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ON A CLASS OF VERTEX-PRIMITIVE ARC-TRANSITIVE
AMPLY REGULAR GRAPHS 12

M. P. Golubyatnikov, N. V. Maslova

A simple k-regular graph with v vertices is an amply regular graph with parameters (v, k, A, u) if any two
adjacent vertices have exactly A common neighbors and any two vertices which are at distance 2 in this graph
have exactly g common neighbors. Let G be a finite group, H < G, $ = {HY9|g € G} be the corresponding
conjugacy class of subgroups of G, and 1 < d be an integer. We construct a simple graph I'(G, H, d) as follows.
The vertices of I'(G, H, d) are the elements of £, and two vertices H1 and Hs from ) are adjacent in I'(G, H, d) if
and only if | H1NHz| = d. In this paper we prove that if ¢ is a prime power with 13 < ¢ =1 (mod 4), G = SL2(q),
and H is a dihedral maximal subgroup of G of order 2(¢ — 1), then the graph I'(G, H, 8) is a vertex-primitive
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arc-transitive amply regular graph with parameters (%, qT, 1, 1) and with Aut(PSL2(q)) < Aut(T).
Moreover, we prove that I'(G, H, 8) has a perfect 1-code, in particular, its diameter is more than 2.

Keywords: finite simple group, arc-transitive graph, amply regular graph, edge-regular graph, graph of girth
3, Deza graph, perfect 1-code.

M. II. Tony6sitTuukosB, H. B.MacJsoBa. O KJyiacce BEPIIMHHO-IIPUMUTUBHBIX TPAH3UTUBHBIX Ha
Ayrax BIIOJIHE PEryJisipHbIX rpados.

OOBIKHOBEHHBIN k-perysisipHbIii rpad ¢ v BepIIMHAMY HA3bIBAETCS BIIOJIHE PErYJISIPHBIM C I1apamMeTpaMu
(v, k, A\, ), ecau obble 1Be CMEXKHbIE BEPUIIMHBI UMEIOT TOYHO A OOIIMX cocefieil, a Jro0ble BEPUIMHBI, HAXO-
OsSNUecss Ha PAacCTOSIHUHM 2 B 9TOM rpade, MMeoT TO4YHO p obuux coceneit. Ilycts G — KoHedHasi rpyia,
H <G, H={H9|g € G} — cOOTBETCTBYIONHI KJIACC CONPszKeHHOCTH moArpynn rpynnel G u 1 < d — nesoe
aucyo. ITocrpoum obbikHOBenHbIl rpad I'(G, H, d) cienyroumm obpasom: Beprunnamu rpada I'(G, H, d) asns-
IOTCS 3JIEMEHTHI Kjacca §), u Jgse pasiauunble Bepmuabl Hy u Ho u3 ) cvmexunl B I'(G, H,d) Torga u ToIbKO
Torza, kKorga |Hi N Hz| = d. B gannoit paGore Mbl JOKa3bIBAEM, €CJIU ¢ — CTEINEHb IIPOCTOrO YUCJIA TaKasi, YTO
13<g=1 (mod 4), G = SL2(q) u H — auanpanbHas MaKCUMaJbHas moarpynmna rpynnsl G nopsaka 2(qg — 1),
to rpad I' = I'(G, H, 8) siByisieTcsl BEPIIUHHO NPUMHUTHUBHBIM TPAH3UTHUBHBIM Ha JIyraxX BIIOJIHE PEryJISIPHBIM I'pa-
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dom ¢ mapamerpamu (q(q—;-)’ qT, 1, 1) , ipu 3roM Aut(PSL2(q)) < Aut(T"). Bosee Toro, Mbl moka3biBaeM,
aro I' = I'(G, H, 8) coep»KUT COBEPIIEHHbI 1-KOJ, B YaCTHOCTH, JUaMeTp 3Toro rpada Gosbiue 2.

