12].

Let G be a group, H ≤ G, H = {Hg | g ∈ G} be the corresponding conjugacy class of subgroups
of G, and d ≥ 1 be an integer. We construct a graph Γ(G,H, d) as follows. The vertices of Γ(G,H, d)
are the elements of H, and two vertices H1 and H2 from H are adjacent in Γ(G,H, d) if and only if
|H1 ∩H2| = d.

Let Γ be a graph. Recall that a subset C of vertices of Γ is a 1-perfect code in Γ if the vertex
set of Γ is a disjoint union of balls of radius 1 with centers at the vertices from C.

In this paper we prove the following theorem.

Theorem 1. Let G = SL2(q), where q is a prime power with 13 ≤ q ≡ 1 (mod 4), H be

a maximal dihedral subgroup of G of order 2(q − 1),3 and Γ = Γ(G,H, 8). Then the following

statements hold:

(i) Γ is a vertex-primitive arc-transitive amply regular graph with parameters

(q(q + 1)

2
,
q − 1

2
, 1, 1

)

;

(ii) Aut(PSL2(q)) ≤ Aut(Γ);

(iii) Γ has a perfect 1-code, in particular, Γ is of diameter more than 2.

A simple graph is called a Deza graph with parameters (v, k, b, a) if it has v vertices, is regular
of valency k and any two different vertices have either a or b common neighbors in this graph.

Corollary 1. Under the notation system of Theorem 1, the graph Γ is a Deza graph of girth 3
with parameters

(q(q + 1)

2
,
q − 1

2
, 1, 0

)

.

L. Lovasz [8, Problem 11] asked whether every finite connected vertex-transitive graph has a
Hamilton path. Our calculations with GAP [4] give that if q ≤ 41, then the graph Γ(G,H, 8) has a
Hamiltonian cycle. Thus, we have the following hypothesis:

Hypothesis 1. For each q, the graph Γ(G,H, 8) has a Hamiltonian cycle.

In 2009, D. Marusic and R. Scapellato [9] constructed a class of vertex-transitive non-Cayley
graphs as orbital graphs with PSL2(p), where p is a prime, acting by right multiplication on the
right cosets of a dihedral subgroup of order p − 1. Really, our graphs Γ(G,H, 8) are orbital graphs
with PGL2(q) acting by right multiplication on the right cosets of a dihedral subgroup of order
q − 1, and our calculations with GAP [4] give that if q ≤ 41, then Γ(G,H, 8) is a non-Cayley
vertex-transitive graph. Thus, we have the following hypothesis:

Hypothesis 2. For each q, the graph Γ(G,H, 8) is a non-Cayley vertex-transitive graph.

1. Preliminaries

The following easily proved assertions give some information about automorphism groups of the
graphs Γ(G,H, d) for arbitrary G, H, and d.

3If q ≥ 13, then SL2(q) has a maximal dihedral subgroup of order 2(q− 1). A detailed description of this
subgroup can be found in Lemma 1 below.
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Proposition 1. Let G be a finite group, : G→ Aut(G) be the natural homomorphism,H ≤ G,

H = {Hg | g ∈ G} be the corresponding conjugacy class of subgroups of G, and B = GNAut(G)(H).
Then the following statements hold:

(i) there exists a homomorphism ψ : B → Aut(Γ(G,H, d)) such that ψ(G) is a normal subgroup

of ψ(B),
ψ(B) ∼= B/(∩Hi∈HNB(Hi)) and ψ(G) ∼= G/(∩Hi∈HNG(Hi));

(ii) if Z(G) ≤ H, then G/ ∩Hi∈H NG(Hi) ∼= G/(∩Hi∈HNG(Hi))) and B/(∩Hi∈HNB(Hi))) =
B/(∩Hi∈HNB(Hi))).

