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ON THE LATTICES OF THE ω-FIBERED FORMATIONS OF FINITE GROUPS1

S. P.Maksakov

Only finite groups and classes of finite groups are considered. The lattice approach to the study of formations

of groups was first applied by A.N. Skiba in 1986. L.A. Shemetkov and A.N. Skiba established main properties

of lattices of local formations and ω-local formations where ω is a nonempty subset of the set P of all primes. An

ω-local formation is one of types of ω-fibered formations introduced by V.A. Vedernikov and M.M. Sorokina in

1999. Let f : ω ∪{ω′} → {formations of groups}, where f(ω′) 6= ∅, and δ : P → {nonempty Fitting formations}
are the functions. Formation F = (G | G/Oω(G) ∈ f(ω′) and G/Gδ(p) ∈ f(p) for all p ∈ ω ∩ π(G)) is called an

ω-fibered formation with a direction δ and with an ω-satellite f , where Oω(G) is the largest normal ω-subgroup

of the group G, Gδ(p) is the δ(p)-radical of the group G, i.e. the largest normal subgroup of the group G
belonging to the class δ(p), and π(G) is the set of all prime divisors of the order of the group G. We study

properties of lattices of ω-fibered formations of groups. In this work we have proved the modularity of the lattice

Θωδ of all ω-fibered formations with the direction δ. Its sublattice Θωδ(F) for the definite ω-fibered formation

F with the direction δ is considered. We have established sufficient conditions under which the lattice Θωδ(F)
is a distributive lattice with complements.

Keywords: finite group, class of groups, formation, ω-fibered formation, lattice, modular lattice, distributive

lattice, lattice with complements.

С.П. Максаков. О решетках ω-веерных формаций конечных групп.

Рассматриваются только конечные группы и классы конечных групп. Решеточный подход к изучению

формаций групп был впервые применен А.Н. Скибой в 1986 г. Л.А. Шеметков и А.Н. Скиба установили

основные свойства решеток локальных формаций и ω-локальных формаций, где ω — непустое подмно-

жество множества P всех простых чисел. В 1999 г. В.А.Ведерников и М.М. Сорокина ввели понятие

ω-веерных формаций, одним из типов которых являются ω-локальные формации. Рассмотрим функции

f : ω ∪ {ω′} → {формации групп}, где f(ω′) 6= ∅, и δ : P → {непустые формации Фиттинга}. Формация

F = (G | G/Oω(G) ∈ f(ω′) и G/Gδ(p) ∈ f(p) для всех p ∈ ω ∩ π(G)) называется ω-веерной формаци-

ей с направлением δ и ω-спутником f , где Oω(G) — наибольшая нормальная ω-подгруппа G, Gδ(p) —

δ(p)-радикал G, т.е. наибольшая нормальная подгруппа G из класса δ(p), и π(G) — множество простых

делителей порядка группы G. Изучаются свойства решеток ω-веерных формаций групп. Доказана моду-

лярность решетки Θωδ всех ω-веерных формаций с направлением δ. Рассмотрена её подрешетка Θωδ(F)
для некоторой ω-веерной формации F с направлением δ. Найдены достаточные условия, при которых

Θωδ(F) является дистрибутивной решеткой с дополнениями.

Ключевые слова: конечная группа, класс групп, формация, ω-веерная формация, решетка, модулярная

решетка, дистрибутивная решетка, решетка с дополнениями.
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Введение

The lattice methods play an important role in the study of the properties of many algebraic
objects. A partially ordered set is called a lattice if for any two elements there exist an exact lower
bound (the lattice intersection) and an exact upper bound (the lattice union). It is well known
that the set S(G) of all subgroups of a finite group G is a lattice (for any A,B ∈ S(G) the lattice
intersection of A and B is equal to A∩B and the lattice union of A and B is equal to the subgroup
of G which is generated by the union A ∪ B); and the set of all normal subgroups of the group G
is a sublattice of this lattice. In 1939 H. Wielandt established the fact that the set of all subnormal

1This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.
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subgroups of any finite group also forms the lattice [21]. L.A. Shemetkov and A.N. Skiba in their
monograph [9] studied the lattice properties of manifolds and formations of algebraic systems. As the
theory of classes of finite groups developed, two problems have become considered. The first problem
is connected with the study of the lattice properties of new types of subgroups of finite groups which
are defined by given classes. For instance, A.F. Vasil’ev, S.F. Kamornikov, V.N. Semenchuk in [16]
obtained the description of a hereditary local formation F such that in any finite group G the set of
all F-subnormal subgroups of G is a lattice. The second problem is connected with the study of the
lattice properties of the classes of groups (formations, Fitting classes and others). A set of groups is
called a class if it contains with any its group G all groups which are isomorphic to G. The class F

is said to be: a formation if F is Q-closed (G ∈ F, N ⊳ G ⇒ G/N ∈ F) and R0-closed (G/A ∈ F,
G/B ∈ F ⇒ G/(A ∩ B) ∈ F); a Fitting class if F is Sn-closed (G ∈ F, N ⊳ G ⇒ N ∈ F) and
R-closed (G = AB, A⊳G, B ⊳G, A,B ∈ F ⇒ G ∈ F); a Fitting formation if F is a formation and
a Fitting class. The lattice approach to the study of formations of finite groups was first applied by
A.N. Skiba in [12]. L.A. Shemetkov and A.N. Skiba in [9] established important properties of the
lattice of all formations of finite groups, in particular, they proved that this lattice is modular but
not distributive.