Kuntouesbie cjioBa: KOHeuHasi TPOCTasi TPYyIIa, TPAH3UTUBHBINA Ha jayrax rpad, BIOJIHE PeryJspHbiii rpad,
pebepHo perynsipublii Tpad, rpad obxsara 3, rpad lesa, coBepiueHHbIN 1-KOZ.
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Throughout the paper we consider only finite groups and simple graphs, and henceforth the
term group means finite group, and the term graph means simple graph (undirected graph without
loops and multiple edges). Our terminology and notation are mostly standard and can be found,
for example, in [2;3;5].

A simple k-regular graph with v vertices is an amply regular graph with parameters (v, k, A, )
if any two adjacent vertices have exactly A common neighbors and any two vertices which are at
distance 2 in this graph have exactly © common neighbors. A class of amply regular graphs with
A = u is of a special interest; such graphs for A = u > 2 have been studied by M. Mulder [11]. But

!The work is supported by the Russian Science Foundation (project no. 19-71-10067).
2This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups
and Graphs, Semigroups and Synchronization”.
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there are no many results about amply regular graphs with A = g = 1. At the same time, some
of such graphs due to their properties probably can be used in the architecture of multiprocessor
systems similarly to the Hypercubes and the Star graphs [1;7;12].

Let G be a group, H < G, $ = {HY| g € G} be the corresponding conjugacy class of subgroups
of G, and d > 1 be an integer. We construct a graph I'(G, H, d) as follows. The vertices of I'(G, H, d)
are the elements of §, and two vertices H; and Hy from §) are adjacent in I'(G, H, d) if and only if
|H1 N H2| =d.

Let I" be a graph. Recall that a subset C of vertices of I' is a 1-perfect code in T' if the vertex
set of I is a disjoint union of balls of radius 1 with centers at the vertices from C.

In this paper we prove the following theorem.

Theorem 1. Let G = SLs(q), where q is a prime power with 13 <
a mazimal dihedral subgroup of G of order 2(q — 1), and T = T'(G, H,8
statements hold:

g = 1 (mod 4), H be
8). Then the following

(i) T is a vertex-primitive arc-transitive amply reqular graph with parameters

qlg+1) ¢—1 )
MM 1)
( 2 b 2 b ) b)

(ii) Aut(PSLs(q)) < Aut(T);

(iii) T has a perfect 1-code, in particular, T is of diameter more than 2.

A simple graph is called a Deza graph with parameters (v, k, b, a) if it has v vertices, is regular
of valency k and any two different vertices have either a or b common neighbors in this graph.

Corollary 1. Under the notation system of Theorem 1, the graph I' is a Deza graph of girth 3
with parameters
<q(q+1)7q—1 ) 0)
2 2
L. Lovasz |8, Problem 11| asked whether every finite connected vertex-transitive graph has a
Hamilton path. Our calculations with GAP [4] give that if ¢ < 41, then the graph I'(G, H,8) has a

Hamiltonian cycle. Thus, we have the following hypothesis:
Hypothesis 1. For each q, the graph T'(G, H,8) has a Hamiltonian cycle.

In 2009, D. Marusic and R. Scapellato [9] constructed a class of vertex-transitive non-Cayley
graphs as orbital graphs with PSLo(p), where p is a prime, acting by right multiplication on the
right cosets of a dihedral subgroup of order p — 1. Really, our graphs I'(G, H, 8) are orbital graphs
with PGLo(q) acting by right multiplication on the right cosets of a dihedral subgroup of order
g — 1, and our calculations with GAP [4] give that if ¢ < 41, then I'(G, H,8) is a non-Cayley
vertex-transitive graph. Thus, we have the following hypothesis:

Hypothesis 2. For each q, the graph T'(G, H,8) is a non-Cayley vertex-transitive graph.
1. Preliminaries

The following easily proved assertions give some information about automorphism groups of the

graphs I'(G, H,d) for arbitrary G, H, and d.

