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STABILITY REGION FOR DISCRETE TIME SYSTEMS AND ITS BOUNDARY

V. Dzhafarov, T. Biiyilikkoroglu, H. Akyar

In this paper we investigate the Schur stability region of the nth order polynomials in the coefficient space.
Parametric description of the boundary set is obtained. We show that all the boundary can be obtained as a
multilinear image of three (n — 1)-dimensional boxes. For even and odd n these boundary boxes are different.
Analogous properties for the classical multilinear reflection map are unknown. It is shown that for n > 4, both
two parts of the boundary which are pieces of the corresponding hyperplanes are nonconvex. Polytopes in the
nonconvex stability region are constructed. A number of examples are provided.
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1. Introduction

Consider the nth order real monic polynomial
a(s) =a; +ags+---+aps" ! + 57, (1.1)

which corresponds to the n-dimensional vector a = (ay,ag, ... ,an)T € R"™. The polynomial (1.1) is
called Schur (Hurwitz) stable if all its roots lie in the open unit disc (left half plane) of the complex
plane.

For discrete time systems the polynomial (1.1) arises in the denominators of the transfer
functions (or transfer matrix functions). The system is stable if and only if all poles lie in the
open unit disc, that is, it is Schur stable. From now on, the term stable (H-stable) will mean Schur
stable (Hurwitz stable).

Define

D,, = {a € R": Polynomial a(s) is stable}.

The set Dy is an open triangle with vertices (—1,0), (1,2) and (1,—2) in the (a1, as)-plane. For
n > 3 the set D,, is open, bounded, non-convex and the closed convex hull of D,, is a polytope with
(n + 1) known vertices V1, V2 ... V"l that is

@D, = co{V1 V2 .. vty

where V7 are the coefficient vectors of the boundary polynomials (s + 1)~ (s — 1)i71 (1 <i <
n + 1), ©o stands for the closure of the convex hull (see [1]). The volume of D,, has been calculated
in [2].
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In the case of n = 2 there exists a one to one and onto map g : (—1,1) x (—=1,1) — Dy, defined
by g(k1,k2) = (ka, k1ks + k1), with Dy the open triangle with vertices (—1,0), (1,2) and (1, —2).
Based on this map defined for the case n = 2, we construct the following map f : R®™ — R" for an
arbitrary n > 3 as follows:

If n is even then consider the following product of second order terms

(8% + (k1ko + k1)s + k| - [s° + (kska + k3)s + ka] -+ [$* + (kn—1kn + kn—1)s + kn]

(the total number of such terms is n/2). After multiplication we obtain the following nth order
polynomial in the variable s:

filky, ... kn) + folkr, o kn)s 4+ fulky, ... kp)s™ 1+ ™.

The coefficient vector (fi(ki,...,kn), fa(k1y- o kn)sony fulki, ...y k‘n))T defines the required
map f: R” — R".
If n is odd, then n — 1 is even and the above procedure defines the (n — 1)-th order polynomial

fl(kly L. ,kn—l) + fg(k’l, R k‘n_l)s =+ 4+ fn_l(k‘l, e k‘n_l)s”_2 + Sn_l,

and the multiplication of the last polynomial by s + k,, defines the map f : R™ — R™ for odd n.

If n is even the map f is symmetrical with respect to the pairs (k1,k2), (ks, k4), - ., (kn—1,kn).
If n is odd it is symmetrical with respect to the pairs (ki, k2), (ks, k4), .., (kn—2,kn—1).

The map f : R” — R"™ defined above is multilinear, that is, affine linear with respect to each
component. The set Q = {(z1,...,2))T €R': a] <y <af,... ya; <ap < a;r} is called a box.

Theorem 1 (The Mapping Theorem [11]). Suppose that Q is a box in R! with the set of extreme
points {¢'} and f : Q — RF is multilinear. Then cof(Q) = co{f(q"): ¢* is an extreme point of Q}.