Among the classes of finite groups the central place is occupied by local formations and local
Fitting classes introduced respectively by W. Gaschutz [3] and B. Hartley [4]. A.N. Skiba in [13]
established the crucial properties of the lattice of all τ -closed n-multiple local formations, where τ
is a subgroup functor, n ∈ N (for instance, inductance, modularity, algebraicity, etc.), proved its
nondistributivity and studied the Boolean sublattices of this lattice. Let ω be a nonempty set of
primes, L is a nonempty class of simple groups. In the fundamental works [15] and [14] respectively
the basic properties of a lattice of n-multiple ω-local formations and of a lattice of n-multiple L-
composition formations were established and some problems connected with their further study were
formulated. The monograph [20] presents the most complete presentation of the results obtained
over the past decades about lattices of n-multiple ω-local formations and n-multiple ω-local Fitting
classes of groups. An ω-local formation (an ω-local Fitting class) is one of the representatives of the
series of ω-fibered formations (ω-fibered Fitting classes) of groups introduced by V.A. Vedernikov,
M.M. Sorokina in [18] and an Ω-composition formation (an Ω-composition Fitting class) is one
of the types of Ω-foliated formations (Ω-foliated Fitting classes) of groups which were constructed
in [17] where Ω is a nonempty class of simple groups. O.V. Kamozina studied the lattice properties
of ω-fibered Fitting classes and Ω-foliated Fitting classes (see, for example, [6; 7]). Yu.A. Elovikova
studied the properties of the lattice of Ω-foliated formations (see, for instance, [10; 11]).

The goal of this work is to study the lattice properties of ω-fibered formations of finite groups.
Let E be the class of all finite groups, P is the set of all primes, f : ω ∪ {ω′} → {formations of
groups}, where f(ω′) 6= ∅ (the symbol ω′, following the terminology of [18], denotes an element
from the domain f that does not belong to ω), δ : P → {nonempty Fitting formations} are functions
called ωF -function and PFR-function respectively. A formation

F =
(

G ∈ E | G/Oω(G) ∈ f(ω′) and G/Gδ(p) ∈ f(p) for all p ∈ ω ∩ π(G)
)

is called an ω-fibered formation with a direction δ (briefly, an ωδ-fibered formation) with an ω-

satellite f and denoted by F = ωF (f, δ) [18], where Oω(G) is the largest normal ω-subgroup of the
group G, Gδ(p) is the δ(p)-radical of the group G, i.e. the largest normal subgroupe of the group G
belonging to the class δ(p), π(G) is the set of all prime divisors of the order of the group G. Let F

be a nonempty class of groups and {Fi | i ∈ I} be a set of nonempty subclasses of the class F. Put
F = ⊕i∈IFi if for any different i, j ∈ I it is true that Fi ∩ Fj = (1) and every group G ∈ F has a
structure G = Ai1 × . . .×Ait , where Ai1 ∈ Fi1 , . . . , Ait ∈ Fit for some i1, . . . , it ∈ I [13].

In this work the following tasks have been solved. We have proved the modularity of the lattice
Θωδ of all ω-fibered formations of finite groups with bp-direction δ such that δ1 ≤ δ ≤ δ3 (Theorem 1).
In the case δ = δ1 Theorem 1 implies the result for ω-local formations [15, Theorem 4, the case
n = 1]. Note that according to [19, Theorem 3], there exists an infinite set of bp-directions δ satisfying
the condition δ1 ≤ δ ≤ δ3. In Theorems 2 and 3 we have established the sufficient conditions under
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which the lattice Θωδ(F) of all ωδ-fibered subformations of the ω-fibered formation F = ⊕i∈IFi with
bp-direction δ is distributive and it is a lattice with complements respectively.

1. Notations and Definitions

Only finite groups are considered. The symbol := means the equality by the definition. Notations
and definitions of groups and classes of groups are standard (see, for instance, [2]). We give just some
of them. A group G is called monolithic if G has a unique minimal normal subgroup (monolith).
Let p ∈ P. By Zp we denote the group of the order p; Np is the class of all p-groups; Ep′ is the
class of all p′-groups; E(Zp)′ is the class of all such groups that don’t have composition factors which
are isomorphic to Zp; Scp is the class of all groups whose every chief p-factor is central. The class
generated by the set X of groups is denoted by (X), i.e. (X) is an intersection of all classes of groups
containing X; in particular, (G) is the class of all groups which are isomorphic to the group G; (1)
is the class of all identity groups. The formation generated by the set X of groups is denoted by
form(X), i.e. form(X) is an intersection of all formations containing X [8]. For the class X we put
π(X) := ∪

G∈X
π(G). By X1X2 we denote the product of classes X1 and X2, i.e.