3If ¢ > 13, then SL2(q) has a maximal dihedral subgroup of order 2(q — 1). A detailed description of this
subgroup can be found in Lemma 1 below.
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Proposition 1. Let G be a finite group, — : G — Aut(Q) be the natural homomorphism, H < G,
$H ={HY|g € G} be the corresponding conjugacy class of subgroups of G, and B = éNAut(G) (H).
Then the following statements hold:
(i) there exists a homomorphism v : B — Aut(I'(G, H,d)) such that 9)(G) is a normal subgroup
of ¥(B), B
¥(B) = B/(Nu,enNp(Hi)) and (G) = G/(Np,esNa(Hi));

(i) if Z(G) < H, then G/ Nuen, No(Hi) = G/(Nu,esNg(Hy))) and B/(NmesNp(Hi))) =

B/(Nm,eaNp(H:)))-

Proof. The group G = G/Z(G) acts on § in the same way as G, and it is well-known that
G = Inn(G) is a normal subgroup of A = Aut(G); therefore, G < B. Moreover, it is clear that the
group B = GNA(H) acts on §). If b € B, then

|HNHY =|H"n H®|

therefore, there is a homomorphism ¢ from B to Aut(I'(G, H,d)) with ker(y)) = Ng,eqaNp(H;).
Further, o4 : G — Aut(I'(G, H,d)) is a homomorphism, and it is clear that

ker(_ o 1,[)) = mHiejﬁNG(Hi)-

Now Statement (i) follows from the fundamental theorem on homomorphisms.

If Z(G) < H, then for each H; € $, Z(G) < H;. Thus, Z(G) < Npg,eqNa(H;) and Ng(H;) =
Ng(H;Z(G)). Therefore, by the fundamental theorem on homomorphisms, we have Ng(H;)/Z(G) =
Na(HiZ(G))/Z(G) = Ng(F) and

G/ Nmes No(Hi) = (G/Z2(G))/((Nmes Na(Hi)/2(G))

= (G/Z(G))/(N,es(Na(H:))/Z(G))) = G/(Nu,en Ng(H;))-

Similarly, we have Z(G) < H; and Np(H;) = Np(H;Z(G)) = Np(H;) for each H; € $. Thus,
Statement (i) holds. O

Remark 1. The condition Z(G) < H in Proposition 1(ii) is essential. Let
G={(ab|a*=1,>=1bab=a"")

be a dihedral group of order 8 and H = (b). Then Z(G) = (a®), Ng(H) = (a®,b) = HZ(G),
and Ng(HZ(G)) = G. Thus, |Ng(H)/Z(G)| = 2, Ng/Z(G)((Z(G)(b>)/Z(G)) = G/Z(G), and
G/Z(G)| = 4.

Remark 2. Both subgroups v(B) and 1(G) can be proper non-normal subgroups of the group
Aut(I'(G, H,d)). For example, if d does not divide |H|, then the graph T'(G, H,d) is a coclique and
Auwt(T'(G, H,d)) = Sym(9).

Corollary 2. The graph I'(G, H,d) is vertez-transitive for oll G, H, and d.

Proof. It is clear that the group (G) acts transitively on the vertices of I'(G, H, d) for all G,
H, and d by definition of I'(G, H, d). Thus, the corollary holds. O

Now we introduce a notation system, which will be valid until the end of the paper. Fix a prime
p and an integer m > 0. Let GF(q) be the finite field of order ¢ = p™ and G = SLs(q) be the
corresponding special linear group, i.e., the group of 2 x 2 invertible matrices over GF(q) with
determinant 1. Let H be a dihedral maximal subgroup of G of order 2(¢ — 1) and I' = I'(G, H, 8).
For any vertex v of I', denote by I'(v) the subgraph of I' induced by the set of all vertices which are
adjacent to v in T.

Lemma 1. If ¢ > 13, then
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(1) G has a mazimal dihedral subgroup H of order 2(q — 1); moreover, Ng(H) = H.

(2) The following statements are equivalent:

(i) ¢ =1 (mod 4);
(ii) —1 us a square in GF(q);
(i) |G : H| is odd.

(3) H is the stabilizer in G of a decomposition of the natural 2-dimensional module V' of G into
a direct sum of two subspaces of dimension 1; moreover, in a suitable basis of V,

H= { <8 a91> ac GF(q)*} U{ <_2_1 g) |ac GF(q)*}.

(4) There are subgroups K and L of Aut(T") with the following properties: K AL, K = PSLy(q),
L = Aut(PSLs(q)), and K is vertez-primitive on T'. In particular, T is connected.