Proposition 1. The polynomial a(s) = aj +ags—+---+a,s" L+ s" is stable if and only if there
exist numbers k; € (—1,1) such that a; = fi(ki,ka,... kn) (3,5 =1,2,...n).

Proof. The proof follows from the construction of f and g (see [4]). O

Define the cube C = {(ky,...,ky)T : =1 <k <1,...,-1 <k, <1}

Let C° and OC be the interior and the boundary sets of the set C respectively. For i € {1,2,...,n}
define (n — 1)-dimensional faces {k; = 1} ={keC: ki =1}, {ki=-1}={keC:k =—1}.
Then

CO={(k1,kay... k)T i =1 <ky<1,...,-1 <k, <1},

AC={k1=1}U-U{kp =1} U{ky = —1}U-- U {kn = —1}.

For any ¢ € {1,...,n}, the sets {k; = 1} and {k; = —1} are (n — 1)-dimensional boxes. According
to Proposition 1, f(C°) = D,.

Proposition 2. f(9C) = dD,,, where 9D, is the boundary of the open set D,,.

Proof. The proof is based on Proposition 1. O

Another description of stable polynomials is the classical reflection map and the reflection
coefficients (or Schur—Szego parameters). The reflection map is multilinear and can be defined
recursively through matrix multiplications (see [3]).

In [3], using the classical reflection map and the reflection coefficients, the outside approximation
of the stability region D, is given by splitting the box [—1,1]" = [-1,1] x - - - x [-1, 1] into subboxes.
Convex approximation of the stability region by boxes are considered in [4; 5] and ellipsoidal
approximation are considered in [6;7]. Topological and geometrical properties of the stability regions
are studied in [8-10].
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In this paper, by using f defined above, differing from the classical reflection map, we obtain
parametric equations of the boundary surfaces of the stability region D,. It is shown that the
boundary set 9D,, can be obtained as multilinear images of three chosen faces of the cube [—1,1]"
(Theorem 2 and 3), from which and from the Mapping Theorem it follows that their convex hull
are polytopes. Note that the classical reflection map does not give similar properties of the stability
region D,,. We define polytopes in the nonconvex stability region (Theorem 6) and give two examples
of application.

2. Description of the Boundary Set 0D,

The boundary set dD,, corresponds to polynomials with at least one root s = €%, 6 € [0, 7],
(7% = 1)
ar + aze?® +aze®? 4 4 a,e1I0 e = g

or

a; +agcos@ + -+ apcos(n—1)0 +cosnf = 0,
azsinf + -+ apsin(n —1)0 +sinnfd = 0. (2.1)

For # = 0 and 6 = 7 the first equation in (2.1) give (n — 1)-dimensional hyperplanes:
ar+az+---+a, = —1, (2.2)

a—az+ -+ (=1)"a, = (-1)" (23)

For 6 € (0,7) the system (2.1) gives an (n — 2)-dimensional hyperplane as the intersection of two
(n — 1)-dimensional hyperplanes. Therefore, this part of the boundary is obtained by the movement
of this (n — 2)-dimensional hyperplane (see [1]).
Define the sets
By (B_1) = {a€R": The polynomial a(s) has all roots in the closed disc |z| < 1,
and has at least one root s =1 (s = —1)},
B.= {a€R": The polynomial a(s) has all roots in the closed disc |z| < 1,
and has at least one complex root s = e/, 0 < 0 < 77}.

Then

0D, = By UB_; UB..
As a result of the discussion above, By (B_1) is a piece of the hyperplane (2.2) ((2.3)) and B, is a
nonlinear n-dimensional surface. From the symmetry properties of f the following ensues

Proposition 3.