X1X2 = ( G ∈ E | there exists N ⊳ G such that N ∈ X1, G/N ∈ X2 ) [2].

Further, ω is a nonempty subset of the set P. A group G is called an ω-group if π(G) ⊆ ω; Eω is
the class of all ω-groups. An ω-satellite f of the ωδ-fibered formation F is called inner if f(x) ⊆ F

for any x ∈ ω ∪ {ω′}. By ωF (X, δ) it is denoted an ωδ-fibered formation generated by the set X of
groups, i.e. ωF (X, δ) is an intersection of all ωδ-fibered formations containing X [18]. Let f1 and f2
be ωF -functions (PFR-functions). We put f1 ≤ f2 if f1(x) ⊆ f2(x) for every x ∈ ω∪{ω′} (for every
x ∈ P); we put f1 < f2 if f1 ≤ f2 and f1 6= f2 [18]. An ω-fibered formation with the direction δ is
called: ω-absolute if δ = δ0 where δ0(p) = Ep′ for any p ∈ P; ω-local if δ = δ1 where δ1(p) = Ep′Np

for any p ∈ P; ω-special if δ = δ2 where δ2(p) = E(Zp)′Np for any p ∈ P; ω-central if δ = δ3 where
δ3(p) = Scp for any p ∈ P [18]. It follows directly from these definitions that δ0 < δ1 < δ2 < δ3. The
direction δ of the ω-fibered formation is called a bp-direction if δ is a b-direction, i.e. δ(p)Np = δ(p)
for any p ∈ P, and δ is a p-direction, i.e. Ep′δ(p) = δ(p) for any p ∈ P [19]. Further, we will use the
following well-known examples of ω-fibered formations.

Example 1. 1) Let p ∈ ω. Then the class Np is an ω-fibered formation with the ω-satellite
f and the direction δ where δ is a b-direction and f is an ωF -function which has the following
structure: f(ω′) = Np, f(p) = (1) and f(q) = ∅ for any q ∈ ω \ {p}.

2) The class E of all finite groups is an ω-fibered formation with the ω-satellite f and the
direction δ where δ is an arbitrary PFR-function and f is an ωF -function which has the following
structure: f(p) = E for any p ∈ ω, f(ω′) = E.

3) The class (1) of all identity groups is an ω-fibered formation with the ω-satellite f and the
direction δ where δ is an arbitrary PFR-function and f is an ωF -function which has the following
structure: f(p) = ∅ for any p ∈ ω, f(ω′) = (1).

According to [1], in the lattice Θ the lattice intersection of the elements x and y is denoted by
x ∧Θ y and the lattice union of the elements x and y is denoted by x ∨Θ y. A lattice Θ is called
distributive if for any x, y, z ∈ Θ the following equality is true:

x ∧Θ (y ∨Θ z) = (x ∧Θ y) ∨Θ (x ∧Θ z).

Note that, by [1, Theorem 9], the last equality is equivalent to the following equality:

x ∨Θ (y ∧Θ z) = (x ∨Θ y) ∧Θ (x ∨Θ z).

A lattice Θ is called modular if for any elements x, y, z ∈ Θ such that y ≤ x it is true that

x ∧Θ (y ∨Θ z) = y ∨Θ (x ∧Θ z).
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It follows directly from the definitions that any distributive lattice is a modular lattice. The smallest
(the largest) element of the lattice is called a zero (an identity) of this lattice. Let Θ be a lattice
with a zero O. An element a ∈ Θ is called an atom of the lattice Θ if a 6= O and there is no such
an element x ∈ Θ that O < x < a. A lattice Θ with a zero O and an identity I is called a lattice

with complements if for any element x ∈ Θ there exists an element y ∈ Θ such that x∧Θ y = O and
x ∨Θ y = I; the element y is called a complement for element x in the lattice Θ [1].

Let Θ be a nonempty set of formations which is partially ordered regarding the inclusion ⊆, F1

and F2 are Θ-formations (i.e. F1,F2 ∈ Θ). Then the lattice intersection and the lattice union of the
formations F1 и F2 are defined respectively as

F1 ∧Θ F2 := F1 ∩ F2 (a), F1 ∨Θ F2 := Θform(F1 ∪ F2) (b),

where Θform(F1 ∪ F2) is a Θ-formation generated by the union F1 ∪ F2, i.e. Θform(F1 ∪ F2) is
an intersection of all Θ-formations containing F1 ∪ F2. The set of formations Θ is called a complete

lattice of formations if the intersection of any set of Θ-formations is a Θ-formation and there exists a
formation M ∈ Θ such that F ⊆ M for any formation F ∈ Θ [13]. For a given lattice Θ of formations
by Θ(F) we denote the set of all Θ-subformations of the formation F.

In the following two lemmas the known results of the theory of formations of finite groups and
some well-known properties of ω-fibered formations are represented respectively.

Lemma 1. (1) The lattice of all formations of finite groups is modular but is not distributive

[9, Corollary 9.9].
(2) Suppose that F = ⊕i∈IFi and M is a nonempty subformation of the formation F. Then

M = ⊕i∈I(Fi ∩M) [13, Lemma 4.3.4].

