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WILCOX FORMULA FOR VECTOR FIELDS ON BANACH MANIFOLDS

Yuri S. Ledyaev

We obtain an analogue of Wilcox–Snyder formula for flows of diffeomorphisms of Cm-smooth vector fields

on infinite-dimensional Banach manifolds. For classical linear system this formula can be efficiently used,

for example, to obtain Magnus expansion of solutions. The generalized Wilcox formula is obtained by using

an extended Chronological Calculus for Banach manifold. We apply this formula to derive new structured

differential equations which solutions approximate solutions of the original differential equation.
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1. Introduction

We consider a flow of diffeomorphisms on Cm-smooth Banach manifolds M which is defined by
the following differential equation:

d

dt
q(t) = Vt(q(t)), q(t) ∈M, (1.1)

where Vt(q) is a family of Cm-smooth vector fields on the manifold M for almost all t which are
measurable in t for all q ∈M .

For such flows we derive a generalization of Wilcox–Snider formula from [14; 15] for nonlinear
dynamical system (1.1). Wilcox formula can be used in many applications, in particular, in [15]
Wilcox suggested an approach to a derivation of Magnus expansions [12] of solutions of linear
differential operator equations. Such Magnus expansions have many applications (see [1; 2; 5; 6]).

From this point of view the present paper’s objective is to derive Wilcox formula for nonlinear
dynamical systems (1.1) on Banach manifolds which can serve as a technical foundation for obtaining
approximations in more general setting under less restrictive assumptions than it was done before
for nonlinear system (1.1).

It is important to mention that the Magnus expansion and the original Wilcox formula were
obtained for linear systems.

Here we use methods of Chronological Calculus [1; 2] by Agrachev and Gamkrelidze to rewrite
the differential equation (1.1) in the form of linear differential operator equation. The original
Chronological Calculus was developed for C∞-smooth finite-dimensional manifolds and vector fields.
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This paper relies on the extension [10] of Chronological Calculus for Cm-smooth Banach manifolds
and vector fields which are only measurable in time.

The paper consists of four sections. The second sections contains a brief description of classical
results on linear systems, Magnus expansions and Wilcox formula. We put them here in order to
make the content of this note more accessible to a wider readers’ audience. We also put a short proof
of the original Wilcox formula by using elementary tools of differential equations theory. This proof
will serve as an example for the proof of a generalization of Wilcox formula for nonlinear systems
in Section 4.

Section 3 contains a brief description of extension of Chronological Calculus from [10] and
appropriate techniques which will be used in a derivation of the generalization of Wilcox formula
for the system (1.1). Section 4 contains the proof of this generalization and the last Section contains
a construction of approximations of solutions of (1.1) in terms of solutions of some structured
dynamical systems for small and large times. These structured differential equations are written
in terms of iterated Lie brackets of the original vector field in (1.1). We can see some possible
applications of these results to problems of singular control problems, to problems of controllability
and stabilizability of nonlinear systems,

2. Linear Systems, Magnus Expansions and Wilcox Formula

Let X be a Banach space, A : X → X be a bounded linear operator. We consider a linear
evolution equation [9] (or differential linear operator equation)

ẋ = Ax, x(0) = x0. (2.1)

Under appropriate assumptions on A the solution of the initial-value problem (2.1) can be written
as

x(t) = etAx0,

where operator (matrix) exponential is defined by the following infinite series (I : X → X is the
identity operator):

etA = I + tA+
t2A2

2!
+ . . . +

tkAk

k!
+ . . . .

Note that etA is a fundamental operator (matrix) solution of (2.1)

(
etA

)′
= AetA. (2.2)

When X = Rn the operator A becomes n× n matrix.

In the case of nonautonomous linear evolution equation the solution of Cauchy problem

ẋ(t) = A(t) x(t), x(0) = x0,

can be written in the form

x(t) = X(t)x0,

where the fundamental operator (matrix) solution of (2.2) can be written as Volterra series

X(t) = I +

t∫

0

A(t1) dt1 +

t∫

0

A(t1)

( t1∫

0

A(t2) dt2

)
dt1 + . . . . (2.3)

Note that X(t) in (2.3) satisfies the linear evolution equation

X(t)′ = A(t)X(t), X(0) = I. (2.4)
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We remind that in quantum physics series similar to (2.5) are called Dyson series [8].
Volterra expansion (2.3) of the fundamental solution X(t) of the linear evolution equation (2.4)

is not very convenient for approximation of the solution by using partial sums in (2.3) since in many
cases these partial sums don’t satisfy conservation laws arising from symmetries of the system.