1) Ifn is even then

(k=11 =f({ks =1}) = -~ = F({kn1 = 1}),
{k1=-1}) =f({ks = -1}) = --- = f({kn1 = —1}),
{k2 =1}) = f({ka = 1}) = --- = f({kn = 1}),

f
f
f
f{ky = —1}) = f({ka = —1}) = -+ = f({kn = —1}).

o~~~ o~

2) Ifn is odd then

{krr=1}) =f({ks =1}) = -~ = F({kn2 = 1}),
{k1=-1}) =f({ks = -1}) = --- = f({kn2 = —1}),
{k2=1}) = f({ka =1}) = --- = f({kn1 = 1}),

f
f
f
[k = -1} = f({ka = =1}) = - = f({kn—1 = —1}).

o~~~ o~
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Proposition 4. Let p(s) = ay + azs + s% be a second order polynomial. Then p(s) has roots in
the closed disc {z: |z| < 1} if and only if there exist real numbers ki and ko with |ki| <1, |ko| <1
such that

p(S) = 82 + (klkg + kl)S + kg.

Proof. The proof of Proposition 4 follows from the properties of the map ¢ defined in Sec-
tion 1. g

Theorem 2. Let n be even. Then

1) f({kr =1}) = By, 2) f({k=-1}) =By,
3) f({kg = —1}) C B_1N By, 4) f({kg = 1}) = B..

Proof. 1) Ifa € f({k1 = 1}) then a(s) has a factor s>+ (k1ka+k1)s+ko = 52+ (ko +1)s+ky =
(s +1)(s + k2) and a(s) has the root s = —1 and by Proposition 4 we have a € B_;.

Conversely, if @ € B_; then a(s) has the factor (s + 1). Due to the fact that the number of
complex roots is even and Proposition 4, a(s) has a factor (s + 1)(s + kJ) and has the form

a(s) = (s +1)(s + E)[s® + (&Y + k)s + k9] - - [s® + (kO _ K2 + K2 _1)s 4+ KD
with |k?] <1 (i =2,3,...,n), which gives the equality a = f(1,k?,...,kY). Therefore
a€ f({k1 =1}).

2) The proof is similar.

3) If a € f({k1 = —1}) then the corresponding polynomial a(s) has a factor
§% 4 (kikg +ki)s + ko =82 + (k1 —k1)s — 1 = (s — 1)(s + 1).

Therefore, it follows from Proposition 4 that a € B_1 N By.
4) If a € f({ka = 1}) then a(s) has a factor

§2 4 (krky +ki)s + ko= s +2k1s+ 1= (s +k1)> 4+ (1 — k)

and has complex roots if |k1| < 1 (for k; =1 or k; = —1 see 1) and 2) ).
Conversely, if a € B, then a(s) has complex roots s = e*? (0 < § < 7, j2 = —1) and a second
order factor

(s—e(s—e ) =352 —2co80 - s+1=s5>+ (k1 - 14+ k) + 1,
where k1 = — cos 6. Therefore a € f({ke = 1}). (We have implicitly used Proposition 4.)

Proposition 5. Let n be odd. Then
D f({k =1 C f{ =11, 2 (k= —1}) C f({h = —1}).
Proof. 1) If k; =1 then the factorization which defines the map f is as follows (see Section 1)
[s2 4+ (kg + 1)s 4 ko] -+ [s% + (kn—okn_1 + kn_2)s + kn_1](s + kn). (2.4)
Similarly, if k,, = 1 the factorization is
[s% 4 (krka + k1)s + ko] -+« [82 + (kn—okn_1 + kn_2)s + kn_1](s + 1). (2.5)

Consider the multiplication of the first and the last terms in both (2.4) and (2.5) (the remaining
factors are the same)

[s2 4+ (ko + D)s+ ko] (s + kn) = (s + k2) (s + kn) (s + 1), (2.6)
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[82 + (k‘lk’g + k:l)s + k‘Q](S + 1). (27)

Comparing (2.6) and (2.7) for —1 < k; <1, =1 < ky <1 and —1 < k, < 1, we may see that the
factor (s + k2)(s + ky,) gives only real roots in (2.6), whereas the factor s? + (k1kg + k1)s + ko in
(2.7) gives all roots from the closed disc |z| < 1 according to [1].