Proof. The group G = G/Z(G) acts on H in the same way as G, and it is well-known that
G = Inn(G) is a normal subgroup of A = Aut(G); therefore, G ✂ B. Moreover, it is clear that the
group B = GNA(H) acts on H. If b ∈ B, then

|H ∩Hg| = |Hb ∩Hgb|;

therefore, there is a homomorphism ψ from B to Aut(Γ(G,H, d)) with ker(ψ) = ∩Hi∈HNB(Hi).
Further, ◦ ψ : G→ Aut(Γ(G,H, d)) is a homomorphism, and it is clear that

ker( ◦ ψ) = ∩Hi∈HNG(Hi).

Now Statement (i) follows from the fundamental theorem on homomorphisms.
If Z(G) ≤ H, then for each Hi ∈ H, Z(G) ≤ Hi. Thus, Z(G) ≤ ∩Hi∈HNG(Hi) and NG(Hi) =

NG(HiZ(G)). Therefore, by the fundamental theorem on homomorphisms, we have NG(Hi)/Z(G) =
NG(HiZ(G))/Z(G) ∼= NG(Hi) and

G/ ∩Hi∈H NG(Hi) ∼= (G/Z(G))/((∩Hi∈HNG(Hi))/Z(G))

= (G/Z(G))/(∩Hi∈H(NG(Hi))/Z(G))) ∼= G/(∩Hi∈HNG(Hi)).

Similarly, we have Z(G) ≤ Hi and NB(Hi) = NB(HiZ(G)) = NB(Hi) for each Hi ∈ H. Thus,
Statement (ii) holds. ✷

Remark 1. The condition Z(G) ≤ H in Proposition 1(ii) is essential. Let

G = 〈a, b | a4 = 1, b2 = 1, bab = a−1〉

be a dihedral group of order 8 and H = 〈b〉. Then Z(G) = 〈a2〉, NG(H) = 〈a2, b〉 = HZ(G),
and NG(HZ(G)) = G. Thus, |NG(H)/Z(G)| = 2, NG/Z(G)((Z(G)〈b〉)/Z(G)) = G/Z(G), and
|G/Z(G)| = 4.

Remark 2. Both subgroups ψ(B) and ψ(G) can be proper non-normal subgroups of the group
Aut(Γ(G,H, d)). For example, if d does not divide |H|, then the graph Γ(G,H, d) is a coclique and
Aut(Γ(G,H, d)) = Sym(H).

Corollary 2. The graph Γ(G,H, d) is vertex-transitive for all G, H, and d.

Proof. It is clear that the group ψ(G) acts transitively on the vertices of Γ(G,H, d) for all G,
H, and d by definition of Γ(G,H, d). Thus, the corollary holds. ✷

Now we introduce a notation system, which will be valid until the end of the paper. Fix a prime
p and an integer m > 0. Let GF (q) be the finite field of order q = pm and G = SL2(q) be the
corresponding special linear group, i.e., the group of 2 × 2 invertible matrices over GF (q) with
determinant 1. Let H be a dihedral maximal subgroup of G of order 2(q − 1) and Γ = Γ(G,H, 8).
For any vertex v of Γ, denote by Γ(v) the subgraph of Γ induced by the set of all vertices which are
adjacent to v in Γ.

Lemma 1. If q ≥ 13, then
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(1) G has a maximal dihedral subgroup H of order 2(q − 1); moreover, NG(H) = H.

(2) The following statements are equivalent:

(i) q ≡ 1 (mod 4);

(ii) −1 is a square in GF (q);

(iii) |G : H| is odd.

(3) H is the stabilizer in G of a decomposition of the natural 2-dimensional module V of G into

a direct sum of two subspaces of dimension 1; moreover, in a suitable basis of V ,

H =

{(

a 0
0 a−1

)

∣

∣

∣ a ∈ GF (q)∗
}

⋃

{(

0 a
−a−1 0

)

∣

∣

∣ a ∈ GF (q)∗
}

.