But there is another representation of the fundamental solution of (2.4) which lacks such
disadvantage. This representation which was introduced by Magnus in [12] is called Magnus expansion

and has form
X(t) = eΩ(t), (2.5)

where Ω(t) is an infinite series

Ω(t) := Ω1(t) + Ω2(t) + . . . +Ωk(t) + . . . (2.6)

and first three terms are

Ω1(t) :=

t∫

0

A(t1) dt1,

Ω2(t) :=
1

2

t∫

0

dt1

t1∫

0

dt2[A(t1), A(t2)], (2.7)

Ω3(t) :=
1

3!

t∫

0

dt1

t1∫

0

dt2

t2∫

0

dt3

([
A(t1), [A(t2), A(t3)]

]
+

[
A(t3), [A(t2), A(t1)]

])
.

We use classical notation [A,B] to denote the commutator of two operators A and B

[A,B] := AB −BA.

We also remind the linear operator ad(A) acting on the space of linear operators

ad(A)X := [A,X].

Note that (ad(A))0X := X, (ad(A))kX := [A, (ad(A))k−1X], k = 1, 2, . . . . It is easy to check that

for any k-th derivative
(
etAXe−tA

)(k)
= etA(ad(A))kXe−tA. It follows immediately that

etAXe−tA =

∞∑

k=0

tk

k!
(ad(A))kX = etad(A)X. (2.8)

In many physical applications by replacing Ω(t) in (2.6) by the partial sum we obtain the approxi-
mation of Magnus expansion of fundamental solution (2.5) which maintains its important physical
properties. For example in the case X = Rn, if matrices A(t) are skew-symmetric then values of
approximations of Magnus expansion (where Ω(t) is replaced by partial sums of (2.6)) are orthogonal
matrices.

This remarkable fact will be explained later in the context of dynamical systems (1.1) on
manifolds which describe evolution of physical systems subject to some conservation laws.

An excellent exposition of theory of Magnus expansions and its applications can be found in a
survey [4] which also contains a detailed bibliography.

Here we provide a brief explanation of a derivation of Magnus expansion formula (2.5)–(2.6) to
illustrate the use of Wilcox formula.

The standard approach is based on the following expression for the derivative of the function
A→ eA:

deA = eA
I − e−ad(A)

ad(A)
. (2.9)
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Rossmann [13] relates original versions of this result to F.Shur and Poincaré.

Note that the operator-valued function
I − e−ad(A)

ad(A)
is determined by the power series for the

function
1− e−x

x
=

∞∑

k=0

(−1)k

(k + 1)!
xk,

where x is replaced by the linear operator ad(A).

Then for differentiable operator-valued function A(t) we easily obtain from (2.9) that

(
eA(t)

)
′

= eA(t) I − e−ad(A(t))

ad(A(t))
A′(t).

From this formula we obtain by using product rule for derivative of the next product
(
eA(t)e−A(t)

)′
= 0

that (
eA(t)

)
′

=
ead(A(t)) − I

ad(A(t))
A′(t)eA(t). (2.10)

Returning to Magnus expansion (2.5), we obtain from (2.10) and (2.4) that Ω′(t) =
ad(Ω(t))

ead(Ω(t)) − I
A(t),

where we have the following representation with Bernoulli numbers Bk:

ad(Ω(t))

ead(Ω(t)) − I
=

∞∑

k=0

Bk

k!

(
ad(Ω(t))

)k
.

By using previous relations we obtain the following equation [4]: Ω′(t) =

∞∑

k=0

Bk

k!

(
ad(Ω(t))

)k
A(t)

which can be used to derive recursively expressions for Ωk(t) in the Magnus expansion (2.6)–(2.7).

In his 1967 paper [15] Wilcox suggested a different approach to the derivation of Magnus
expansion based on the following Wilcox formula (2.11).

Let us consider an operator-valued function H(α) of a scalar variable α, H(α) : X → X is a
linear bounded operator for any α. We assume that H(α) is differentiable at α and

H ′(α) = lim
∆α→0

H(α+∆α)−H(α)

∆α
.

Theorem 2.1 (Wilcox formula). Under previous assumption the following derivative exists:

∂

∂α
etH(α) =

t∫

0

e(t−s)H(α)H ′(α)esH(α) ds. (2.11)

Proof. Let Y∆α(t) := etH(α+∆α) be a fundamental solution of the linear evolution equation
Y ′

∆α(t) = H(α + ∆α)Y∆α(t), Y∆α(0) = I, and Y0(t) := etH(α) be a solution to Y ′

0(t) = H(α)Y0(t),
Y0(0) = I. It is easy to see that

Y ′

∆α(t) = H(α)Y∆α(t) + ∆H(∆α)Y∆α(t), ∆H(∆α) := H(α+∆α)−H(α).

By using Cauchy formula for the previous linear evolution equation we obtain that

Y∆α(t) = Y0(t) +

t∫

0

e(t−s)H(α)∆H(∆α)Y∆α(s) ds.
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This implies that for any ∆α 6= 0

Y∆α(t)− Y0(t)

∆α
=

t∫

0

e(t−s)H(α)∆H(∆α)

∆α
Y∆α(s) ds.