Proof. Statement (1) follows, for example, from |2, Tables 8.1, 8.3].

Statements (2)(i) and (2)(ii) are equivalent, for example, by [6, P. 42, Corollary 2|; State-
ments (2)(i) and (2)(iii) are equivalent, for example, by [10].

Statement (3) follows from [2, Tables 8.1, 8.3, and § 2.2.2].

Prove Statement (4). Let G = G/Z(G) = PSLy(q). First of all, note that Z(G) < H. By

[2, Tables 8.1, 8.3], Aut(G) = Inn(G)NAut(E)(H). Now by Proposition 1, the group Aut(I") contains
subgroups K =2 G and L = Aut(G) with K < L. Moreover, Staby (H) = H is a maximal subgroup
in K; therefore, K is vertex-primitive on I'; in particular, I" is connected. O

Further we assume that ¢ =1 (mod 4), and by £ we denote an element of the field GF(q) with
the property €2 = —1. Moreover, we fix a basis of the natural 2-dimensional module of G such that
in this basis H has a shape as in Statement (3) of Lemma 1, and further we assume that all the
matrices are presented in this basis.

Let a € GF(q)*. Put
a O 0 a
R, = <0 a_1> and S, = <—a_1 0) .

It is clear that the following equalities hold:

R, Ry = Raln Sa : Sb = R—ab*%
Ra . Sb = Sab, and Sa . Rb = Sabfl

Lemma 2. If P € G\ H, then the following statements hold:
(1) PR,P~' = Ry if and only if a = b and a® = 1;

b 1
(2) PR,P~! =S, if and only if a®> = —1 and P = “a _s_x for some x € GF(q)*;
2xb
S —
(3) PSP~ = Ry if and only if b* = —1 and P = alb ab for some x € GF(q)*;
2z 2z

—aby
xa
22 + 9% = (ab)~t. Moreover, for a fived matriz P of this form, the equality PSyP~1 = Sy

holds if and only if (a’,b") = (a,b) or (a',¥') = (—a,—b).

(4) PS,P~' =S, if and only if P = <$yb > for some x,y € GF(q)* satisfying the equality
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Proof. Let P = <p11 p12>.
b21 D22

Prove Statement (1). We have

ab—1
pn(a - b) —DP12
PRQ_RbP: CLb—]. b—aa :O

P21 b P22 ab

Hence PR,P~! = Ry, if and only if a = b and a? = 1. Thus, Statement (1) holds.

Prove Statement (2). Consider the matrix equation

api1 — bpay a”'pra — bpao >
0= PR, — S,P = : 1.1
@ ob (b_lpll +apar b7 'pia + a1 pay 1)

Matrix equation (1.1) can be considered as a system of linear equations with respect to variables
P11, P12, P21, and pay with matrix

2 2
such that det M = M.

0 -b
b1 0 a O a? (1.2)
0

It is clear that matrix equation (1.1) has a non-trivial solution if and only if det M = 0, i.e., a = +£.
Note that if @ = ¢, then the rank of the matrix M in (1.2) is 2 and p12 and pe; can be chosen as
independent variables. Solving equation (1.1) for p1; and pag, we get

p21b P120
p1=—— and poy=-—"—"—.
a b
Hence
p21b
- P12
P = a D120 and det P = —2py9po; = 1.
P21 ——
b
. o 1 .
Replacing p2; by x and substituting pi1o = ~on we obtain Statement (2).
x
Prove Statement (3). Consider the matrix equation
0= PS, — RyP — < —bp11 — a”p1o api1 — bpio > (1.3)
¢ —b7'por —a"'pay apar — b 'par

Matrix equation (1.3) can be considered as a system of linear equations with respect to variables
P11, P12, P21, and peg with matrix

b —a™' 0 0
e -0 0 0 (b +1)?
M = 0 0 _p-l _g-1 such that det M = o (1.4)

0 0 a —b!