(4) There are subgroups K and L of Aut(Γ) with the following properties: K ✂L, K ∼= PSL2(q),
L ∼= Aut(PSL2(q)), and K is vertex-primitive on Γ. In particular, Γ is connected.

Proof. Statement (1) follows, for example, from [2, Tables 8.1, 8.3].
Statements (2)(i) and (2)(ii) are equivalent, for example, by [6, P. 42, Corollary 2]; State-

ments (2)(i) and (2)(iii) are equivalent, for example, by [10].
Statement (3) follows from [2, Tables 8.1, 8.3, and § 2.2.2].
Prove Statement (4). Let G = G/Z(G) ∼= PSL2(q). First of all, note that Z(G) ≤ H. By

[2, Tables 8.1, 8.3], Aut(G) = Inn(G)NAut(G)(H). Now by Proposition 1, the group Aut(Γ) contains

subgroups K ∼= G and L ∼= Aut(G) with K ✂ L. Moreover, StabK(H) ∼= H is a maximal subgroup
in K; therefore, K is vertex-primitive on Γ; in particular, Γ is connected. ✷

Further we assume that q ≡ 1 (mod 4), and by ξ we denote an element of the field GF (q) with
the property ξ2 = −1. Moreover, we fix a basis of the natural 2-dimensional module of G such that
in this basis H has a shape as in Statement (3) of Lemma 1, and further we assume that all the
matrices are presented in this basis.

Let a ∈ GF (q)∗. Put

Ra =

(

a 0
0 a−1

)

and Sa =

(

0 a
−a−1 0

)

.

It is clear that the following equalities hold:

Ra ·Rb = Rab, Sa · Sb = R−ab−1 ,

Ra · Sb = Sab, and Sa ·Rb = Sab−1

Lemma 2. If P ∈ G \H, then the following statements hold:

(1) PRaP
−1 = Rb if and only if a = b and a2 = 1;

(2) PRaP
−1 = Sb if and only if a2 = −1 and P =







x
b

a
−

1

2x

x
a

2xb






for some x ∈ GF (q)∗;

(3) PSaP
−1 = Rb if and only if b2 = −1 and P =







x

ab
−x

1

2x

ab

2x






for some x ∈ GF (q)∗;

(4) PSaP
−1 = Sb if and only if P =

(

xb −aby
y xa

)

for some x, y ∈ GF (q)∗ satisfying the equality

x2 + y2 = (ab)−1. Moreover, for a fixed matrix P of this form, the equality PSa′P
−1 = Sb′

holds if and only if (a′, b′) = (a, b) or (a′, b′) = (−a,−b).
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Proof. Let P =

(

p11 p12
p21 p22

)

.

Prove Statement (1). We have

PRa −RbP =







p11(a− b) −p12
ab− 1

a

p21
ab− 1

b
p22

b− a

ab






= 0.

Hence PRaP
−1 = Rb if and only if a = b and a2 = 1. Thus, Statement (1) holds.

Prove Statement (2). Consider the matrix equation

0 = PRa − SbP =

(

ap11 − bp21 a−1p12 − bp22
b−1p11 + ap21 b−1p12 + a−1p22

)

. (1.1)

Matrix equation (1.1) can be considered as a system of linear equations with respect to variables
p11, p12, p21, and p22 with matrix

M =









a 0 −b 0
0 a−1 0 −b
b−1 0 a 0
0 b−1 0 a−1









such that detM =
(a2 + 1)2

a2
. (1.2)

It is clear that matrix equation (1.1) has a non-trivial solution if and only if detM = 0, i. e., a = ±ξ.
Note that if a = ±ξ, then the rank of the matrix M in (1.2) is 2 and p12 and p21 can be chosen as
independent variables. Solving equation (1.1) for p11 and p22, we get

p11 =
p21b

a
and p22 = −

p12a

b
.

Hence

P =





p21b

a
p12

p21 −
p12a

b



 and detP = −2p12p21 = 1.

