MSC: 05E30, 05C50
DOI 10.21538/0134-4889-2022-28-1-199-208

INVERSE PROBLEMS IN THE CLASS OF DISTANCE-REGULAR GRAPHS OF DIAMETER 4

Abstract

A. A. Makhnev, D. V. Paduchikh

For a distance-regular graph Γ of diameter 4 , the graph $\Delta=\Gamma_{1,2}$ can be strongly regular. In this case, the graph $\Gamma_{3,4}$ is strongly regular and complementary to Δ. Finding the intersection array of Γ from the parameters of $\Gamma_{3,4}$ is an inverse problem. In the present paper, the inverse problem is solved in the case of an antipodal graph Γ of diameter 4 . In this case, $r=2$ and $\Gamma_{3,4}$ is a strongly regular graph without triangles. Further, Γ is an AT4 (p, q, r)-graph only in the case $q=p+2$ and $r=2$. Earlier the authors proved that an $\operatorname{AT4}(p, p+2,2)$-graph does not exist. A Krein graph is a strongly regular graph without triangles for which the equality in the Krein bound is attained (equivalently, $q_{22}^{2}=0$). A Krein graph $\operatorname{Kre}(r)$ with the second eigenvalue r has parameters $\left(\left(r^{2}+3 r\right)^{2}, r^{3}+3 r^{2}+r, 0, r^{2}+r\right)$. For the graph $\operatorname{Kre}(r)$, the antineighborhood of a vertex is strongly regular with parameters $\left(\left(r^{2}+2 r-1\right)\left(r^{2}+3 r+1\right), r^{3}+2 r^{2}, 0, r^{2}\right)$ and the intersection of the antineighborhoods of two adjacent vertices is strongly regularly with parameters $\left(\left(r^{2}+2 r\right)\left(r^{2}+2 r-1\right), r^{3}+r^{2}-r, 0, r^{2}-r\right)$. Let Γ be an antipodal graph of diameter 4 , and let $\Delta=\Gamma_{3,4}$ be a strongly regular graph without triangles. In this paper it is proved that Δ cannot be a graph with parameters $\left(\left(r^{2}+2 r-1\right)\left(r^{2}+3 r+1\right), r^{3}+2 r^{2}, 0, r^{2}\right)$, and, if Δ is a graph with parameters $\left(\left(r^{2}+2 r\right)\left(r^{2}+2 r-1\right), r^{3}+r^{2}-r, 0, r^{2}-r\right)$, then $r>3$. It is proved that a distance-regular graph with intersection array $\{32,27,12(r-1) / r, 1 ; 1,12 / r, 27,32\}$ exists only for $r=3$, and, for a graph with array $\{96,75,32(r-1) / r, 1 ; 1,32 / r, 75,96\}$, we have $r=2$.

Keywords: distance-regular graph, antipodal graph, graph Γ with strongly regular graph $\Gamma_{i, j}$.

REFERENCES

1. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin; Heidelberg; New York: Springer-Verlag, 1989, 495 p. ISBN: 0387506195.
2. Jurisic A., Koolen J., Terwilliger P. Tight distance-regular graphs. J. Algebr. Comb., 2000, vol. 12, no. 2, pp. 163-197. doi: 10.1023/A:1026544111089 .
3. Makhnev A.A., Nirova M.S. Distance-regular Shilla graphs with $b_{2}=c_{2}$. Math. Notes, 2018, vol. 103, no. 5, pp. 780-792. doi: 10.1134/S0001434618050103.
4. Soicher L.H. The uniqueness of a distance-regular graph with intersection array $\{32,27,8,1 ; 1,4,27,32\}$ and related results. Des. Codes Cryptogr., 2017, vol. 84, no. 1, pp. 101-108.
doi: 10.1007/s10623-016-0223-6 .
5. Gavrilyuk A.L., Makhnev A.A. On Krein graphs without triangles. Dokl. Math., 2005, vol. 72, no. 1, pp. 591-594.
6. Makhnev A.A. The graph Kre(4) does not exist. Dokl. Math., 2017, vol. 96, no. 1, pp. 348-350. doi: 10.1134/S1064562417040123.
7. Makhnev A.A., Paduchikh D.V. On strongly regular graphs with eigenvalue μ and their extensions. Proc. Steklov Inst. Math. (Suppl.), 2014, vol. 285, suppl. 1, pp. S128-S135. doi: 10.1134/S0081543814050137.
8. Vidali J. Using symbolic computation to prove nonexistence of distance-regular graphs. Electronic J. Combinatorics, 2018, vol. 25, no. 4, art. no. 4.21. doi: 10.37236/7763.
9. Gavrilyuk A.L., Makhnev A.A., Paduchikh D.V. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph. Trudy Inst. Mat. i Mekh. UrO RAN, 2010, vol. 16, no. 2, pp. 35-47 (in Russian).
10. Jurishich A., Koolen J. Classification of the $A T 4(q s, q, q)$ family of distance-regular graphs. J. Combinatorial Theory, Series A, 2011, vol. 118, no. 3, pp. 842-852. doi: 10.1016/j.jcta.2010.10.001.
11. Bamberg J., etc. GAP 4, Package FinInG.

Available on: https://www.gap-system.org/Manuals/pkg/fining/doc/manual.pdf.
12. Efimov K.S. Automorphisms of an $A T 4(4,4,2)$-graph and of the corresponding strongly regular graphs. Proc. Steklov Inst. Math. (Suppl.), 2019, vol. 304, suppl. 1, pp. S59-S67. doi: 10.1134/S008154381902007X.

Received September 14, 2021
Revised January 19, 2022
Accepted January 24, 2022
Funding Agency: This work was supported by the Russian Foundation for Basic Research - the National Natural Science Foundation of China (project no. 20-51-53013).
Aleksandr Alekseevich Makhnev, Dr. Phys.-Math. Sci., Corresponding member of RAS, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: makhnev@imm.uran.ru .
Dmitrii Viktorovich Paduchikh, Dr. Phys.-Math. Sci., Prof. of RAS, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: dpaduchikh@gmail.com.
Cite this article as: A.A. Makhnev, D. V. Paduchikh. Inverse problems in the class of distanceregular graphs of diameter 4, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 199-208.

