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ON THE ROBUSTNESS PROPERTY OF A CONTROL SYSTEM DESCRIBED

BY AN URYSOHN TYPE INTEGRAL EQUATION

N.Huseyin, A. Huseyin, Kh.G. Guseinov

In this paper a control system described by an Urysohn type integral equation with an integral constraint on

the control functions is studied. It is assumed that the system is nonlinear with respect to the state vector and

is affine with respect to the control vector. The control functions are chosen from a closed ball of the space Lp

(p > 1) with radius r. It is proved that the set of trajectories of the control system generated by all admissible

control functions is Lipschitz continuous with respect to r and is continuous with respect to p as a set valued

map. It is shown that the system’s trajectory is robust with respect to the full consumption of the remaining

control resource and every trajectory can be approximated by a trajectory generated by the control function

with full control resource consumption.
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Н. Гусейин, А. Гусейин, Х. Г. Гусейнов. О свойстве робастности управляемой системы, опи-

сываемой интегральным уравнением типа Урысона.

В данной работе исследуется управляемая система, описываемая интегральным уравнением типа Уры-

сона с интегральным ограничением на управляющие функции. Предполагается, что система нелинейна по

фазовому вектору и аффинна по управляющему вектору. Управления выбираются из замкнутого шара

пространства Lp (p > 1) радиуса r с центром в начале координат. Доказано, что множество траекторий

управляемой системы, отвечающих всем допустимым управлениям, липшицево по r и непрерывно по p
как многозначное отображение. Показано, что траектория системы робастна относительно полного ис-

пользования оставшегося ресурса управления и любую траекторию системы можно аппроксимировать

траекторией, соответствующей управлению с полным использованием ресурса.
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Introduction

Integral equations are an adequate tool to describe different processes arising in physics, economy,
biology, medicine, etc. (see, e.g., [4;5;12] and references therein). It is known that some of solution
concepts for initial and boundary value problems for differential equations can be reduced to solution
notions of appropriate integral equations (see, e.g., [5;13]). It occurs that some processes described
via integral equations have external influences called control efforts. Integral constraints on the
control functions are inevitable if the control resource, such as energy, fuel, finance, etc., is exhausted
by consumption (see, e.g., [3; 7; 14–16]). The various topological properties and approximate con-
struction methods of the set of trajectories of control systems described by integral equations with
an integral constraint on the control functions are investigated in [2; 8–11]. In this paper, the set
of trajectories of a control system described by an Urysohn type integral equation is considered.
Admissible control functions are chosen from a closed ball of the space Lp, p > 1, centered at the
origin with radius r. The dependence of the set of trajectories on the parameters r and p is studied
and the robustness of a trajectory with respect to a fast consumption of the remaining control
resource is discussed.

The paper is organized as follows. In Section 2 the basic conditions and auxiliary proposi-
tions which are used in the following arguments are given. In Section 3 it is proved that the set
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of trajectories is a Lipschitz continuous set valued map with respect to the parameter r, which
characterizes a bound on the control resource (Theorem 1). In Section 4 it is shown that the set of
trajectories depends continuously on p (Theorem 2). In Section 5 it is proved that the consumption
of the remaining control resource on a domain with sufficiently small measure does not cause an
essential change in the trajectory of the system (Theorem 3). It is shown that the set of trajectories
generated by a full consumption of the control resource is dense in the set of trajectories generated
by all admissible control functions (Theorem 4).

1. Description of the System

Consider a control system described by the Urysohn type integral equation

x(t) = f(t, x(t)) + λ

b
∫

a

[K1 (t, s, x (s)) +K2 (t, s, x (s))u(s)] ds, (1.1)

where x(s) ∈ R
n is the state vector, u(s) ∈ R

m is the control vector, t ∈ [a, b], and λ > 0 is a given
number.

For p > 1 and r ≥ 0, define Vp,r =
{

u(·) ∈ Lp

(

[a, b],Rm
)

: ‖u(·)‖p ≤ r
}

, where Lp

(

[a, b],Rm
)

is
the space of Lebesgue measurable functions u(·) : [a, b] → R

m such that ‖u(·)‖p < +∞, ‖u(·)‖p =
(

∫ b

a
‖u(t)‖p dt

)1/p

, and ‖·‖ denotes the Euclidean norm. It is assumed that the functions and the

number λ given in equation (1.1) satisfy the following conditions.

2.A. The vector functions f(·, ·) : [a, b]×R
n → R

n and K1(·, ·, ·) : [a, b]× [a, b]×R
n → R

n and
the matrix function K2(·, ·, ·) : [a, b]× [a, b]× R

n → R
n×m are continuous.