Lemma 2. (1) Let X be a nonempty class of group. Then the ω-fibered formation F = ωF (X, δ)
with the direction δ, where δ0 ≤ δ, has a unique minimal ω-satellite f such that

f(ω′) = form(G/Oω(G) | G ∈ X), f(p) = form(G/Gδ(p) | G ∈ X)

for all p ∈ ω ∩ π(X) and f(p) = ∅ if p ∈ ω \ π(X) [18, Theorem 5].

(2) Let fi be a minimal ω-satellite of the ω-fibered formation Fi with the direction δ where δ0 ≤ δ,
i = 1, 2. Then F1 ⊆ F2 if and only if f1 ≤ f2 [18, Corollary 5.1].

(3) Let F = ωF (f, δ) be an ω-fibered formation with the inner ω-satellite f and with the bp-
direction δ such that δ1 ≤ δ ≤ δ3. Then F has a unique maximal inner ω-satellite h such that

h(ω′) = F, h(p) = Nph(p) = Npf(p) for any p ∈ ω [19, Theorem 6].

(4) Let F = ωF (f, δ) where δ is an arbitrary PFR-function. Then F = ωF (h, δ) where h(ω′) = F

and h(p) = f(p) for any p ∈ ω [18, Lemma 4 (2)].

(5) Let δ be an arbitrary PFR-function, F = ∩i∈IFi where Fi = ωF (fi, δ), i ∈ I. Then F =
ωF (f, δ) where f = ∩i∈Ifi [18, Lemma 5].

(6) Let F be an ω-fibered formation with an inner ω-satellite f and with a bp-direction δ. Then

Npf(p) ⊆ F for all p ∈ ω [19, Lemma 6 (1)].

Let δ be an arbitrary PFR-function. Denote by Θωδ the set of all ωδ-fibered formations. Since
the formations (1) and E belong to Θωδ (see Example 1) then the set Θωδ is nonempty. If F is a
nonempty formation then (1) ∈ Θωδ(F) and, therefore, Θωδ(F) 6= ∅. According to Lemma 2 (5),
the intersection of any set of ωδ-fibered formations is an ωδ-fibered formation. Then, in view of (a)
and (b), we conclude that the set Θωδ is a lattice with the zero (1) and with the identity E and,
consequently, is a complete lattice of formations. If F is a nonidentity ωδ-formation then Θωδ(F)
is a lattice (a complete lattice) with the zero (1) and with the identity F. Denote the set of all
formations of finite groups by ΘE. Note that ΘE is a complete lattice of formations with the zero ∅
and with the identity E.
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Let Θ be a complete lattice of formations. An ωF -function f is called Θ-valuable if all its
nonempty values belong to Θ. Let {fi | i ∈ I} is a set of Θ-valuable ωF -functions. In accordance
with the notation adopted in [13], by ∨Θi∈I

fi we denote such an ωF -function f that for any
x ∈ ω ∪ {ω′} it is true that f(x) = ∨Θi∈I

fi(x), i.e. f(x) = Θform(∪i∈Ifi(x)) for any x ∈ ω ∪ {ω′}.
Following [13], a complete lattice Θ of formations is called ωδ-inductive if for any set {Fi | i ∈ I}
of ωδ-fibered formations which have at least one Θ-valuable ω-satellite and for any set {fi | i ∈ I}
where fi is an inner Θ-valuable ω-satellite of the formation Fi, i ∈ I, the following equality takes
place: ∨Θωδ i∈I

(Fi) = ωF (∨Θi∈I
fi, δ), i.e.

ωF (∪i∈IFi, δ) = ωF (f, δ), where f := ∨Θ
i∈I

fi.

2. Modularity of the lattice Θωδ

First we will prove the following two lemmas.

Lemma 3. Let δ be a bp-direction such that δ1 ≤ δ ≤ δ3. Then the set ΘE of all formations of

groups is an ωδ-inductive lattice.

Proof. As mentioned above, the set ΘE is a complete lattice of formations. Put X :=
∨Θωδ i∈I

(Fi) where Fi := ωF (fi, δ) and fi is an inner ω-satellite of the formation Fi, i ∈ I. Note
that, by the definition of an ωF -function, fi is a ΘE-valuable ω-satellite of the formation Fi, i ∈ I.
Put Y := ωF (f, δ) where f := ∨ΘE(i∈I)

fi. Then

f(x) = ∨ΘE(i∈I)
fi(x) = form(∪i∈Ifi(x)) for any x ∈ ω ∪ {ω′}.

Prove that X = Y. Since X = ∨Θωδ i∈I
(Fi) then X = ωF (∪i∈IFi, δ). In a view of fi ≤ f , we have

Fi ⊆ Y, i ∈ I, and so ∪i∈IFi ⊆ Y. Since X is the smallest ωδ-fibered formation which contains the
union ∪i∈IFi then X ⊆ Y.