Replacing p21 by x and substituting p12 = −
1

2x
, we obtain Statement (2).

Prove Statement (3). Consider the matrix equation

0 = PSa −RbP =

(

−bp11 − a−1p12 ap11 − bp12
−b−1p21 − a−1p22 ap21 − b−1p22

)

. (1.3)

Matrix equation (1.3) can be considered as a system of linear equations with respect to variables
p11, p12, p21, and p22 with matrix

M =









−b −a−1 0 0
a −b 0 0
0 0 −b−1 −a−1

0 0 a −b−1









such that detM =
(b2 + 1)2

b2
. (1.4)

It is clear that matrix equation (1.3) has a non-trivial solution if and only if detM = 0, i. e.,
b = ±ξ. Note that if b = ±ξ, then the rank of the matrix M in (1.4) is 2 and p12 and p21 can be
chosen as independent variables. Solving equation (1.3) for p11 and p22, we get

p11 = p12
b

a
and p22 = abp21.
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Hence

P =

(

p12
b

a
p12

p21 abp21

)

and detP = −2p12p21 = 1.

Replacing p12 by −x and substituting p21 =
1

2x
, we obtain Statement (3).

Prove Statement (4). Consider the matrix equation

0 = PSa − SbP =





−
p12
a

− bp21 ap11 − bp22
p11
b

−
p22
a

p12
b

+ ap21



 . (1.5)

Matrix equation (1.5) can be considered as a system of linear equations with respect to variables
p11, p12, p21, and p22 with matrix

M =









0 −a−1 −b 0
a 0 0 −b
b−1 0 0 −a−1

0 b−1 a 0









such that detM = 0.

Note that the rank of the matrix M is 2 and p22 and p21 can be chosen as independent variables.
Solving equation (1.5) for p11 and p12 and replacing p22 by xa and p21 by y, we get

P =

(

xb −aby
y xa

)

and detP = ab(x2 + y2).

Now let PSa′ − Sb′P = 0 for some a′ 6= 0 and b′ 6= 0. We get

PSa′ − Sb′P =







(ab− a′b′)y

a′
(a′b− ab′)x

(a′b− ab′)x

a′b′
(a′b′ − ab)y

b′






= 0.

Note that x 6= 0 and y 6= 0; hence, ab = a′b′ and a′b = ab′. Therefore, (a′, b′) = (a, b) or (a′, b′) =
(−a,−b). Statement (4) is proved. ✷

2. Neighborhood structure of the vertex H in Γ

Let

R =











Pα,β =







α −
1

2β

β
1

2α







∣

∣

∣

∣

α, β ∈ GF (q)∗











be the set of matrices form Statement (2) of Lemma 2. Note that if Pα,β ∈ R, then the following
equalities hold:

PRξP
−1 = Sα

β
ξ and PR−ξP

−1 = S−α
β
ξ.

Lemma 3. If P ∈ G, then |H ∩HP | ∈ {2(q − 1), 8, 4, 2}. Moreover, |H ∩HP | = 8 if and only

if P ∈ R.

Proof. Let A = H ∩HP . If P ∈ H, then A = H and |A| = 2(q − 1), as required. If P ∈ G \H
and |A| = 2(q − 1) = |H|, then P ∈ NG(H). But by Statement (1) of Lemma 1, NG(H) = H, a
contradiction. Thus, if P ∈ G \H, then |A| < 2(q − 1).



264 M.P.Golubyatnikov, N.V.Maslova

Note that by Statement (3) of Lemm 1,

H = {Ra | a ∈ GF (q)∗} ∪ {Sa | a ∈ GF (q)∗}.

Let P ∈ R. From Statements (1) and (2) of Lemma 2, there are precisely four matrices Ra for
which RP

a ∈ H, namely:

(R1, R−1, Rξ, R−ξ)
P = (R1, R−1, Sα

β
ξ, S−α

β
ξ).