Therefore f({k1 =1}) C f({k, =1}).

2) The proof is similar. O
Theorem 3. Let n be odd. Then

1) f({kn=1}) = By, 2) f({kn =—-1}) = By,
3) f{ke=-1})CBinBi, 4) f({ke=1}) =B..
Proof. We prove only 1); the proofs of 2)—4) can be carried out by analogy.
If a € f({kn = 1}) then a(s) has the factor (s + 1) (see the definition of f), therefore, in view
of Proposition 4, a € B_;.

Conversely, if a € B_1, then a(s) = b(s) - (s + 1) where b(s) is an even order polynomial having
all roots in the disc |z| < 1. The polynomial b(s) has the factorization

b(S) = [82 + (k’lk‘Q + k‘l)S + k72] ce [82 + (k‘n_Qk’n_1 + k?n_g)s + kn—l]
and, by Proposition 4, |k;| <1 for alli=1,2,...,n — 1. Therefore
a(s) = [82 + (k’lk‘Q + k‘l)S + k’z] oo [82 + (k‘n_gk‘n_l + k‘n_g)s + k‘n—l] (8 + 1)

and a € f{k, = 1}. O
The above results show that if n is even then:
i) The images of the faces {k1 =1}, {ks = 1},...,{kn—1 = 1} under f are the same and equal
to B—l-

ii) The images of the faces {k1 = —1}, {ks = —1},...,{kn—1 = —1} are the same and
equal to Bj.

iii) The images of the faces {ko = 1}, {ky = 1},...,{k, = 1} are the same and equal to B..

iv) The images of the faces {ko = —1}, {ks = —1},...,{k, = —1} are the same and are

contained in B_1 N Bj.

If n is odd then:

i) The image of the face {k, = 1} equals to B_;. The image of the face {k,, = —1} equals to B;.

ii) The images of the faces {k; = 1}, {k3 =1},...,{kn—2 = 1} are the same and are contained
in B—l-

iii) The images of the faces {k; = —1}, {ks = —1},...,{kn—2 = —1} are the same and are
contained in Bj.

iv) The images of the faces {ko =1}, {ks =1},...,{kn—1 = 1} are the same and equal to B,.

v) The images of the faces {ko = —1}, {ks = —1},...,{kn—1 = —1} are the same and are
contained in B_1 N Bj.

Corollary 1. Assume that n is even. Then the surface By (B—_1) has the parametric equation

i = fi(=1 ko, .. kn), (x5 = fi(1, k2, ... kp))
A <hy<1,..., —1<k, <1, i=12....n

Corollary 2. Assume that n is odd. Then the surface By (B_1) has the parametric equation

Ty = fi(klu"'akn—h_l)a (‘TZ :fi(k17---7kn—171))
A<k <1, ~1<ky, <1, i=12....n
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Corollary 3. The surface B¢ has the parametric equation

xi:fi(kl,l,kg,...,kn), (i:1,2,...,n)
1<k <1, —1<ky<1,..., 1<k, <1.

Theorem 4. The equalities
coB_1 :co{Vl,V2,...,V”}, (2.8)
coBy = co {Vz, V3., V"H} (2.9)
are satisfied.

Proof of (2.8). Without loss of generality assume that n is even. Employing Theorem 2, B_; =
f({k1 = 1}) we have

coB_1 =cof({k1 = 1}). (2.10)

On using Theorem 1, it follows that
cof({ky = 1}) = co{ f(k), f(K?),.... fF(K™)}, (2.11)
where k7 (j = 1,2,...,m) are the extreme points of the (n — 1)-dimensional box {k; = 1}, that is
ki1 =1,k =+1, ..., k, = £1. Each f(k7) are the coefficient vector obtained after multiplication

of second order factors.

