MSC: 20D05
DOI: 10.21538/0134-4889-2022-28-2-74-83

ON SHILLA GRAPHS WITH $b=6$ AND $b_{2} \neq c_{2}$

V. V. Bitkina, A. K. Gutnova

Abstract

A Shilla graph is a distance-regular graph Γ (with valency k) of diameter 3 that has second eigenvalue θ_{1} equal to $a=a_{3}$. In this case a divides k and the parameter $b=b(\Gamma)=k / a$ is defined. A Shilla graph has intersection array $\left\{a b,(a+1)(b-1), b_{2} ; 1, c_{2}, a(b-1)\right\}$. J. Koolen and J. Park showed that for fixed b there are finitely many Shilla graphs. Admissible intersection arrays of Shilla graphs were found for $b \in\{2,3\}$ by Koolen and Park in 2010 and for $b \in\{4,5\}$ by A. A. Makhnev and I. N. Belousov in 2021. Makhnev and Belousov also proved the nonexistence of Q-polynomial Shilla graphs with $b=5$ and found Q-polynomial Shilla graphs with $b=6$. A Q-polynomial Shilla graph with $b=6$ has intersection array $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$ with $t \in\{7,12,17,27,57\},\{372,315,75 ; 1,15,310\},\{744,625,125 ; 1,25,620\},\{930,780,150 ; 1,30,775\},\{312,265,48$; $1,24,260\},\{624,525,80 ; 1,40,520\},\{1794,1500,200 ; 1,100,1495\}$, or $\{5694,4750,600 ; 1,300,4745\}$. The nonexistence of graphs with intersection arrays $\{372,315,75 ; 1,15,310\},\{744,625,125 ; 1,25,620\},\{1794,1500,200 ; 1$, $100,1495\}$, and $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$ was proved earlier. We prove that distance-regular graphs with intersection arrays $\{312,265,48 ; 1,24,260\},\{624,525,80 ; 1,40,520\}$, and $\{930,780,150 ; 1,30,775\}$ do not exist.

Keywords: Shilla graph, distance-regular graph, Q-polynomial graph.
MSC: 20D05
DOI: 10.21538/0134-4889-2022-28-2-74-83

REFERENCES

1. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin; Heidelberg; NY: SpringerVerlag, 1989, 495 p. ISBN: 0387506195.
2. Koolen J.H., Park J. Shilla distance-regular graphs. Europ. J. Comb., 2010, vol. 31, no. 8, pp. 2064-2073. doi: 10.1016/j.ejc.2010.05.012 .
3. Makhnev A.A., Belousov I.N. Shilla graphs with $b=5$ and $b=6$. Ural Math. J., 2021, vol. 7, no. 2, pp. 51-58. doi: 10.15826/umj.2021.2.004.
4. Jurisic A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012, vol. 65, pp. 29-47.
5. Gavrilyuk A.L., Koolen J. A characterization of the graphs of bilinear $(d \times d)$-forms over \mathbb{F}_{2}. Combinatorica, 2019, vol. 39, no. 2, pp. 289-321. doi: 10.1007/s00493-017-3573-4 .

Received February 17, 2022
Revised April 28, 2022
Accepted April 30, 2022

Funding Agency: This study supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2022-890).
Viktoriya V. Bitkina, Cand. Phys.-Math. Sci., North Ossetian State University, Vladikavkaz, 362025 Russia, e-mail: bviktoriyav@mail.ru.

Alina K. Gutnova, Cand. Phys.-Math. Sci., North Ossetian State University, Vladikavkaz, 362025 Russia, e-mail: gutnovaalina@gmail.com.

Cite this article as: V. V. Bitkina, A. K. Gutnova. On Shilla graphs with $b=6$ and $b_{2} \neq c_{2}$, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 2, pp. 74-83.