Note that






α −
1

2β

β
1

2α






=

(

xb −aby
y xa

)

,

for example, for (x, y, a, b) =
(

β, β,
1

2αβ
,
α

β

)

. Now from Statement (4) of Lemma 2 we have

S 1

2αβ

P = Sα
β

and S− 1

2αβ

P = S−α
β
,

and there are no u ∈ GF (q)∗ \
{ 1

2αβ
,−

1

2αβ

}

with SP
u = Sv for some v ∈ GF (q)∗.

Note that






α −
1

2β

β
1

2α






=







x

ab
−x

1

2x

ab

2x






,

for example, for (x, a, b) =
( 1

2β
,

1

2αβξ
, ξ
)

. Now from Statement (3) of Lemma 2 we have

S 1

2αβξ

P = Rξ and S− 1

2αβξ

P = R−ξ,

and there are no u ∈ GF (q)∗ \
{ 1

2αβξ
,−

1

2αβξ

}

with SP
u = Rv for some v ∈ GF (q)∗.

Thus, if P ∈ R, then |A| = 8 and

A =
{

R1, R−1, Rξ, R−ξ , Sα
β
ξ, S−α

β
ξ, Sα

β
, S−α

β

}

.

Let P ∈ G\ (H ∪R). Assume that P is of the same shape as in Statement (3) of Lemma 2, i. e.,

P =







x

ab
−x

1

2x

ab

2x






for some x, a, and b from GF (q)∗.

Put y =
1

2x
and

t

z
=

2x2

ab
, where y, z, and t are from GF (q)∗. Then

P =







yt

z
−

1

2y

y
z

2ty






∈ R;

we obtain a contradiction. Thus, by Statements (2) and (3) of Lemma 2, if P 6∈ G \ (H ∪R), then
conjugation by P cannot transform a matrix of the form Su, where u ∈ GF (q)∗, into a matrix of the
form Rv, where v ∈ GF (q)∗, and vice versa; therefore, in this case, |A| ∈ {2, 4} by Statements (1)
and (4) of Lemma 2. ✷

Let ∼ be an equivalence relation on the set of matrices R defined as follows:

P1 ∼ P2 ⇔ P−1
2 P1 ∈ H.
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Lemma 4. We have

|Γ(H)| = |R/ ∼ | =
q − 1

2
.

Proof. By Lemma 3, we have Γ(H) = {HP | P ∈ R}, and it is clear that HP1 = HP2 if and
only if P−1

2 P1 ∈ H. Note that

P−1
2 P1 =









α2 −
1

2β2

β2
1

2α2









−1







α1 −
1

2β1

β1
1

2α1









=









α2β1 + α1β2
2α2β2

α2β1 − α1β2
4α1α2β1β2

α2β1 − α1β2
α2β1 + α1β2

2α1β1









.

Hence P−1
2 P1 ∈ H if and only if either α1/α2 = β1/β2 or α1/α2 = −β1/β2. Thus,

|Γ(H)| = |R/ ∼ | =
q − 1

2
. �

Lemma 5. The graph Γ is connected and arc-transitive.

Proof. By Corollary 2, the graph Γ is vertex-transitive. Moreover, by Statement (4) of Lemma 1,
Aut(Γ) has a vertex-primitive subgroup; therefore, Γ is connected.

Thus, it is sufficient to show that StabAut(Γ)(H) acts transitively on Γ(H).

Let HP1 6= HP2 , where P1, P2 ∈ R. Since the matrices P1 and P2 can be chosen up to equivalence
with respect to ∼, without loss of generality, we can assume that

P1 =







1 −
1

2β1

β1
1

2






and P2 =







1 −
1

2β2

β2
1

2






for β1, β2 ∈ GF (q)∗ with β1 6= β2.

Let

P (β1, β2) =

(

β1 0
0 β2

)

∈ GL2(q).