It is clear that matrix equation (1.3) has a non-trivial solution if and only if det M = 0, i.e.,
b = ££. Note that if b = +£, then the rank of the matrix M in (1.4) is 2 and pj2 and py; can be
chosen as independent variables. Solving equation (1.3) for p1; and pag, we get

b
pu = piay and  pa2 = abpa;.
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Hence

b
P= (plza pr2 > and det P = —2pjopo; = 1.
p21 abpa

1
Replacing p12 by —z and substituting pe; = o we obtain Statement (3).
x

Prove Statement (4). Consider the matrix equation

P12 b
—= T bpn apn - bpao
0 == PSa - SbP == pll p22 p12 . (15)
D . b e

Matrix equation (1.5) can be considered as a system of linear equations with respect to variables
P11, P12, P21, and pay with matrix

;91 such that det M = 0.

Note that the rank of the matrix M is 2 and pos and po; can be chosen as independent variables.
Solving equation (1.5) for p1; and pi2 and replacing pee by xa and pe; by y, we get

P= <a:b —aby) and det P = ab(z? + 3?).
y  za

Now let PS, — Sy P = 0 for some a’ # 0 and b # 0. We get

b—ad't
w@iyw (@b — ab)a
PSar = Sy P = (a'b—ab)x (dV —ab)y | ~ 0.
a't/ b
Note that  # 0 and y # 0; hence, ab = a’t/ and a’b = ab’. Therefore, (a’,b') = (a,b) or (a/,V') =
(—a, —b). Statement (4) is proved. O

2. Neighborhood structure of the vertex H in I

Let
1
a R —
R=4 Pop= 12ﬁ o, € GF(q)"
b %
«

be the set of matrices form Statement (2) of Lemma 2. Note that if P, 3 € R, then the following

equalities hold:
PRP™!' = Saz and PR_¢P™' = S_ag.
7 7

Lemma 3. If P € G, then |H N H?| € {2(q — 1),8,4,2}. Moreover, |H N H?| = 8 if and only
ifPeR.

Proof. Let A= HNHP . If P€ H, then A= H and |A| = 2(q — 1), as required. If P € G\ H
and |A| = 2(¢ — 1) = |H|, then P € Ng(H). But by Statement (1) of Lemma 1, Ng(H) = H, a
contradiction. Thus, if P € G\ H, then |A4| < 2(¢g — 1).
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Note that by Statement (3) of Lemm 1,
H={Rs[acGF(q)}U{S |acGF(g)}.

Let P € R. From Statements (1) and (2) of Lemma 2, there are precisely four matrices R, for
which RY € H, namely:

(R1,R_1,R¢,R_¢)" = (R1, R-1,S2¢,5-2¢).

Note that !
“ 28| <:Eb —aby>
1 “\y  zxa )’
P
1
for example, for (z,y,a,b) = (ﬁ,ﬁ, %8’ %) Now from Statement (4) of Lemma 2 we have
S1P =8 and S P =8
2aB 2a8 R
1 1y o
and there are no u € GF(q)* \ {m, —m} with S, = S, for some v € GF(q)*.
Note that
1 LR
@ 28| | ab
LT @)
p 20 2 2z
1 1
for example, for (z,a,b) = <%, 2a5¢’ 5) Now from Statement (3) of Lemma 2 we have
a
S+ P=R and S_ 1 " =R,
2aBE 2aB¢
1 1
and there are no u € GF(q)* \ {m, —m} with S = R, for some v € GF(q)*.
a !

Thus, if P € R, then |A| = 8 and
A= {Rl,R_l,Rf,R_f,S%g,S_%g,S%,S_%}.

