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INVERSE PROBLEMS IN THE CLASS

OF DISTANCE-REGULAR GRAPHS OF DIAMETER 4

A. A. Makhnev, D.V. Paduchikh

For a distance-regular graph Γ of diameter 4, the graph ∆ = Γ1,2 can be strongly regular. In this case, the
graph Γ3,4 is strongly regular and complementary to ∆. Finding the intersection array of Γ from the parameters
of Γ3,4 is an inverse problem. In the present paper, the inverse problem is solved in the case of an antipodal
graph Γ of diameter 4. In this case, r = 2 and Γ3,4 is a strongly regular graph without triangles. Further, Γ is an
AT4(p, q, r)-graph only in the case q = p+2 and r = 2. Earlier the authors proved that an AT4(p, p+2, 2)-graph
does not exist. A Krein graph is a strongly regular graph without triangles for which the equality in the Krein
bound is attained (equivalently, q2

22
= 0). A Krein graph Kre(r) with the second eigenvalue r has parameters

((r2 + 3r)2, r3 + 3r2 + r, 0, r2 + r). For the graph Kre(r), the antineighborhood of a vertex is strongly regular
with parameters ((r2 + 2r − 1)(r2 + 3r + 1), r3 + 2r2, 0, r2) and the intersection of the antineighborhoods of
two adjacent vertices is strongly regularly with parameters ((r2 + 2r)(r2 + 2r− 1), r3 + r2 − r, 0, r2 − r). Let Γ
be an antipodal graph of diameter 4, and let ∆ = Γ3,4 be a strongly regular graph without triangles. In this
paper it is proved that ∆ cannot be a graph with parameters ((r2 + 2r − 1)(r2 + 3r + 1), r3 + 2r2, 0, r2), and,
if ∆ is a graph with parameters ((r2 + 2r)(r2 + 2r − 1), r3 + r2 − r, 0, r2 − r), then r > 3. It is proved that a
distance-regular graph with intersection array {32, 27, 12(r − 1)/r, 1; 1, 12/r, 27, 32} exists only for r = 3, and,
for a graph with array {96, 75, 32(r − 1)/r, 1; 1, 32/r, 75, 96}, we have r = 2.
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