Note that P (β1, β2) ∈ NGL2(q)(H); therefore, by Proposition 1, conjugation by P (β1, β2) induces a

non-trivial automorphism of Γ, which stabilizes H. Moreover, P
P (β1,β2)
1 = P2; therefore,

(HP1)P (β1,β2) = HP2 .

Thus, StabAut(Γ)(H) acts transitively on Γ(H); therefore, the graph Γ is arc-transitive. ✷

3. Intersection of two neighborhoods

Lemma 6. If Q ∈ G, then the number |Γ(H) ∩ Γ(HQ)| is equal to the number of pairwise

non-equivalent with respect to ∼ matrices P ∈ R such that

P−1QS ∈ H for some S ∈ R.

Proof. Recall that Γ is vertex-transitive, and, therefore, by Lemma 3, Γ(H) ∩ Γ(HQ) consists
of the matrices HP , where P ∈ R, such that there exists a matrix S ∈ R with

HP = (HS)Q.

Now since NG(H) = H by Statement (1) of Lemma 1, the lemma holds. ✷
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Lemma 7. If Q ∈ G \ H, then |Γ(H) ∩ Γ(HQ)| ≤ 1. Moreover, if Q =

(

q11 q12
q21 q22

)

, then

|Γ(H) ∩ Γ(HQ)| = 1 if and only if q11q21 6= 0 and
q12q22
q11q21

is a non-zero square in GF (q).

Proof. By Lemma 6, |Γ(H) ∩ Γ(HQ)| is equal to the number of pairwise non-equivalent with
respect to ∼ matrices P ∈ R, such that

P−1QS ∈ H

for some S ∈ R. Let

P =







x −
1

2y

y
1

2x






∈ R, S =









s1 −
1

2s2

s2
1

2s1









∈ R, and Q =

(

q11 q12
q21 q22

)

.

Then

M = P−1QS =







q21s1x+ q22s2x+ q11s1y + q12s2y

2xy
−
q21s1x− q22s2x+ q11s1y − q12s2y

4 s1s2xy

q21s1x+ q22s2x− q11s1y − q12s2y −
q21s1x− q22s2x− q11s1y + q12s2y

2 s1s2






.

Note that M ∈ H if and only if either M1,1 =M2,2 = 0 or M1,2 =M2,1 = 0.

The equalities M1,1 =M2,2 = 0 imply the equalities

q21s1x+ q22s2x+ q11s1y + q12s2y = 0 and q21s1x− q22s2x− q11s1y + q12s2y = 0, (3.1)

which can be considered as a linear system for x = x1 and y = y1 with the matrix

A =

(

q21s1 + q22s2 q11s1 + q12s2
q21s1 − q22s2 −q11s1 + q12s2

)

, where detA = 2(q11q21s
2
1 − q12q22s

2
2).

It is clear that there is a non-trivial solution of the system (3.1) if and only if

detA = 0, i. e.,
s21
s22

=
q12q22
q11q21

.

Thus, if
q12q22
q11q21

is a non-square in GF (q)∗, then the system (3.1) does not have non-zero solutions,

and if
q12q22
q11q21

is a square in GF (q)∗, then all the matrices P = P1 obtained from the solutions of

the system (3.1) are pairwase equivalent with respect to ∼. Moreover, since the matrix Q is non-
degenerate, we have q11s1 + q12s2 6= 0 or q21s1 + q22s2 6= 0. Without loss of generality we assume
that q21s1 + q22s2 6= 0, and then

x1
y1

= −
q11s1 + q12s2
q21s1 + q22s2

.

The equalities M1,2 =M2,1 = 0 imply the equalities

q21s1x− q22s2x+ q11s1y − q12s2y = 0 and q21s1x+ q22s2x− q11s1y − q12s2y = 0, (3.2)

which can be considered as a linear system for x = x2 and y = y2 with the matrix

A =

(

q21s1 − q22s2 q11s1 − q12s2
q21s1 + q22s2 −q11s1 − q12s2

)

, where detA = −2(q11q21s
2
1 − q12q22s

2
2).
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It is clear that there is a non-trivial solution of the system (3.2) if and only if

detA = 0, i. e.,
s21
s22

=
q12q22
q11q21

.