Establish that Y ⊆ X. Since δ0 ≤ δ1 ≤ δ then, according to Lemma 2 (1), there exists a unique
minimal ω-satellite h of the formation X and there exists a unique minimal ω-satellite hi of the
formation Fi, i ∈ I. According to Lemma 2 (3) the formation X has a unique maximal inner ω-
satellite m, moreover, m(p) = Nph(p) for any p ∈ ω and m(ω′) = X; the formation Fi has a unique
maximal inner ω-satellite mi and mi(p) = Nphi(p) for any p ∈ ω, i ∈ I. Verify that f ≤ m. It is
sufficient to show that f(x) ⊆ m(x) for any x ∈ ω ∪ {ω′}.

Put p ∈ ω. Consider the case p ∈ ω \ π(∪i∈IFi). By Lemma 2 (1), h(p) = ∅, and so m(p) =
Nph(p) = ∅. Since p ∈ ω \ π(∪i∈IFi) then p ∈ ω\π(Fi) for any i ∈ I. According to Lemma 2 (1), it
meens that hi(p) = ∅, and so mi(p) = Nphi(p) = ∅ for any i ∈ I. Since fi is the inner ω-satellite
of Fi and mi is the unique maximal inner ω-satellite of Fi then fi ≤ mi and, therefore, fi(p) = ∅
for any i ∈ I. This implies that f(p) = ∅. Thus, in the case p ∈ ω \ π(∪i∈IFi) we obtained
f(p) = ∅ = m(p).

Suppose that p ∈ ω ∩ π(∪i∈IFi) and J = {j ∈ I | p ∈ π(Fj)}. Then, according to Lemma 2 (1),
hj(p) 6= ∅ for any j ∈ J , hk(p) = ∅ for any k ∈ I \ J , and it is true that

form( ∪i∈Ihi(p) ) = form( ∪j∈J (form(G/Gδ(p)) | G ∈ Fj) )

⊆ form( G/Gδ(p) | G ∈ ∪i∈IFi ) = h(p).

Since fi ≤ mi, i ∈ I, then

f(p) = form( ∪i∈Ifi(p) ) ⊆ form( ∪i∈Imi(p) )

= form( ∪i∈I Nphi(p) ) ⊆ Npform( ∪i∈Ihi(p) ) ⊆ Nph(p) = m(p).
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Thus, f(p) ⊆ m(p) for any p ∈ ω. Since fi is an inner ω-satellite of the formation Fi then fi(ω
′) ⊆

Fi ⊆ X, i ∈ I. Hence, in view of X ∈ ΘE, we conclude that f(ω′) = form( ∪i∈Ifi(ω
′) ) ⊆ X = m(ω′).

Thus, f(x) ⊆ m(x) for every x ∈ ω ∪ {ω′}. Therefore, f ≤ m. It means that Y ⊆ X. So, it has been
established that X = Y. Consequently, the lattice ΘE of all formations of groups is ωδ-inductive.

The lemma is proved.

Theorem 1. Let δ be a bp-direction such that δ1 ≤ δ ≤ δ3. Then the set Θωδ of all ωδ-fibered

formations of groups is a modular lattice.

Proof. As mentioned above, the set Θωδ is a lattice. Let F1, F2, F3 ∈ Θωδ, and F2 ⊆ F1. Prove
that

F1 ∧Θωδ
(F2 ∨Θωδ

F3) = F2 ∨Θωδ
(F1 ∧Θωδ

F3).

Put H := F2 ∨Θωδ
F3, M := F1 ∧Θωδ

F3, X := F1 ∧Θωδ
H, Y := F2 ∨Θωδ

M. Verify that X = Y.
Let fi be a minimal ω-satellite of the formation Fi, i = 1, 2, 3, and put

h := f2 ∨ΘE
f3, m := f1 ∧ΘE

f3, x := f1 ∧ΘE
h, y := f2 ∨ΘE

m.

First we will establish that X = ωF (x, δ) and Y = ωF (y, δ). Indeed, since by Lemma 3 the lattice
ΘE is ωδ-inductive then H = ωF (h, δ) and, therefore, according to Lemma 2 (5), we obtain X =
ωF (x, δ). By Lemma 2 (5) it is true that M = ωF (m, δ) and, in view of Lemma 3, we conclude
that Y = ωF (y, δ). Verify that x = y. Put p ∈ ω ∪ {ω′}. By inclusion F2 ⊆ F1 and according to
Lemma 2 (2), we have that f2 ≤ f1 and, consequently, f2(p) ⊆ f1(p). By Lemma 1 (1) the lattice ΘE

is modular. Then

x(p) = (f1 ∧ΘE
(f2 ∨ΘE

f3))(p) = (f2 ∨ΘE
(f1 ∧ΘE

f3))(p) = y(p).

Thus, x = y and, therefore, X = ωF (x, δ) = ωF (y, δ) = Y. Hence, the lattice Θωδ is modular.
The theorem is proved.

3. Distributivity of the lattice Θωδ(F)

For an ω-fibered formation F = ⊕i∈IFi with a bp-direction δ we will establish sufficient conditions
under which the lattice Θωδ(F) of all ωδ-fibered subformations of the formation F is distributive.
We will prove the following two lemmas first.