By taking limit as ∆α→ 0, we obtain (2.11). �

Note that the proof of the Wilcox formula is based on an idea of differentiation of solution of
differential equation by parameter. In this case the differential equation is linear. But the same idea
can be used for a derivation of a generalized Wilcox formula for the nonlinear equation (1.1).

Now we demonstrate how to use Wilcox formula (2.11) to derive the formula (2.9) for the
derivative of operator exponential function.

Let us fix some bounded linear operator Y : X → X and define operator

H(α) := A+ αY

then H(0) = A,H ′(0) = Y and we obtain from the Wilcox formula (2.11) (with t = 1) the expression
for Gateau derivative of the operator exponential (by using (2.8))

( ∂

∂α
eH(α)

)
α=0

=

1∫

0

e(1−s)AY esA ds = eA
1∫

0

e−sad(A)Y ds

= eA
( 1∫

0

∞∑

k=0

sk

k!
(−ad(A))k ds

)
Y = eA

∞∑

k=0

sk+1

(k + 1)!
(−ad(A))kY = eA

I − e−ad(A)

ad(A)
Y,

which implies (2.9) since Y is arbitrary.

3. Extended Chronological Calculus

Here we collect notation and some results of Chronological Calculus which will be used in this
paper.

Let E and F be Banach spaces. Recall that a map f : E → F is said to be differentiable at
x0 if there exists a bounded linear operator f ′(x0) : E → F such that for all x ∈ E we have
f(x) = f(x0) + f ′(x0) (x− x0) + o (‖x− x0‖). If f is differentiable on all of E, then we have
f ′ : E → L(E,F ), where L(E,F ) is the Banach space of bounded linear operators from E to F .
When f ′ is continuous, we say that f is of class C1. As a map between Banach spaces, we may
then ask if f ′ is differentiable and so on. If f has m continuous derivatives, then we say that f is of
class Cm.

Functions f : R → E which take values in a Banach space can also be integrated. For a rigorous
introduction to the integration of vector-valued functions, we recommend [7]. This monograph
contains detailed description of Bochner integrable functions and Bochner integral. A brief synopsis
can be also found in [10].

It is worth noting that when E = Rn, the Bochner integral is the same as the Lebesgue integral.
In general Banach spaces, the Bochner integral retains many desirable properties of the Lebesgue
integral. In particular, one has

d

dt

t∫

t0

f(τ), dτ = f(t),

for almost all t in [t0, t1]. Function F (t) is called absolutely continuous if F (t) = F (t0)+

∫ t

t0

f(τ) dτ

for some integrable f .
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We remind some results from the theory of differential equations in Banach spaces

ẋ = f(t, x), x(t0) = x0, (3.1)

where f : J ×E → E and J ⊆ R is an interval containing t0. An excellent resource for this material
is [6]. There it is demonstrated that in a Banach space, continuity of f is not enough to ensure a
solution. We introduce the following definitions for vector fields on E:

Definition 3.1. A nonautonomous Cm vector field on E is a function f : J × E → E which is
measurable in t for each fixed x and Cm in x for almost all t.

Definition 3.2. A nonautonomous Cm vector field on E is said to be locally integrable bounded

if for any x0 ∈ E, there exists an open neighborhood U of x0 and k ∈ L1(J,R) such that for all
x ∈ U , for all 0 ≤ i ≤ m, we have

∥∥f (i)(t, x)
∥∥ ≤ k(t) for almost all t, where f (i) denotes the ith

derivative of f with respect to x.

It can be shown that if f : J × E → E is a nonautonomous Cm vector field that is locally
integrable bounded, then for any (t0, x0) there exists an open interval J0 ⊂ J containing t0 and
depending on (t0, x0) as well as a unique, absolutely continuous function x : J0 → E which
satisfies (3.1) for almost all t ∈ J0. This type of solution is called a Carathéodory solution.
In addition, the dependence of this solution upon the initial condition x0 is Cm-smooth. More
precisely, if x(t; t0, x0) denotes the solution to (3.1), then x0 7→ x(t; t0, x0) is m times continuously
differentiable for appropriate values of t and x0.

We will write Pt0,t for the local flow x0 7→ x(t; t0, x0). Uniqueness of solutions gives us the
following properties for the flow:

Ps,t ◦ Pt0,s(x) = Pt0,t(x), (3.2)

P−1
t0,t(x) = Pt,t0(x).

In defining dynamical systems, it is enough for the underlying space to have the structure of a
Banach space only locally. Here we remind the reader of some definitions and basic results from the
theory of smooth manifolds. For a greater level of detail, we suggest [11].

A Banach manifold of class Cm over a Banach space E is a paracompact Hausdorff space M
along with a collection of coordinate charts {(Uα, ϕα) : α ∈ A}, where A is an indexing set. This
collection of charts should be such that the collection {Uα} is a cover for M ; each ϕα is a bijection
of Uα with an open subset of E; and the transition maps ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)
are of class Cm.