Thus, if
q12q22
q11q21

is a non-square in GF (q)∗, then the system (3.2) does not have non-zero solutions,

and if
q12q22
q11q21

is a square in GF (q)∗, then all the matrices P = P2 obtained from the solutions of

the system (3.2) are pairwase equivalent with respect to ∼. Moreover, again since the matrix Q
is non-degenerate, we have q21s1 + q22s2 6= 0 or q11s1 + q12s2 6= 0. We have assumed before that
without loss of generality q21s1 + q22s2 6= 0, and then

x2
y2

=
q11s1 + q12s2
q21s1 + q22s2

.

Now we have proved that if q11q21 = 0 or q12q22 = 0 or
q12q22
q11q21

is a non-square in GF (q)∗,

then there is no a matrix P ∈ R with PQS−1 ∈ H for some S ∈ R, and if
q12q22
q11q21

is a square in

GF (q)∗, then all the matrices P ∈ R with PQS−1 ∈ H for some S ∈ R are pairwise equivalent

with respect to ∼. Thus, if q11q21 = 0 or q12q22 = 0 or
q12q22
q11q21

is a non-square in GF (q)∗, then

|Γ(H) ∩ Γ(HQ)| = 0, and if
q12q22
q11q21

is a square in GF (q)∗, then |Γ(H) ∩ Γ(HQ)| = 1. ✷

4. Proof of the main results

Note that, by Statement (1) of Lemma 1, |H| = |G : NG(H)| =
q(q + 1)

2
; thus, Γ has

q(q + 1)

2
vertices. The graph Γ is vertex-transitive by Corollary 2 and is vertex-primitive and connected by

Statement (4) of Lemma 1; therefore, it is regular; by Lemma 4, the vertex degree of Γ is
q − 1

2
.

By Lemma 5, Γ is arc-transitive; therefore, it is edge-regular. Let P ∈ R. Then
p12p22
p11p21

=
−1

4α2β2
,

where α and β are from GF (q)∗, which is a square in GF (q)∗ by Statement (2) of Lemma 1. Thus,
by Lemmas 7 and 3, we conclude that Γ is an amply regular graph with parameters

(

q(q + 1)

2
,
q − 1

2
, 1, 1

)

.

Since Z(G) ≤ H, by Proposition 1 and [2, Table 8.2], we have

Aut(PSL2(q)) = Aut(G/Z(G)) = G/Z(G)NAut(G/Z(G))(H/Z(G)) ≤ Aut(Γ).

Let

C =

{

HQa

∣

∣

∣Qa =

(

1 a
0 1

)

, a ∈ GF (q)

}

.

Show that C is a perfect 1-code in Γ. Indeed, H ∈ C and by Lemma 3, H is non-adjacent to any
other vertex from C. Moreover, by Lemma 7, |Γ(H) ∩ Γ(A)| = 0 for each vertex H 6= A ∈ C. Now
note that

K =

{

Qa =

(

1 a
0 1

)

∣

∣

∣a ∈ GF (q)

}

is a subgroup of G and K acts transitively on C. Thus, for each A,B ∈ C with A 6= B, we have
|Γ(A) ∩ Γ(B)| = 0.
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Now it is clear that |C| = q and, since the vertex degree of Γ is
q − 1

2
and Γ has exactly

q(q + 1)

2
= q

(q − 1

2
+ 1
)

vertices, we find that the vertex set of Γ is a disjoint union of balls of

radius 1 with centers at the vertices from C. Thus, C is a perfect 1-code in Γ; therefore, Γ is of
diameter more than 2. ✷
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