Lemma 4. Let δ be a PFR-function such that δ0 ≤ δ, and suppose that F = ⊕i∈IFi where Fi

is an atom of the lattice Θωδ(F), i ∈ I. If (1) 6= H ∈ Θωδ(F) then there exists such a set J ⊆ I that

H = ⊕j∈JFj.

Proof. Let H ∈ Θωδ(F) and H 6= (1). According to Lemma 1 (2), we obtain H = ⊕i∈I(Fi ∩H).
Since Fi ∩H ⊆ Fi and by Lemma 2 (5) Fi ∩H ∈ Θωδ then, in view of the fact that Fi is an atom of
the lattice Θωδ(F), it is true that Fi ∩H = (1) or Fi ∩H = Fi. Put J = {j ∈ I | Fj ∩H = Fj}. Then
H = ⊕j∈J(Fj ∩ H) = ⊕j∈JFj.

The lemma is proved.

Lemma 5. Let F1 and F2 be such ω-fibered formations with a bp-direction δ that F1∩F2 = (1).
Then π(F1) ∩ π(F2) ∩ ω = ∅.

Proof. Let fi be a minimal ω-satellite of the formation Fi, i = 1, 2. Suppose that π(F1) ∩
π(F2) ∩ ω 6= ∅. Then there exists such a prime number p that p ∈ π(F1) ∩ π(F2) ∩ ω. Since
π(F1)∩π(F2)∩ω ⊆ π(Fi)∩ω then p ∈ π(Fi)∩ω and, in view of Lemma 2 (1), we obtain fi(p) 6= ∅,
i = 1, 2. Then, according to Lemma 2 (6), we conclude that Np ⊆ Npfi(p) ⊆ Fi, i = 1, 2. Therefore,
Np ⊆ F1 ∩ F2 = (1). Contradiction. Consequently, π(F1) ∩ π(F2) ∩ ω = ∅.

The lemma is proved.
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Theorem 2. Let δ be a bp-direction, (1) 6= F ∈ Θωδ, and suppose that F = ⊕i∈IFi where

{Fi | i ∈ I} is the set of all atoms of the lattice Θωδ(F). If π(Fi)∩ω 6= ∅ for any i ∈ I then Θωδ(F)
is a distributive lattice.

Proof. Put Θ := Θωδ(F). As mentioned above, the set Θ is a lattice. Let M, H, X ∈ Θ. Verify
that

(M ∧Θ X) ∨Θ (M ∧Θ H) = M ∧Θ (X ∨Θ H) (I).

If at least one of the formations M, H or X is an identity formation then equality (I) is true. Let
M, H, X be nonidentity formations. Let us introduce the following notations:

X := (M ∧Θ X) ∨Θ (M ∧Θ H), Y := M ∧Θ (X ∨Θ H),

i.e. X is a Θ-formation generated by the set (M ∩ X) ∪ (M ∩ H), Y is an intersection of the
formations M and X ∨Θ H where X ∨Θ H := Z is a Θ-formation generated by the set X ∪ H.

Prove that X ⊆ Y . In view of the inclusions M ∩ X ⊆ M and M ∩ H ⊆ M it is true that
(M∩X)∪(M∩H) ⊆ M. Since M ∈ Θ we conclude that X ⊆ M. Further, since M∩X ⊆ X ⊆ X∪H

and M ∩ H ⊆ H ⊆ X ∪ H then (M ∩ X) ∪ (M ∩ H) ⊆ X ∪ H ⊆ Z and X ⊆ Z . Consequently,
X ⊆ M ∩ Z = Y .

Suppose that X ⊂ Y and G is a group of the minimal order in Y \ X . Then G 6= 1. Since
X and Y are formations then G is a monolithic group. Since G ∈ Y = M ∩ Z then G ∈ M and
G ∈ Z = Θform(X ∪ H). From G ∈ M ⊆ F = ⊕i∈IFi and G is a monolithic group, it follows that
G ∈ Fj for some j ∈ I. Consider the formation Θform(G). Since (1) ⊂ Θform(G) ⊆ Fj and Fj is
an atom of the lattice Θ then Fj = Θform(G). Since G ∈ Z we conclude that Fj ⊆ Z .

Put Z1 := ωF (X ∪ H, δ). Prove that Z = Z1. Recall that

Z = Θform(X ∪ H) where Θ = Θωδ(F).

Since X ∪ H ⊆ Z and Z ∈ Θωδ then Z1 ⊆ Z . Verify that Z ⊆ Z1. In view of X ∪ H ⊆ Z1 it
is sufficient to show that Z1 ∈ Θ. Since Z1 ∈ Θωδ it is sufficient to verify that Z1 ⊆ F. Indeed,
F ∈ Θωδ. Since X ⊆ F and H ⊆ F we conclude that X ∪ H ⊆ F. Consequently, Z1 ⊆ F, and so
Z1 ∈ Θ. It means that Z1 is a Θ-formation which contains the set X ∪ H. Hence, Z ⊆ Z1. Thus,
it has been established that Z = Z1 and it is true that π(Z ) = π(Z1). In view of Lemma 2 (1),
π(Z1) ∩ ω = π(X ∪ H) ∩ ω and, therefore, π(Z ) ∩ ω = π(X ∪ H) ∩ ω.