The first factor s2 + (k1ka + k1)s + ko with k; = 1, ko = £1 gives two polynomials (s + 1)? and
(s> — 1), whereas the remaining factors s + (k;_1ks + ki—1)s + k¢, (4 < t < n) with ky_q = +1,
k; = 41 give three polynomials (s + 1)2, (s — 1)® and (s* — 1). Therefore, the extreme points of
{k1 = 1} give n polynomials

(s+1)" (s+1)" (s —1),...,(s+1)(s —1)"L.

In summary, from the latter and equalities (2.10), (2.11), the equality (2.8) follows.

The proof of (2.9) is similar and is omitted. O
Theorem 5. 1) Forn =3,
B_j = co{V1 V% V3}, (2.12)
By = co{VZ?, V3 V1. (2.13)
2) Forn >4, the sets co{V1,...,V"} and co{V?,..., V") contain nonboundary (exterior to

D,,) points.

Proof. Recall that V' € R? and correspond to the polynomials (s+1)4~¢(s—1)""1 (i = 1,2, 3,4).
1) We prove (2.12) (The proof of (2.13) is similar). It follows from Theorem 4 that

B_1 C co{V' V2 V3}. (2.14)
Consider the segments [V, V2], [V2, V3] and [V'!, V3]. The inclusions [V, V2] € B_j and [V2, V3] C
B_; are straightforward. Let us prove [V!, V3] € B_;. Set A € [0,1] and consider AV + (1 — \)V3
and the corresponding polynomial
AMs+1)2+ (1 =N+ 1D)(s—1) = (s+1)[s*+ (4N —2)s + 1] .

This polynomial has the root s = —1 and its second order factor s2 + (4\ — 2)s + 1 has roots

s=1-2X£2VA— A2
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These roots have module 1:
Is2=(1-20)2+4(\—\?) =1.
By the definition of B_j, we have [V, V3] C B_;. As a consequence of this fact and (2.14) the
equality (2.12) is satisfied.
2) Consider the segment
VLV = s+ D)™ (s +1)" (s — 1)°]
= As+D)"+ 1 =N(s+1)"3(s—1)3: Xxe[0,1]}.

1
For \ = 3 the corresponding polynomial has the factor %(s +1)3 + %(s —1)3 = 5% 4 35 with the

nonboundary (exterior) roots s = £+/3;j. This shows that co{V'!,..., V"} contains nonboundary
points.

The same is true for co{V?2,..., V1] O
Example 1. Consider robust stability problem for the following multilinear family
a(s,q) = 55+ (2.25 +1.2¢1)s® + (—0.25 — 0.9¢; + 0.8¢2)s*

+(3.375 4+ 1.8¢q1 + 1.8¢2 + 0.96¢1¢2)s> — (1 + 0.9¢1 + g2 + 0.72¢1¢2)s>
+(1.125 + 0.6 + 0.9go + 0.48¢1g2)s + 0.2go + 0.25,
q1 € [-3.6,—1.5], g2 € [-2.2,—0.5]. For ¢g; = —2.55, g2 = —1.35 the polynomial is stable. Using the

equations of the boundary 9D,, in the parametric forms (Corollaries 1-3) write three multilinear
systems of equations

fl(17k27k377k6)_al(q17QZ) :07 (Z: 1776) (215)
fl(_17k27k377k6)_al(q17Q2) :07 (Z: 1776) (216)
fi(k1717k37"'7k6)_ai(q17Q2):07 (Z: 7"'76) (217)

where a;(q1, q2) are the coefficients of a(s,q) and
(k1. ke,q1,q2) € B =[-1,1] x --- x [~1,1] x [-3.6, —1.5] x [~2.2, —0.5].

We have to show that all three systems (2.15)—(2.17) have no solutions. Here we use splitting-
elimination algorithm (see [4]) with the use of The Mapping Theorem (divide the box B into small
subboxes, if for a subbox the zero is not contained in the convex hull of the images of vertices, then
eliminate this subbox).