Let P € G\ (HUTR). Assume that P is of the same shape as in Statement (3) of Lemma 2, i.e.,

% —x
P= al ab for some z,a, and b from GF(q)*.
2r 2
1 t 227
Put y = — and — = —, where y, z, and t are from GF(q)*. Then
2z z ab
yt 1
pP=|"“ fy € R;
Yy %

we obtain a contradiction. Thus, by Statements (2) and (3) of Lemma 2, if P ¢ G\ (H UR), then
conjugation by P cannot transform a matrix of the form S, where u € GF(q)*, into a matrix of the
form R,, where v € GF(q)*, and vice versa; therefore, in this case, |A| € {2,4} by Statements (1)
and (4) of Lemma 2. O

Let ~ be an equivalence relation on the set of matrices R defined as follows:

Pi~Py& Py'P e H.
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Lemma 4. We have )
q —
IT(H)| =R/ ~|= -

Proof. By Lemma 3, we have I'(H) = {H” | P € R}, and it is clear that H"* = H? if and
only if P2_1P1 € H. Note that

o 1\~ o 1 afi +a1fe B — a1

2 T I5 1 — =
Pylp = 262 260 | _ 2020 donazfifa
’ 8 1 3 L R 2 + a1
2 200 1 20, 201 P2 e

Hence P2_1P1 € H if and only if either oy /ag = 51/52 or a1 /ag = —51/B2. Thus,

) = R/ ~ | = L .

Lemma 5. The graph I is connected and arc-transitive.

Proof. By Corollary 2, the graph T is vertex-transitive. Moreover, by Statement (4) of Lemma 1,
Aut(T") has a vertex-primitive subgroup; therefore, I" is connected.

Thus, it is sufficient to show that Stabar)(H) acts transitively on I'(H).

Let H™' # H?2 where Py, P, € R. Since the matrices P; and P, can be chosen up to equivalence
with respect to ~, without loss of generality, we can assume that

1 —2i 1 _2i
P = 151 and P, = 152 for 51,,82 c GF(Q)* with 51 7é 52'
51 5 52 5

Let

P(B1,2) = (601 502> € GLa(q).

Note that P(f1,52) € Ngr,(q)(H); therefore, by Proposition 1, conjugation by P(S31,52) induces a

non-trivial automorphism of I', which stabilizes H. Moreover, Plj‘D (B1,82) _ Ps; therefore,

(HP1)P(51752) — g,

Thus, Stabauyry(H) acts transitively on I'(H); therefore, the graph I' is arc-transitive. O

3. Intersection of two neighborhoods

Lemma 6. If Q € G, then the number |T'(H)NT(H®)| is equal to the number of pairwise
non-equivalent with respect to ~ matrices P € R such that

P~'QS € H for some S € R.

Proof. Recall that I is vertex-transitive, and, therefore, by Lemma 3, T'(H) N T'(H®) consists
of the matrices H”| where P € R, such that there exists a matrix S € R with

HY = (H%)9.

Now since Ng(H) = H by Statement (1) of Lemma 1, the lemma holds. O
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Lemma 7. If Q € G\ H, then I'(H) NT(H?)| < 1. Moreover, if Q = <ZH 312>, then
21 22

412922

IT(H)NT(H®)| =1 if and only if q11q21 # 0 and
411421

is a non-zero square in GF(q).

Proof. By Lemma 6, |T'(H)NT(H®?)| is equal to the number of pairwise non-equivalent with
respect to ~ matrices P € R, such that

PlQSeH
for some S € R. Let
1 1
T gy S Tgg
pP= Yler, s= 2 eR,andQ:<q” ‘m).
i So L Q21 422
Y 2z 2s1
Then
921517 + G2282 + qu1S1Y + 1252y G2151% — q2282% + q1151Y — q1252Y
M= PlQS = 2xy 4 51801y
Q21517 — 22827 — q1151Y + G1252Y

q2151% + Q2252 — q1151Y — q1252Y 2 5159

Note that M € H if and only if either My = Mo =0 or My = My = 0.
The equalities M1 = Ma 2 = 0 imply the equalities

g21512¢ + q22822 + quis1y + qi2s2y = 0 and ga151% — g2252% — quis1y + qi2s2y = 0, (3.1)
which can be considered as a linear system for x = x1 and y = y; with the matrix

A= <<J2181 + 2282 q1151 + 1252

q2151 — q2282  —q1151 + Q1282> , where det A = 2(qugst — ¢1202255).