According to Lemma 4, there exist such subsets T,R, S of the set I that X = ⊕t∈TFt, H =
⊕r∈RFr, Z = ⊕s∈SFs. Verify that S = R ∪ T . Since X ∪ H ⊆ Z then R ∪ T ⊆ S. Suppose that
R ∪ T ⊂ S and s1 ∈ S \ (R ∪ T ). Then Fs1

⊆ Z but Fs1
* X and Fs1

* H. Hence,

π(Fs1
) ∩ ω ⊆ π(Z ) ∩ ω = π(X ∪ H) ∩ ω = (π(X) ∪ π(H)) ∩ ω = (π(X) ∩ ω) ∪ (π(H) ∩ ω).

Therefore, π(Fs1
) ∩ ω ⊆ π(X) ∩ ω or π(Fs1

) ∩ ω ⊆ π(H) ∩ ω. Consequently,

π(Fs1
) ∩ π(X) ∩ ω = π(Fs1

) ∩ ω 6= ∅ or π(Fs1
) ∩ π(H) ∩ ω = π(Fs1

) ∩ ω 6= ∅.

On the other hand, since Fs1
* X and X = ⊕t∈TFt we conclude that Fs1

∩ X = (1). According to
Lemma 5, π(Fs1

) ∩ π(X) ∩ ω = ∅. Likewise, Fs1
∩H = (1) and, in view of Lemma 5, it is true that

π(Fs1
) ∩ π(H) ∩ ω = ∅. Contradiction. Thus, S = R ∪ T .

Since Fj ⊆ Z then j ∈ S, and so j ∈ R or j ∈ T . Thus, Fj ⊆ X or Fj ⊆ H. Therefore, G ∈ X

or G ∈ H. Suppose that G ∈ X. Since G ∈ M then G ∈ M ∩ X = M ∧Θ X ⊆ X . Contradiction. If
G ∈ H then G ∈ M∩H = M∧ΘH ⊆ X . Contradiction. Thus, X = Y and the equality (I) is true.

The theorem is proved.
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4. The conditions under which the lattice Θωδ(F) is a lattice with complements

First we wil prove the following lemma.

Lemma 6. Let F = H⊕L where H,L are nonidentity formations, π(H)∩ω 6= ∅, π(L)∩ω 6= ∅
and π(H) ∩ π(L) ∩ ω = ∅. If F,H ∈ Θωδ and δ is a bp-direction then L ∈ Θωδ.

Proof. Let F, H ∈ Θωδ and δ be a bp-direction. Prove that L ∈ Θωδ. Put F := ωF (f, δ),
H := ωF (h, δ). According to Lemma 2 (4), we can put f(ω′) = F and h(ω′) = H. Consider such an
ωF -function m that m(ω′) = L, m(q) = f(q) for any q ∈ (π(F) ∩ ω) \ (π(H) ∩ ω) and m(q) = ∅ for
any q ∈ (π(H) ∩ ω) ∪ (ω \ (π(F)). Put M := ωF (m, δ).

Verify that M ⊆ F. Suppose that M ∈ M. Then

M/Oω(M) ∈ m(ω′) = L ⊆ F = f(ω′)

and M/Mδ(p) ∈ m(p) for any p ∈ π(M)∩ω. Hence, m(p) 6= ∅ for any p ∈ π(M)∩ω. Consequently,
m(p) = f(p) and it is true that M/Mδ(p) ∈ f(p) for any p ∈ π(M) ∩ ω. Thus, M ∈ F and M ⊆ F.

Prove that L = M. Assume that L ∈ L. Since L is a Q-closed class, we obtain L/Oω(L) ∈
L = m(ω′). Put p ∈ π(L) ∩ ω. Then p ∈ π(L) ∩ ω. From π(H) ∩ π(L) ∩ ω = ∅ it follows that
p ∈ (π(F) ∩ ω) \ (π(H) ∩ ω). Since L ∈ L ⊆ F then we conclude that L/Lδ(p) ∈ f(p) = m(p). Thus,
L ∈ M, and so L ⊆ M.

Suppose that L ⊂ M and K is a group of the minimal order in M \ L. Hence, K 6= 1 and K is
a monolithic group. Assume that K is an ω′-group. Then Oω(K) = 1. Since K ∈ M then

K ∼= K/Oω(K) ∈ m(ω′) = L

that is impossible. Consequently, π(K)∩ω 6= ∅. From K ∈ M and M ⊆ F it follows that K ∈ F. It
means that K = A×B where A ∈ H, B ∈ L. Since K is a monolithic group then K = A or K = B.
If K = B then K ∈ L. Contradiction. Thus, K = A ∈ H. Then π(K) ⊆ π(H) and, therefore, for
any p ∈ π(K)∩ω ⊆ π(H)∩ω we obtain m(p) = ∅. On the other hand, from K ∈ M it follows that
K/Kδ(p) ∈ m(p) for any p ∈ π(K) ∩ ω. Contradiction. Thus, L = M.

The lemma is proved.