If M and N are Banach manifolds, a function f :M → N is said to be Cm-smooth (or Cm for
brevity) if for any coordinate charts ϕ : U ⊆ M → E and ψ : V ⊆ N → F the map ψ ◦ f ◦ ϕ−1 is
a Cm-smooth mapping of Banach spaces. Analogously, a function f :M → N is differentiable at a
point q0 if ψ ◦ f ◦ ϕ−1 is differentiable at ϕ(q0).

The tangent space to M at q is defined as follows. Consider the collection of differentiable curves
γ : R →M with γ(0) = q and define an equivalence relation on this collection by γ1 ∼ γ2 if and only
if (ϕ ◦ γ1)

′ (0) = (ϕ ◦ γ2)
′ (0) for some coordinate chart ϕ. One can check that if this relationship

holds for one coordinate chart, it will hold for all coordinate charts. We write [γ] for the equivalence
class of a curve γ. The collection of these equivalence classes forms the tangent space TqM and
there is a natural isomorphism TqM ↔ E.

Every Cm map f :M → N induces a map from TqM to Tf(q)N by [γ] 7→ [f ◦ γ] and we denote
this mapping by f∗(q). The tangent bundle TM is a union of the tangent spaces with a topology
given locally by the charts (q, v) 7→ (ϕ(q), ϕ∗(q)v), where ϕ is a coordinate chart for M . When f is
a map between linear spaces E and F , we will write f ′ for its derivative. When f is a map between
Banach manifolds, we will write f∗ for the corresponding map from TM to TN . We emphasize that
in local coordinates, f∗(q) : TqM → Tf(q)N is the map given by v 7→ f ′(q)v. In contrast, the map
f∗ : TM → TN sends a pair (q, v) to the pair (f(q), f∗(q)v).
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Let π : TM → M be the projection (q, v) 7→ q. A nonautonomous vector field is a mapping
V : R×M → TM which satisfies π ◦ Vt(q) = q. Given q0 ∈M and a coordinate chart (ϕ,U) at q0,
the function J × E → E given by

(ϕ∗Vt)(x) := ϕ∗

(
ϕ−1(x)

)
Vt

(
ϕ−1(x)

)
(3.3)

is the local coordinate representation for Vt. Recalling definition 3.2 we introduce

Definition 3.3. A nonautonomous vector field on M is said to be a locally integrable bounded Ck

vector field if it is Ck-smooth in q for almost all t, is measurable in t, and in some neighborhood of
each q ∈M there is a coordinate representation (3.3) which is locally integrable bounded.

If x(t) is a solution for the differential equation ẋ = (ϕ∗Vt)(x) on E with initial condition
x(t0) = ϕ(q0), then q(t) = ϕ−1 ◦ x(t) is a solution to the differential equation on M

q̇ = Vt(q), q(t0) = q0. (3.4)

For any ϕ ∈ Cm(M,E) we have the following integral representation:

ϕ(q(t)) = ϕ(q0) +

t∫

t0

ϕ∗(q(τ))Vτ (q(τ)) dτ. (3.5)

With each nonautonomous vector field Vt on M , we associate a local flow Pt0,t given by q0 7→
q(t; t0, q0), the solution to (3.4) with initial condition q(t0) = q0. These flows are Cm diffeomorphisms
of M and are of central importance in the development of our extension of the Chronological
Calculus, which we now turn to.

The main observation behind the Chronological Calculus [1–3] is that one may trade analytic
objects such as diffeomorphisms and vector fields for algebraic objects such as automorphisms and
derivations of the algebra C∞(M), which is the collection of C∞ mappings f : M → R. This
correspondence is developed in [1–3], where C∞(M) is given the structure of a Fréchet space.

In [10] we developed a streamlined version of the theory which is effective for computations with
infinite-dimensional Cm-manifolds and dynamical systems. In order to include Banach spaces in the
theory, we consider the vector space Cm(M,E) of Cm functions f :M → E rather than the algebra
of scalar functions C∞(M).

We begin by defining the following operators:

i. The identity operator Îd is defined as follows Îd(ϕ) = ϕ for any ϕ ∈ C(M,E).

ii. Given any point q ∈M , let q̂ : Cm(M,E) → E be the linear map given by q̂(ϕ) := ϕ(q).

iii. Given Cm-manifolds M and N over a Banach space E and a Cm map P : M → N , let
P̂ : Cm(N,E) → Cr(M,E) (0 ≤ r ≤ m) be the linear map given by P̂ (ϕ) := ϕ ◦ P . Note
that if P is a diffeomorphism of M , P̂ gives us an isomorphism of Cm(M,E).

iv. Given a tangent vector v ∈ TqM , let v̂ : Cm(M,E) → E be the linear map given by v̂(ϕ) :=
ϕ∗(q)v.

v. Given any Cm vector field V on M , we define a linear map V̂ : Cm(M,E) → Cm−1(M,E)
by V̂ (ϕ) : q 7→ ϕ∗(q)V (q).