For the systems (2.15), (2.16) all subboxes are eliminated after 2 steps in 0.02 sec. For the
system (2.17) all subboxes are eliminated after 4240 steps in 118 sec. Therefore, the given family
does not intersect the boundary of D,, and has a stable member. Consequently, the family is robust
stable. g

Note that this multilinear family can be extended to an affine family with 4 extreme polynomials
corresponding to the extreme point of (q1, ¢2). However, this extension is not stable since the segment
[b(2),c(z)] is not stable, where b(z) corresponds to ¢ = —3.6, g2 = —0.5 and ¢(z) corresponds to
g1 = —1.5, go = —2.2. Note also that if we use the classical reflection map then the number of
equations like (2.15)—(2.17) increases from 3 to 12.

Example 2. Consider for a stable member in the family
a(s,q) = 5+ (—qiq2+2q1 — 5g2 + 8)s® + (q1g2 — 2q1 + 6g2 — 11)s*
+ (20192 — 3q1 + Tq2 — 12)8° + (—q1q2 — @1 — 2q2 — 8)5°
+ (20192 — @1 + Tq2 — 1)s — 2q1 + 2q2 — 14,
q1 € [—1,2], g2 € [-1,2]. For ¢ = g2 = 0 the obtained polynomial is unstable. Three systems of
multilinear equations like (2.15)—(2.17) have no solutions on the box B = [—1,1] x --+ x [-1,1] x
[—1,2] x [—1,2]. Splitting-elimination algorithm gives the following answers:
For systems like (2.15), (2.16), and (2.17) all subboxes are eliminated after 2 steps and there
are no solutions. Consequently, the family has no stable member. O
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3. Stable Polytopes

In this section, using the results from [12] and the Mobius transformation, we construct stable
polytopes. Given the nth order polynomial p(z) with positive coefficients its Mobius transformation
polynomial is defined by p(s) = M{p(2)} = (s — 1)"p<z + 1) It is well known that p(z) is stable
if and only if p(s) is H-stable.

As in [12], we use second order factors in the construction of stable polytopes. We observe that
the results in [12] are stated for the monic case, however, these results can easily be transformed
to the non-monic case. In [12], for a second order monic factor s? + a s + a the condition a > 1 is
required; in the non-monic case any second order factor a s?> + a s + o must satisfy the conditions
a>0,a>a.

Firstly assume that n is even, n = 2m and A = {(z,y) € R? : y < 0,y > —x}, (z;,;) € A
(1 =1,2,...,m). Define the nth order (n + 1) polynomials

po(z) = <:E1z2+y12+$1+y1><x2z2+y2z+$2;y2)-'-<mmz2+ymz+7$m;ym),
"-(xm22+ymz+7xm;ym>,

p2(z) = (43:1;1/122-#2($1;y1)2+%)(w222+y22+%+y2>---
"'(xmz2—|—ymz—|—7xm—2|—ym>,

pa(z) = <!E1Z2+y1z+xl§y1><4m;y2z2+y2z+W)---
"-(xm22+ymz+7xm;ym>,

1+

>(x222+y22+
AT + Ym o | 2(@Tm + Ym) ym>
( s e .

- xo +
pn(z) = <x122+y12+ 233/2).”

If nis odd, n = 2m — 1 then

r1 + Tm—1 + Ym—
po(2) = <33122 + 12+ ! 3 y1> (xm—lzz + Ym-12 + ! 3 Ym 1) (xmz +ym>7
4z + 41 + L1 + _
p1(2) = (1711122 + Y12+ lTyl> (xm—122 + Ym-12 + ! 3 Ym 1) (me + ym>7
42— _ 2 _ _ _
pn-1(z) = <w122+y12+w1+y1>...( Tm—1+ Ym L2, (Tm—1~+ Ym 1)Z+ym 1)
3 6 3 2
X (a:mz +ym)7
r1 + Tm—1 + Ym—
pn(zj) — <x122—|—y12+ lTyl> (xm_122_|_ym_12+ %@ml
X <$m+ymz+ $m+ym>
2 2 '
Define the polytope
P = cofpo(2),p1(2)s - pa(2)}- (3.1)
Theorem 6. Assume that (z;,y;) € A (i = 1,2,...,m), where n = 2m if n is even and

n=2m — 1 if n is odd. Then the inner points of the polytope P defined by (3.1) are stable.