It is clear that there is a non-trivial solution of the system (3.1) if and only if

2
s
det A =0, i.c., -1 — D22
S5 411421
.o 412922 . . " .
Thus, if is a non-square in GF'(q)*, then the system (3.1) does not have non-zero solutions,
411421
and if 8292 55 5 square in GF'(q)*, then all the matrices P = P; obtained from the solutions of
q11921

the system (3.1) are pairwase equivalent with respect to ~. Moreover, since the matrix @ is non-
degenerate, we have 1181 + q1282 7# 0 or g2181 + @2282 # 0. Without loss of generality we assume

that 2181 + goos2 # 0, and then
T1 _ quis1t q1282

U1 ¢2151 + G282

The equalities Mo = Ma 1 = 0 imply the equalities
72151% — q2252% + qu151Y — q1252y = 0 and ga21517 + 22827 — 1151y — qu2s2y = 0, (3.2)
which can be considered as a linear system for x = 9 and y = yo with the matrix

A= <Q2131 — 42252 41151 — q1252

, where det A = —2(q11¢2157 — q12q2253).
2151 + q2252 —Q1181—Q1282> Q1192157 ~ Q1202053)
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It is clear that there is a non-trivial solution of the system (3.2) if and only if

q12922
q11921

52
det A=0, i.e., —; =
52

Thus, if N2922 5 o non-square in GF(q)*, then the system (3.2) does not have non-zero solutions,

411921
and if 412922

q114921
the system (3.2) are pairwase equivalent with respect to ~. Moreover, again since the matrix @

is non-degenerate, we have go151 + go9s2 # 0 or ¢1181 + ¢q1282 # 0. We have assumed before that
without loss of generality g2151 + o282 # 0, and then

is a square in GF(q)*, then all the matrices P = P, obtained from the solutions of

T2 _ qusi+ 1252
Y2 2151 + (2252

412922

4114921
then there is no a matrix P € R with PQS~! € H for some S € R, and i

Now we have proved that if gi1g21 = 0 or giages = 0 or is a non-square in GF(q)*,

£ 412922

q11421
GF(q)*, then all the matrices P € R with PQS™! € H for some S € R are pairwise equivalent
412422
q11421

IT(H)NT(HY)| =0, and if N2922 5 square in GF(q)*, then |I'(H) NT(H®)| = 1. O
q114921

is a square in

with respect to ~. Thus, if ¢q11g21 = 0 or g12g22 = 0 or is a non-square in GF(q)*, then

4. Proof of the main results

q(qg+1) q(qg+1)

Note that, by Statement (1) of Lemma 1, |H| = |G : Ng(H)| = ; thus, T has

vertices. The graph I' is vertex-transitive by Corollary 2 and is vertex-primitive and connected by
-1

Statement (4) of Lemma 1; therefore, it is regular; by Lemma 4, the vertex degree of I" is 4

piap22  —1

pupa  4a?p?
where a and § are from GF'(q)*, which is a square in GF(¢)* by Statement (2) of Lemma 1. Thus,

by Lemmas 7 and 3, we conclude that I' is an amply regular graph with parameters

q(q+1)7q—1’1’1 '
2 2

By Lemma 5, I is arc-transitive; therefore, it is edge-regular. Let P € R. Then

Since Z(G) < H, by Proposition 1 and [2, Table 8.2, we have

Aut(PSLy(q)) = Aut(G/Z(G)) = G/Z(G)Naw(c/z(c) (H/Z(G)) < Aut().

%=y 1)accrm}.

Show that C is a perfect 1-code in I'. Indeed, H € C and by Lemma 3, H is non-adjacent to any
other vertex from C. Moreover, by Lemma 7, |I'(H) NT'(A)| = 0 for each vertex H # A € C. Now

note that
k={o.= (5 1)lecrw}

is a subgroup of G and K acts transitively on C. Thus, for each A, B € C with A # B, we have
IT(A)NT(B)| =0.

Let

C= {HQ“
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1
and T' has exactly

Now it is clear that |C| = ¢ and, since the vertex degree of T" is 1=

1 —1
alg+1) = q(q + 1) vertices, we find that the vertex set of I' is a disjoint union of balls of

radius 1 with centers at the vertices from C. Thus, C is a perfect 1-code in I'; therefore, I' is of
diameter more than 2. O
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