Of course, we can consider linear combinations of such linear operators.
When ϕ is a local diffeomorphism, these operators simply give local coordinate expressions.

We need not restrict ourselves to the space Cm(M,E). Indeed, given any open set U ⊆ M , we
may view U as a Banach manifold in its own right and therefore consider the space Cm(U,E).
For example, the local flow Pt0,t : J0 × U → U of a vector field Vt gives rise to a family of linear

mappings P̂t0,t : C
m(U,E) → Cm(U,E).
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Note that for operators P̂ the semigroup property (3.2) for flow of diffeomorphism Pt0,t becomes

P̂t0,s ◦ P̂s,t = P̂t0,t.

Consider an operator-valued function t→ At whose values are linear mappings At : C
m(M,E) →

Cp(M,E). This function is called integrable if for any ϕ ∈ Cm(M,E) and q ∈ M the function

t → At(ϕ)(q) is integrable. Then the linear operator

(∫ t1

t0

Aτ dτ

)
: Cm(M,E) → Cr(M,E) is

defined as follows
( t1∫

t0

Aτ dτ

)
(ϕ)(q) :=

t1∫

t0

Aτ (ϕ)(q) dτ.

It follows immediately from (3.4) and (3.5) that the flow operator P̂t0,t representing flow of diffeo-
morphisms for a nonautonomous vector field Vt satisfies the integral equation

P̂t0,t = Îd+

t∫

t0

P̂t0,τ ◦ V̂τ dτ. (3.6)

Moreover, we have that the unique operator valued solution of the integral equation (3.6) is the
function t→ P̂t0,t.

In the case when the vector field Vt is only integrable in t then a Carathéodory solution q(t) of
the differential equation (3.4) is an absolutely continuous function and we cannot guarantee that
P̂t0,t is differentiable for every t.

An operator-valued function Ât is called absolutely continuous on [a, b] if Ât = Ât0+

∫ t

t0

B̂τ dτ for

any t ∈ [a, b] for some integrable operator-valued function B̂t. We denote B̂t as
d

dt
Ât and understand

this derivative in the sense of distributions: for any t1, t2 ∈ [a, b], for any ϕ ∈ Cm(M,E) and q ∈M

Ât2(ϕ)(q) − Ât1(ϕ)(q) =

t2∫

t1

d

dt
Ât (ϕ)(q) dt.

Remark 3.1. Let W be a Cm vector field and Ât is absolutely continuous then Ât ◦ Ŵ is also

absolutely continuous and
d

dt
(Ât ◦W ) =

d

dt
Ât ◦W .

Here we discuss product rule for operator-valued functions P̂t and Q̂t in the sense of distributions
for absolutely continuous operator-valued functions P̂t and Q̂t which are represented for any t ∈ (a, b)
as

P̂t = P̂t0 +

t∫

t0

d

dτ
P̂τ dτ, Q̂t = Q̂t0 +

t∫

t0

d

dτ
Q̂τ dτ.

The following product rule for product P̂t◦Q̂t was proved in [10] under general assumptions which
are satisfied if these operator-valued functions are solutions of the operator integral equations (3.6)
with locally integrable vector fields.

Theorem 3.1. Let absolutely continuous operator-valued function P̂t and Q̂t be solutions of

operator integral equations. Then P̂t ◦ Q̂t is absolutely continuous and for any t1, t2 in (a, b)

t2∫

t1

d

dt

(
P̂t ◦ Q̂t

)
dt =

t2∫

t1

( d
dt
P̂t ◦ Q̂t + P̂t ◦

d

dt
Q̂t

)
dt.
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Let V be a vector field and F : M → M be a Cm diffeomorphism. Following [3] we define the

operator Ad(F̂ ) : V̂ 7→ F̂ ◦ V̂ ◦ F̂−1.
Recall that the Lie bracket [V,W ] of vector fields V and W is the vector field whose operator

representation has form [̂V,W ] = V̂ ◦ Ŵ − Ŵ ◦ V̂ .

It makes sense (as in [3]) to define an operator ad(V̂t) by ad(Vt) ◦ Ŵ :=
[
V̂t, Ŵ

]
.

We recall that in general case of measurable in t vector-field Vt we defined P̂t0,t which satisfies
the integral operator equation

P̂t0,t = Îd+

t∫

t0

P̂t0,τ ◦ V̂τ dτ (3.7)

and which is the unique absolutely continuous solution of this equation or the solution of the
differential equation

d

dt
P̂t0,t = P̂t0,t ◦ V̂t, P̂t0,t0 = Îd, (3.8)

in sense of distributions. The justification of this fact is based on the relation of P̂t0,t to the
Carathéodory solutions of ordinary differential equation (3.4).

