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STABLE BOUNDARY CONTROL OF A PARABOLIC EQUATION

H.Akca, V. I.Maksimov

A problem of boundary control is considered for a differential equation with distributed parameters. It

is required to design an algorithm that forms a feedback control and guarantees a prescribed quality of the

controlled process. More exactly, the solution of this equation should track the solution of another equation,

which is subject to an unknown perturbation. Methods for solving problems of this type for systems described

by ordinary differential equations are well known and are presented, in particular, within the theory of positional

control. In the present paper, we study a tracking problem in which the role of the control object is played by

an equation with distributed parameters. It is assumed that the solutions of the equations are measured with

an error, and the only available information about the perturbation is that it is an element of the space of

functions summable with the square of the Euclidean norm; i.e., the perturbation can be unbounded. Taking

into account these features of the problem, we design solution algorithms that are stable under information

disturbances and computational errors. The algorithms are based on a combination of elements of the theory

of ill-posed problems with the extremal shift method known in the theory of positional differential games.
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Comput. Methods Appl. Math., 2013, vol. 13, no. 4, pp. 415–442. doi: 10.1515/cmam-2013-0016 .

18. Breiten T., Kunisch K. Riccati based feedback control of the monodomain equations with the FitzHugh–
Nagumo model. SIAM J. Contr. Optim., 2014, vol. 52, no. 6, pp. 4057–4081. doi: 10.1137/140964552 .

Received January 31, 2021
Revised February 10, 2021

Accepted February 15, 2021

Haydar Akca, Prof., Abu Dhabi University, College of Arts and Sciences, Department of Applied
Sciences and Mathematics, P.O. Box 59911, Abu Dhabi, UAE, e-mail: akcahy@yahoo.com .

Vyacheslav Ivanovich Maksimov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics
and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108
Russia, e-mail: maksimov@imm.uran.ru .

Cite this article as: H.Akca, V. I.Maksimov. Stable boundary control of a parabolic equation,
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 7–18 .