2.B. There exist γ0 ∈ [0, 1), γ1 ≥ 0, and γ2 ≥ 0 such that

‖f(t, x1)− f(t, x2)‖ ≤ γ0 ‖x1 − x2‖

for every (t, x1) ∈ [a, b]× R
n, (t, x2) ∈ [a, b]× R

n and

‖K1(t, s, x1)−K1(t, s, x2)‖ ≤ γ1 ‖x1 − x2‖ ,

‖K2(t, s, x1)−K2(t, s, x2)‖ ≤ γ2 ‖x1 − x2‖

for every (t, s, x1) ∈ [a, b]× [a, b]× R
n, (t, s, x2) ∈ [a, b]× [a, b]× R

n.

2.C. There exist p∗ > 1 and r∗ > 0 such that 0 ≤ λ
(

γ1 (b− a) + γ2r∗(b− a)(p∗−1)/p∗
)

< 1− γ0.

Define

L(λ; p, r) = γ0 + λ
[

γ1 (b− a) + γ2r (b− a)(p−1)/p ]. (1.2)

Condition 2.C implies that L(λ; p∗, r∗) < 1. From (1.2) it follows that there exist τ1 > 0 and
τ2 > 0 such that p∗ − τ1 > 1 and L(λ; p, r) < 1 for every p ∈ [p∗ − τ1, p∗ + τ1] and r ∈ [0, r∗ + τ2].
From now on it will be assumed that p ∈ [p∗ − τ1, p∗ + τ1] and r ∈ [0, r∗ + τ2]. Define

h∗ = max
{

(b− a)(p−1)/p : p ∈ [p∗ − τ1, p∗ + τ1]
}

, (1.3)

L∗(λ) = γ0 + λ
[

γ1 (b− a) + γ2(r∗ + τ2)h∗
]

. (1.4)

It is obvious that 0 < L∗(λ) < 1.
Now, let us define a trajectory of system (1.1) generated by an admissible control function

u(·) ∈ Vp,r. A continuous function x(·) : [a, b] → R
n satisfying the integral equation (1.1) for every
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t ∈ [a, b] is said to be a trajectory of system (1.1) generated by the admissible control function
u(·) ∈ Vp,r. By virtue of [8], every admissible control function u(·) generates a unique trajectory of
system (1.1). The set of trajectories of system (1.1) generated by all admissible control functions
u(·) ∈ Vp,r is denoted by Zp,r. The set Zp,r is called the set of trajectories of system (1.1). It is obvious
that Zp,r ⊂ C ([a, b];Rn), where C ([a, b];Rn) is the space of continuous functions x(·) : [a, b] → R

n

with the norm ‖x(·)‖C = max {‖x(t)‖ : t ∈ [a, b]}. For t ∈ [a, b] we set

Zp,r(t) = {x(t) ∈ R
n : x(·) ∈ Zp,r} . (1.5)

According to [8], Zp,r and Zp,r(t), t ∈ [a, b], are nonempty compact sets and the set valued map
t → Zp,r(t), t ∈ [a, b], is continuous in the Hausdorff metric. Moreover, it is possible to show that
there exists c∗ > 0 such that

‖x(·)‖C ≤ c∗ (1.6)

for every x(·) ∈ Zp,r, p ∈ [p∗ − τ1, p∗ + τ1], and r ∈ [0, r∗ + τ2]. Define

M2 = max {‖K2(t, s, x)‖ : t ∈ [a, b], s ∈ [a, b], ‖x‖ ≤ c∗} , (1.7)

where c∗ is given by (1.6).

2. Continuity with Respect to r

In this section the Lipschitz continuity of the set valued map r → Zp,r, r ∈ [0, r∗ + τ2], is
proved. The Hausdorff distance between sets P ⊂ R

n and Q ⊂ R
n is denoted by Hn(P,Q), and the

Hausdorff distance between sets Y ⊂ C ([a, b];Rn) and E ⊂ C ([a, b];Rn) is denoted by HC(Y,E)
(see, e.g., [1]). We set

BC(1) = {x(·) ∈ C ([a, b];Rn) : ‖x(·)‖C ≤ 1} , (2.1)

R∗ =
λM2h∗

1− L∗(λ)
, (2.2)

where h∗, L∗(λ), and M2 are defined by (1.3), (1.4), and (1.7) respectively.