Now we consider the differential operator equation

d

dt
Q̂t0,t = −V̂t ◦ Q̂t0,t, Q̂t0,t0 = Îd. (3.9)

Note that this operator equation, even in the case M = Rn, is related to some first-order linear
partial differential equation.

The following result [10] states that for a locally integrable bounded Cm vector field Vt there
exists a solution Q̂t0,t of (3.9) in the sense of distributions. Moreover we have a representation of

Q̂t0,t in terms of a solution of the equation of the type (3.7). It can be easily proved by using the
product rule from Theorem 3.1.

Proposition 3.1. Let Vt be a locally integrable bounded Cm vector field. Then absolutely conti-

nuous operator-valued solutions P̂t0,t and Q̂t0,t of differential equations (3.8) and (3.9) exist, are

unique and

Q̂t0,t = (P̂t0,t)
−1.

We also use the product rule from Theorem 3.1 and the previous Proposition 3.1 to prove the
following important fact which is used in this paper.

Proposition 3.2. Let Vt be locally integrable bounded Cm-smooth vector field and P̂t0,t be an

absolutely continuous solution of (3.7). Then for any Cm-smooth vector field W the operator-valued

function t→ Ad(P̂t0,t) ◦ Ŵ is absolutely continuous and satisfies the following equation in the sense

of distributions:
d

dt
Ad(P̂t0,t) ◦ Ŵ = Ad(P̂t0,t) ◦ ad(Vt) ◦ Ŵ . (3.10)

Method of variation of parameters can also be easy applied to the operator differential equation
in the sense of distributions

d

dt
Ŝt0,t = Ŝt0,t ◦ (V̂t + Ŵt), Ŝt0,t0 = Îd. (3.11)

Namely, we have the following (see [10]).

Proposition 3.3. Let Vt, Wt be locally integrable bounded Cm-smooth vector fields. Then a

solution of (3.11) can be represented in the form

Ŝt0,t = Ĉt0,t ◦ P̂t0,t,
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where P̂t0,t is the solution of the differential equation (3.8) and Ĉt0,t is a solution of the differential

equation
d

dt
Ĉt0,t = Ĉt0,t ◦ Ad P̂t0,t ◦ Ŵt, Ĉt0,t0 = Îd. (3.12)

From now on we use the following notation for brevity: P̂t := P̂0,t. We also use the following

concept of the operator Ô.

Definition 3.4. Parametric family of linear operators Ô(α) : Cm(M ;E) → E is called Big O

of α at point q0 ∈M if for any ψ ∈ Cm(M ;E) there exists a neighbourhood O of q0, a constant K
such that for all small α > 0

‖Ô(α)ψ(q)‖ < Kα ∀ q ∈ O.

4. Dynamical Systems on Banach Manifolds and Wilcox Formula

Consider a parametric family of dynamical systems on Banach manifold M

q′(t) = V (t, q(t), α), (4.1)

where q′ :=
d

dt
q and α is a scalar parameter.

As we know we can relate dynamical system (4.1) to the operator differential equation

d

dt
P̂α
t = P̂α

t ◦ V̂ α
t , P̂α

0 = Îd, (4.2)

where P̂α
t is a flow of diffeomorphisms corresponding the dynamical system (4.1) and the operator V̂ α

t

corresponding to the vector field V (t, q, α).

Here we discuss assumptions on vector fields V α
t which imply a generalization of Wilcox formula

for the system (4.1).

Assumption 4.1. Let for given α and all small ∆α, all q ∈M and almost all t we have

V (t, q, α +∆α) = V (t, q, α) + ∆αW (t, q) + U(t, q, α,∆α), (4.3)

where for any t1, t2

lim
∆α→0

1

∆α

t2∫

t1

‖ψ∗(q
′)U(s, q′, α,∆α)‖ ds = 0 (4.4)

uniformly with respect to q′ from some neighbourhood of q.

We use notation
∂

∂α
V (t, q, α) forW (t, q) in (4.3). Then the following generalized Wilcox formulas

have a remarkable resemblance with the original Wilcox formula for operator exponentials (2.11).

Theorem 4.1. Under Assumptions 4.1 operator-valued function α → P̂α
t is differentiable and

we have the following two representations for its derivative:

∂

∂α
P̂α
t =

t∫

0

Ad(P̂α
s ) ◦

∂

∂α
V̂ α
s ds ◦ P̂α

t , (4.5)

∂

∂α
P̂α
t = P̂α

t ◦

t∫

0

Ad(P̂α
t,s) ◦

∂

∂α
V̂ α
s ds. (4.6)



Wilcox Formula for Vector Fields on Banach Manifolds 281

Proof. We have from the Product Rule and (4.2) that

P̂α+∆α
t ◦

(
P̂α
t

)
−1

− Id =

t∫

0

d

ds
P̂α+∆α
s ◦

(
P̂α
s

)
−1

ds

=

t∫

0

(
P̂α+∆α
s ◦ V̂ α+∆α

s ◦
(
P̂α
s

)
−1

− P̂α+∆α
s ◦ V̂ α

s

(
P̂α
s

)
−1

)
ds.

