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INVERSE PROBLEMS IN THE CLASS
OF DISTANCE-REGULAR GRAPHS OF DIAMETER 4

A. A. Makhnev, D. V. Paduchikh

For a distance-regular graph I' of diameter 4, the graph A =TI'1 2 can be strongly regular. In this case, the
graph I'3 4 is strongly regular and complementary to A. Finding the intersection array of I' from the parameters
of I'3 4 is an inverse problem. In the present paper, the inverse problem is solved in the case of an antipodal
graph I' of diameter 4. In this case, r = 2 and I'3 4 is a strongly regular graph without triangles. Further, I' is an
AT4(p, q,7)-graph only in the case ¢ = p+2 and r = 2. Earlier the authors proved that an AT4(p, p+2,2)-graph
does not exist. A Krein graph is a strongly regular graph without triangles for which the equality in the Krein
bound is attained (equivalently, ‘152 = 0). A Krein graph Kre(r) with the second eigenvalue r has parameters
((r2 +3r)2,r3 + 3r2 +1,0,72 + r). For the graph Kre(r), the antineighborhood of a vertex is strongly regular
with parameters ((r2 + 2r — 1)(r? + 3r + 1),73 + 2r2,0,72) and the intersection of the antineighborhoods of
two adjacent vertices is strongly regularly with parameters ((r? 4+ 2r)(r2 +2r —1),73 +7r2 —r,0,72 —r). Let T
be an antipodal graph of diameter 4, and let A = I'3 4 be a strongly regular graph without triangles. In this
paper it is proved that A cannot be a graph with parameters ((r2 + 2r — 1)(r2 4+ 3r + 1), 73 + 2r2,0,72), and,
if A is a graph with parameters ((r? + 2r)(r2 +2r — 1),73 + 72 — 0,72 — r), then r > 3. Tt is proved that a
distance-regular graph with intersection array {32,27,12(r — 1)/r,1;1,12/r,27,32} exists only for r = 3, and,
for a graph with array {96, 75,32(r — 1)/r, 1;1,32/r, 75,96}, we have r = 2.
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