Theorem 1. For each fixed p ∈ [p∗ − τ1, p∗ + τ1] the inequality

HC (Zp,r2 ,Zp,r1) ≤ R∗ |r2 − r1| (2.3)

is satisfied for every r2 ∈ [0, r∗ + τ2] and r1 ∈ [0, r∗ + τ2].

Proof. Let r2 6= 0. Choose an arbitrary x∗(·) ∈ Zp,r2 generated by an admissible control
function u∗(·) ∈ Vp,r2. Define

v∗(t) =
r1

r2
u∗(t), t ∈ [a, b]. (2.4)

If r2 = 0, then Vp,r2 includes a unique control function u(t) = 0 for almost all t ∈ [a, b]. In this
case v∗(·) is chosen as an arbitrarily function from Vp,r1 . It is obvious that v∗(·) ∈ Vp,r1 . From (1.3),
(2.4), the inclusion u∗(·) ∈ Vp,r2, and Hölder’s inequality, we get

b
∫

a

‖u∗(s)− v∗(s)‖ ds ≤
|r1 − r2|

r2
(b− a)(p−1)/p ‖u∗(·)‖p ≤ h∗ |r1 − r2| . (2.5)
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Let y∗(·) : [a, b] → R
n be the trajectory of system (1.1) generated by the admissible control

function v∗(·). Then y∗(·) ∈ Zp,r1, and from (1.1), (1.4), (1.6), (1.7), (2.5), and Condition 2.B we
get

‖x∗(t)− y∗(t)‖ ≤ γ0 ‖x∗(t)− y∗(t)‖+ λ

b
∫

a

[γ1 + γ2 ‖u∗(s)‖] ‖x∗(s)− y∗(s)‖ ds

+ λM2h∗ |r2 − r1|

≤
[

γ0 + λ
(

γ1(b− a) + γ2(b− a)(p−1)/pr2
)]

‖x∗(·)− y∗(·)‖C + λM2h∗ |r2 − r1|

≤ L∗(λ) ‖x∗(·)− y∗(·)‖C + λM2h∗ |r2 − r1|

for every t ∈ [a, b]. From this inequality and (2.2), we obtain

‖x∗(·)− y∗(·)‖C ≤ R∗ |r2 − r1| . (2.6)

Thus, we have proved that for arbitrarily chosen x∗(·) ∈ Zp,r2 there exists y∗(·) ∈ Zp,r1 such that
inequality (2.6) is satisfied. This means that

Zp,r2 ⊂ Zp,r1 +R∗ |r2 − r1|BC(1), (2.7)

where BC(1) is defined by (2.1). Similarly, it is possible to show that

Zp,r1 ⊂ Zp,r2 +R∗ |r2 − r1|BC(1). (2.8)

Inclusions (2.7) and (2.8) imply the validity of inequality (2.3). �

From Theorem 1 we conclude that for each fixed p ∈ [p∗ − τ1, p∗ + τ1] the set valued map
r → Zp,r, r ∈ [0, r∗ + τ2], is Lipschitz continuous in the Hausdorff metric, which implies the validity
of the following corollary.

Corollary 1. For each fixed p ∈ [p∗ − τ1, p∗ + τ1] the inequality

Hn (Zp,r2(t),Zp,r1(t)) ≤ R∗ |r2 − r1|

is satisfied for every r2 ∈ [0, r∗+ τ2], r1 ∈ [0, r∗+ τ2], and t ∈ [a, b], where Zp,r(t) is defined by (1.5).

3. Continuity with Respect to p

In this section we establish the continuity of the set valued map p → Zp,r, p ∈ (p∗− τ1, p∗+ τ1).
The Hausdorff distance between the sets U ⊂ Lp1 ([a, b] ,R

m) and W ⊂ Lp2 ([a, b] ,R
m) is

denoted by H1(U,W ) and is defined as

H1 (U,W ) = max
{

sup
x(·)∈W

d1 (x (·) , U) , sup
y(·)∈U

d1 (y (·) ,W )
}

,

where d1 (x (·) , U) = inf

{
∫ b

a
‖x (s)− y (s)‖ ds : y (·) ∈ U

}

, p1 ∈ [1,∞) , p2 ∈ [1,∞).

Theorem 2. For each fixed r ∈ [0, r∗ + τ2] the set valued map p → Zp,r, p ∈ (p∗ − τ1, p∗ + τ1),
is continuous in the Hausdorff metric.