It follows from this relation and (4.3) that

P̂α+∆α
t ◦

(
P̂α
t

)
−1

− Id = ∆α

t∫

0

P̂α
s ◦ Ŵs

(
P̂s

)
−1

ds ◦ P̂α
t +

t∫

0

R̂s ds, (4.7)

where R̂s = Ûs +∆α
(
P̂α+∆α
s − P̂α

s

)
◦ Ŵs ◦

(
P̂α
s

)
−1
. Then it follows from (4.4) and (4.7) that

P̂α+∆α
t = P̂α

t +∆α

t∫

0

Ad(P̂α
s ) ◦ Ŵs ds ◦ P̂

α
s + ôt(∆α).

This representation implies that α→ P̂α
t is differentiable and (4.5) holds.

To derive (4.6) from (4.5) we use semigroup properties of diffeomorphisms flows

P̂α
s = P̂α

t ◦ P̂α
t,s,

(
P̂α
s

)
−1

◦ P̂α
t =

(
P̂α
t,s

)
−1
.

5. Approximation of Dynamical Systems on Banach Manifolds

In this Section we use a generalized Wilcox formula (4.6) to obtain some useful approximations of
solutions of the differential equation (1.1) by solutions of some more structured differential equation
for small and large t.

It seems that such approximations can be applied to singular optimal control problems, to
problems of controllability and stabilizability of nonlinear control systems etc.

Let α be a scalar parameter and we consider a parametric family of dynamical systems on the
manifold

d

dt
q = αVt(q), (5.1)

where Vt(q) is the vector field in (1.1). Thus, we have in (4.1) Vt(q, α) := αVt(q).

Then the diffeomorphisms flow P̂α
t for dynamical system with the vector filed (5.1) is described

by the operator differential equation

d

dt
P̂α
t = P̂α

t ◦ αV̂t. (5.2)

It follows from Wilcox formula (4.6) that the diffeomorphisms flow P̂α
t also satisfies the following

equation:

d

dα
P̂α
t = P̂α

t ◦

t∫

0

Ad(P̂α
t,s) ◦ V̂s ds. (5.3)

Note that this equation is some operator functional-differential equation but we show below that its
solution can be approximated by a solution of some operator differential equation for small values
of α.
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Let us define the vector field operator

F̂α
t :=

m−1∑

k=1

αk−1Ŵk,t, (5.4)

where

Ŵ1,t :=

t∫

0

V̂ α
t1 dt1,

Ŵk,t :=

t∫

0

dt1

t1∫

t

dt2

t2∫

t

dt3 . . .

tk−1∫

t

dtk
[
V̂tk , [V̂tk−1

, . . . , [V̂t2 , V̂t1 ], . . . , ]
]
, k = 2, . . . ,m− 1 .

In the next result we demonstrate that the solution Ŝα
t of the following operator differential

equation:
d

dα
Ẑα
t = Ẑα

t ◦ F̂α
t , Ẑα

t

∣∣∣
α=0

= Îd, (5.5)

approximates the solution P̂α
t of (5.3) (and of (5.2)) for α small enough, namely,

P̂α
t = Ẑα

t + Ô(αm). (5.6)

Before its precise statement we write differential equation on the manifold corresponding to the
operator differential equation (5.5)

d

dα
z = Fα

t (z), (5.7)

where

Fα
t (z) :=

m−1∑

k=1

αk−1Wk,t(z), (5.8)

W1,t(z) :=

t∫

0

Vt1(z) dt1,

Wk,t(z) :=

t∫

0

dt1

t1∫

t

dt2

t2∫

t

dt3 . . .

tk−1∫

t

dtk
[
Vtk , [V̂tk−1

, . . . , [Vt2 , Vt1 ], . . . , ]
]
(z), k = 2, . . . ,m− 1 .

Assumption 5.1. For any q0 ∈M there exists α > 0, θ0 and neighbourhood O of q0 such that
for any α solution q(t) of (5.1) with imitial condition q(0) ∈ O exists on [0, θ0).

The following Proposition’s statement is the reformulation of the relation (5.5).

Proposition 5.1. Under Assumptions 4.1, 5.1 for any q0 ∈ M , function ψ ∈ Cm(M,E) there

exists a constant K such that for all sufficiently small α and t ∈ [0, θ0) and any solutions qα(t)
of (5.1) and zt(α) of (5.7) with initial conditions z(0) = q(0) ∈ O

‖ψ(qα(t))− ψ(zt(α))‖ < Kαm. (5.9)

Proof. We use extended Chronological Calculus to prove (5.5) (or equivalent (5.9)). Note that
the vector field operator in (5.3) is written as

t∫

0

Ad(P̂α
t,t1) ◦ V̂t1 dt1. (5.10)
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Then it follows from (3.10) that

Ad(P̂α
t,t1) ◦ Ŵ = Ŵ +

t1∫

t

dt2Ad(P̂
α
t,t2) ◦ Ŵ .