Proof. We observe that if p(z) = pi(2) - pa(2) then M{p(2)} = M{p1(2)} - M{p2(2)}
and for the two nth order polynomials p(z) and ¢(z) with positive coefficients M{[p(z), q(2)]}
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[M{p(2)}, M{q(2)}]. Consequently, the segment [p(z),q(z)] is stable if and only if the segment
[p(2),q(2)] = [M{p(2)}, M{q(2)}] is H-stable. By the Edge Theorem the polytope P is stable if all
edges [pi(z),p;(z)] are stable. Additionally

4 4y — 2 4y — 2
M{(L’Z —i—yz—kx;—y} _ ($+y)32+ X ys+ £3 y7
4 4 4 4y — 2
M{ Tty Z Tyrt x;—y} _ (x;_y)s2—|— $3 y7
4 4 4y — 2
M{ x;yz2+ x+yz+%} = (m;y)s2+ a;3 y37
- _ Tty T4y
M{xz+y} = (x+y)s+(z ) M{ 5 z+ 5 } (x+1y)s

Summarizing, the second order factors and the first order factor (in the case of odd n) of the
Mobius transformation polynomials satisfy the required conditions of Theorems 2 and 3 from [12].
All edges of P are, therefore, either stable or lie on the stability boundary and consequently the
inner points of P are stable.

Example 3 (Stabilization). Consider the stabilization problem for the transfer function G(z) =
pyE- 4;;2_i 5079 with the controller C'(z) = (;1;_:_;2
is p(z,c) = 4225 — 472 4+ (—50+42¢3) 23 + (=94 c1 — 47c3) 2% + (¢1 +c2 — 50¢3) 2+ c2 — 9cs. This family
defines an affine subset A in the coefficient space and the problem consists of determining the values
of ¢1, co, and c3 for which p(z,c) is stable. Choose (x1,y1) = (5,—2), (x2,y2) = (7,—4), (x3,y3) =
(2,—1) (see Theorem 6). These values define the polytope P (see (3.1)) and the intersection problem
of P and A is a standart linear programming problem (see [4]). Solving them gives a nonempty
intersection and the projection of this intersection to the space (ci,ca,c3) gives the following
polytope of stablizing parameters (ci,co,c3): co{(84.136,16.532,1.920), (85.231,17.405,1.972),
(88.527,17.837,2.039), (85.553,16.070,1.929), (87.041,17.081,1.994), (89.510,17.748,2.053)} (sce

Fig. 1(a)). O
Example 4 (Stabilization). Consider a similar problem as in Example 3 with the transfer

. z+1 c1z + ¢
function G(z) = 537 17— 10 and controller C(z) = o

Example 3. The polytope of stablizing parameters (¢, ¢, ¢3) is shown in Fig. 1(b). O

. The closed loop characteristic polynomial

. Choose (z1,y1) and (z2,y2) as in

ISW

17.54

C
16.5-

Fig. 1. Polytopes of stabilizing ¢ for Example 3 and Example 4.
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Results

The stability region of discrete time systems in the coefficient space is investigated. It is shown
that the boundary of this region consists of three parts. The first and the second parts are nonconvex
subsets of the corresponding hyperplanes, the third part is a nonlinear surface. The parametric
equations of all three parts are obtained. Polytopes in the nonconvex stability region are defined.
The obtained results can be applied in the robust stability and instability problems of a given
multilinear family, in the stabilization and other related problems.
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