Proof. Let us choose an arbitrary p0 ∈ (p∗ − τ1, p∗ + τ1) and let ε > 0 be a given number.
According to Theorem 3.6 from [6], for given ε > 0 there exists δ1(ε, p0) ∈ (0, δ∗) such that the
inequality

H1(Vp,r, Vp0,r) < ε (3.1)
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holds for all p ∈ (p0 − δ1(ε, p0), p0 + δ1(ε, p0)), where δ∗ = min {p∗ + τ1 − p0, p0 + τ1 − p∗}. We will
show that for every p ∈ (p0 − δ1(ε, p0), p0 + δ1(ε, p0)) the inequality

HC (Zp,r,Zp0,r) ≤
λM2

1− L∗(λ)
ε (3.2)

is verified, where L∗(λ) and M2 are defined by (1.4) and (1.7), respectively.

Choose arbitrary p ∈ (p0 − δ1(ε, p0), p0 + δ1(ε, p0)). Now let us choose arbitrary y(·) ∈ Zp,r

generated by the admissible control function v(·) ∈ Vp,r. According to (3.1), for v(·) ∈ Vp,r there
exists w(·) ∈ Vp0,r such that

b
∫

a

‖v(s)− w(s)‖ ds < ε. (3.3)

Let z(·) be the trajectory generated by the admissible control function w(·) ∈ Vp0,r. Then
z(·) ∈ Zp0,r and from (1.1), (3.3), and Conditions 2.B and 2.C it follows that

‖y(t)− z(t)‖ ≤
λ

1− γ0

b
∫

a

[γ1 + γ2 ‖v(s)‖] ‖y(s)− z(s)‖ ds+
λM2

1− γ0

b
∫

a

‖v(s)− w(s)‖ ds

≤
λ

1− γ0

b
∫

a

[γ1 + γ2 ‖v(s)‖] ‖y(s)− z(s)‖ ds+
λM2

1− γ0
ε

≤
λ

1− γ0

(

γ1(b− a) + γ2r(b− a)(p−1)/p
)

‖y(·)− z(·)‖C +
λM2

1− γ0
ε

≤
L∗(λ)− γ0

1− γ0
‖y(·)− z(·)‖C +

λM2

1− γ0
ε

for every t ∈ [a, b]; hence,

‖y(·)− z(·)‖C ≤
λM2

1− L∗(λ)
ε. (3.4)

Thus we conclude that for an arbitrarily chosen y(·) ∈ Zp,r there exists z(·) ∈ Zp0,r such that
inequality (3.4) is satisfied. This means that

Zp,r ⊂ Zp0,r +
λM2

1− L∗(λ)
εBC(1), (3.5)

where BC(1) is defined by (2.1).

Analogously, it is possible to show that

Zp0,r ⊂ Zp,r +
λM2

1− L∗(λ)
εBC(1). (3.6)

From (3.5) and (3.6) we obtain the validity of (3.2), which proves the theorem. �

Corollary 2. For each fixed r ∈ [0, r∗+τ2], the set valued map p → Zp,r(t), p ∈ (p∗−τ1, p∗+τ1),
is continuous in the Hausdorff metric uniformly in t ∈ [a, b]. Here the set Zp,r(t) is defined by (1.5).
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4. Robustness with Respect to Resource Consumption

In this section we will establish that every trajectory of the system is robust with respect to the
fast consumption of the remaining control resource; i.e. the consumption of the remaining control
resource on a domain with sufficiently small measure causes a small change of the system’s trajectory.

Theorem 3. Suppose that ε > 0 is a given number, p ∈ (p∗ − τ1, p∗ + τ1), x(·) ∈ Zp,r is a

trajectory of system (1.1) generated by an admissible control function u(·) ∈ Vp,r, ‖u(·)‖p = r∗ < r,

E∗ ⊂ [a, b] is a Lebesgue measurable set, a control function

w(t) =

{

u(t) if t ∈ [a, b] \E∗,

u∗(t) if t ∈ E∗
(4.1)

is such that ‖w(·)‖p = r, and z(·) ∈ Zp,r is the trajectory of the system (1.1) generated by the

admissible control function w(·) ∈ Vp,r. If

µ(E∗) ≤
[1− L∗(λ)

2λrM2
ε
]p/(p−1)

, (4.2)

then

‖x(·)− z(·)‖C ≤ ε, (4.3)

where µ(E∗) denotes the Lebesgue measure of the set E∗ and L∗(λ) and M2 are defined by formulas

(1.4) and (1.7), respectively.