By using recursively this relation for (5.10) we obtain that

∫ t

0
Ad(P̂α

t,t1) ◦ V̂t1 dt1 = F̂α
t + αm−1R̂α

t ,

where F̂α
t is defined in (5.4) and

R̂α
t :=

t∫

0

dt1

t1∫

t

dt2

t2∫

t

dt3 . . .

tm−1∫

t

dtmAd(P̂α
t,tm) ◦

[
V̂tm , [V̂tk−1

, . . . , [V̂t2 , V̂t1 ], . . . , ]
]
.

Thus, it follows from (5.5) that P̂α
t satisfies the equation

d

dα
P̂α
t = P̂α

t ◦ (F̂α
t +αm−1R̂α

t ). We use the

method of variation of parameters to find its solution in the form P̂α
t = Ĉt ◦ Ẑ

α
t to obtain a formula

similar to (3.12) that

Ĉα
t = Îd+

α∫

0

Ĉσ
t ◦ Ad(Ẑσ

t ) ◦ σ
m−1R̂σ

t dσ.

From this representation we obtain (5.6) which implies the assertion of the Proposition 5.1. �

Approximation of solutions of dynamical systems for small time. Consider the solu-
tion q(t) of the initial-value problem

d

dt
q(t) = Vt(q(t)), q(0) = q0. (5.11)

Here we use Proposition 5.1 to show that for any small T the value q(T ) can be approximated by
the value z(T ) of the solution z(α) of the following structured differential equation:

d

dα
z(α) = Gα

T (z(α)), z(0) = q0, (5.12)

where

Gα
T (z) :=

m−1∑

k=1

αk−1

1∫

0

dτ1

τ1∫

1

dτ2 . . .

τk−1∫

1

dτk
[
VTτk , [VTτk−1

, . . . , [VTτ2 , VTτ1 ], . . . , ]
]
(z).

Theorem 5.1. Let Vt in (5.11) be locally bounded. Then for any q0 ∈ M , function ψ ∈
Cm(M ;E) there exists a constant K such that for any T > 0 small enough

‖ψ(q(T )) − ψ(z(T ))‖ < KTm. (5.13)

Proof. We fix small T > 0, define α∗ := T and make substitution t = Tτ , q̃(τ) := q(Tτ). Then

d

dτ
q̃(τ) = α∗VTτ (q̃(τ)), q̃(0) = q0.

Note that this is a particular case of the differential equation (5.1) and q̃(1) = q(T ).

Then it follows from the Proposition 5.1 that for any function ψ ∈ Cm(M ;E) there exists a
constant K such that for all small T > 0 ‖ψ(q̃(1))− ψ(z(α∗))‖ < Kαm

∗
, where z(α) is a solution of

the differential equation (5.12).

But this inequality is the relation (5.13). �
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Approximation of solutions of dynamical systems for large time. Consider the solu-
tion q(t) of the initial-value problem (5.11).

Here we use Proposition 5.1 to show that for any large T > 0 the value q(T ) can be approximated
by the value z(T 2) of the solution z(α) of the structured differential equation (5.12), where Gα

T (z)
is given by the expression

m−1∑

k=1

αk−1

T 2∫

0

dτ1

τ1∫

T 2

dτ2 . . .

τk−1∫

T 2

dτk
[
Vτk/T , [Vτk−1/T , . . . , [Vτ2/T , Vτ1/T ], . . . , ]

]
(z). (5.14)

Theorem 5.2. Let for any q0 ∈ M solution q(t) of (5.11) exist on (0,+∞). Then for any

function ψ ∈ Cm(M ;E) there exists a constant K such that for any T > 0 large enough we have

for solution z(α) of (5.12), (5.14)

‖ψ(q(T )) − ψ(z(T 2))‖ <
K

Tm
. (5.15)

Proof. We fix large T > 0, define α∗ := 1/T and make substitution t = τ/T , q̃(τ) := q(τ/T ).
Then

d

dτ
q̃(τ) = α∗Vτ/T (q̃(τ)), q̃(0) = q0.

Note that this is a particular case of the differential equation (5.1) and q̃(T 2) = q(T ).
Then it follows from the Proposition 5.1 that for any function ψ ∈ Cm(M ;E) there exists

a constant K such that for all small T > 0 ‖ψ(q̃(T 2))−ψ(z(α∗))‖ < Kαm
∗
, where z(α) is a solution

of the differential equation (5.12)–(5.14).
But this inequality is the relation (5.15). �
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