Proof. According to Conditions 2.B and 2.C, inclusions u(·) ∈ Vp,r and w(·) ∈ Vp,r, Hölder’s
inequality, and (4.1), we have

‖x(t)− z(t)‖ ≤
λ

1− γ0

b
∫

a

[γ1 + γ2 ‖u(s)‖] ‖x(s)− z(s)‖ ds+
λM2

1− γ0

∫

E∗

‖u(s)−w(s)‖ ds

≤
λ

1− γ0

b
∫

a

[γ1 + γ2 ‖u(s)‖] ds · ‖x(·)− z(·)‖C +
2λrM2

1− γ0
[µ(E∗)]

(p−1)/p

≤
L∗(λ)− γ0

1− γ0
‖x(·)− z(·)‖C +

2λrM2

1− γ0
[µ(E∗)]

(p−1)/p

for every t ∈ [a, b]. Therefore, it follows from (4.2) that

‖x(·)− z(·)‖C ≤
2λrM2

1− L∗(λ)
[µ(E∗)]

(p−1)/p ≤ ε.

The validity of inequality (4.3) is proved. �

As follows from Theorem 3, the consumption of the control resource in big quants on domains
with sufficiently small measures is not an effective way to change the system’s trajectory. We also
find from Theorem 3 that if we have an excess of the control resource and we want to get rid of it,
then, by consuming all the remaining control resource on a domain with sufficiently small measure,
we can achieve a minor variation of the system’s trajectory. Define

V ∗
p,r =

{

u(·) ∈ Lp

(

[a, b],Rm
)

: ‖u(·)‖p = r
}

,

and let Z
∗
p,r be the set of trajectories of system (1.1) generated by all control functions u(·) ∈ V ∗

p,r.
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Theorem 4. The equality

cl
(

Z
∗
p,r

)

= Zp,r

is satisfied, where cl denotes the closure of a set.

Proof. Since Zp,r ⊂ C ([a, b] ;Rn) is a compact set (see [8]) and Z
∗
p,r ⊂ Zp,r, we have

cl
(

Z
∗
p,r

)

⊂ Zp,r. (4.4)

Let us choose an arbitrarily number η > 0, and let z(·) ∈ Zp,r be a trajectory of system (1.1)
generated by a control function u(·) ∈ Vp,r such that ‖u(·)‖p = r̃ < r. Choose an arbitrary Lebesgue
measurable set Ω∗ ⊂ [a, b] such that

µ(Ω∗) ≤
[1− L∗(λ)

2λrM2
η
]p/(p−1)

, (4.5)

where L∗(λ) and M2 are defined by (1.4) and (1.7), respectively.

Define a new control function, setting

v(t) =







u(t) if t ∈ [a, b] \ Ω∗,
[rp − σp

µ(Ω∗)

]1/p
ξ if t ∈ Ω∗,

(4.6)

where σp =

∫

[a,b]\Ω∗

‖u(s)‖p ds, ξ ∈ R
m, and ‖ξ‖ = 1. Using (4.6), it is not difficult to verify

that ‖v(·)‖p = r, and hence v(·) ∈ V ∗
p,r. Let y(·) be a trajectory of system (1.1) generated by the

control function v(·) ∈ V ∗
p,r. Then y(·) ∈ Z

∗
p,r, and, by inequality (4.5) and Theorem 3, we have

‖z(·) − y(·)‖C ≤ η. Since z(·) ∈ Zp,r is chosen arbitrarily, we obtain Zp,r ⊂ Z
∗
p,r + ηBC(1).

Since η > 0 is chosen arbitrarily, the latter inclusion yields

Zp,r ⊂ cl
(

Z
∗
p,r

)

. (4.7)

Inclusions (4.4) and (4.7) complete the proof. �

Theorem 4 means that every trajectory of the system can be approximated by a trajectory
obtained by a full consumption of the control resource.

Theorem 4 implies the validity of the following corollary.

Corollary 3. The equality

cl
(

Z
∗
p,r(t)

)

= Zp,r(t)

holds for every t ∈ [a, b], where Zp,r(t) is defined by (1.5) and Z
∗
p,r(t) =

{

x(t) ∈ R
n : x(·) ∈ Z

∗
p,r

}

.

Remark. Note that the results obtained in the paper are also valid for control systems described
by similar types of ordinary differential equations and for systems described by Volterra type integral
equations. The obtained results can be used in the modeling of control processes arising in physics,
mechanics, biology, and economics, where control systems have a limited control resource such as
energy, fuel, finance, food, etc. The continuity of the set of trajectories with respect to r and p implies
that small errors in specifying r and p in the mathematical models will cause a small deviation of the
set of trajectories. The robustness of the system’s trajectory with respect to the remaining control
resource means that an efficient way to achieve a desirable result is to consume the control resource
in economy mode (in small quants) and to avoid an aggressive consumption of the available control
resource.
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