Theorem 3. Let δ be a bp-direction, (1) 6= F ∈ Θωδ, F = ⊕i∈IFi where {Fi | i ∈ I} is the set

of all atoms of the lattice Θωδ(F). If π(Fi) ∩ ω 6= ∅ for any i ∈ I then Θωδ(F) is a lattice with

complements.

Proof. Put Θ := Θωδ(F). Note that the lattice Θ has a zero (1) and an identity F. Let
H ∈ Θ. Prove that H has a complement in the lattice Θ. If H = (1) then F is a complement to
H in Θ. If H = F then (1) is a complement to H in Θ. Put H 6= (1) and H 6= F. In view of
Lemma 4, we obtain H = ⊕i∈JFi where J ⊂ I, J 6= ∅. Put I1 := I \ J and M := ⊕i∈I1Fi. Then
F = (⊕i∈JFi) ⊕ (⊕i∈I1Fi) = H ⊕ M. Verify that M is a complement to H in the lattice Θ. Since
Fi ∩ Fj = (1) for any i 6= j then, according to Lemma 5, we conclude that π(Fi) ∩ π(Fj) ∩ ω = ∅
for any i 6= j, and so π(M)∩ π(H)∩ ω = ∅. Since H 6= F then M 6= (1) and according to Lemma 6,
it is true that M ∈ Θ.

Prove that H ∧Θ M = (1). Note that H ∧Θ M = H ∩ M. Suppose that H ∩ M 6= (1). Then
there exists such a formation X ⊆ H ∩M that X is an atom of the lattice Θ. In view of X ⊆ H and
X ⊆ M, we obtain X = Fj for some j ∈ J and X = Fi1 for some i1 ∈ I1. Contradiction. Therefore,
H ∩M = (1).

Establish that H ∨Θ M = F. Indeed, since H ∪M ⊆ F and F ∈ Θ then H ∨Θ M ⊆ F. Prove that
F ⊆ H ∨Θ M. Since F = H⊕M, it is sufficient to verify that H⊕M ⊆ H ∨Θ M. Let A ∈ H⊕M. If
A ∈ H then A ∈ H ∪M ⊆ H ∨Θ M. If A ∈ M then similarly A ∈ H ∨Θ M. Put A = H ×M where
H ∈ H, M ∈ M, H 6= 1,M 6= 1. It means that
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A/H ∼= M ∈ M ⊆ H ∨Θ M, A/M ∼= H ∈ H ⊆ H ∨Θ M.

Since H ∨Θ M is a formation then A ∼= A/(H ∩M) ∈ H ∨Θ M. Hence, F = H⊕M ⊆ H ∨Θ M and,
therefore, H ∨Θ M = F. Thus, Θ is a lattice with complements.

The theorem is proved.

5. Corollaries and concluding remarks

Since PFR-functions δ1, δ2, δ3 are the bp-directions and δ1 < δ2 < δ3 then Theorem 1 implies
the results for ω-local, ω-special and ω-central formations.

Corollary 1. The lattice of all ω-local formations is modular ([15, Theorem 4, case n = 1]).

Corollary 2. The lattice of all ω-special formations is modular.

Corollary 3. The lattice of all ω-central formations is modular.

Let Θ be an arbitrary lattice of the formations, F1,F2 ∈ Θ, F1 ⊆ F2. Denote by F2/ΘF1 the
following sublattice of the lattice Θ:

F2/ΘF1 := {H ∈ Θ | F1 ⊆ H ⊆ F2 } [13].

If Θ is a modular lattice then as follows from [1, Chapter 1, Paragraph 7], for any F1,F2 ∈ Θ the
lattices (F1 ∨Θ F2)/ΘF2 and F1/Θ(F1 ∧Θ F2) are isomorphic. Therefore, according to Theorem 1,
we obtain the following result.

Corollary 4. Let δ be a bp-direction such that δ1 ≤ δ ≤ δ3. Then for any formations F1,F2 ∈
Θωδ the following lattice isomorphism holds:

(F1 ∨Θωδ
F2)/Θωδ

F2
∼= F1/Θωδ

(F1 ∧Θωδ
F2).

Note that a distributive lattice with complements is called a Boolean lattice [1]. In view of this,
Theorems 2 and 3 imply the following result.

Corollary 5. Let δ be a bp-direction, (1) 6= F ∈ Θωδ, F = ⊕i∈IFi where {Fi | i ∈ I} is a set of

all atoms of the lattice Θωδ(F). If π(Fi) ∩ ω 6= ∅ for any i ∈ I then Θωδ(F) is a Boolean lattice.

Remark 1. Let δ be a PFR-function, f : P → {formations of groups} is a function called a
PF -function. A formation F = (G ∈ E | G/Gδ(p) ∈ f(p) for all p ∈ π(G)) is called a fibered formation

with a direction δ and with a satellite f [18]. According to Theorem 3 [18], for a nonempty nonidentity
formation F, where π(F) ⊆ ω, F is a fibered formation if and only if F is an ω-fibered formation.
Consequently, the established in the Theorems 1–3 lattice properties of ω-fibered formations are
valid for fibered formations of finite groups, in particular, for local, special and central formations.

Remark 2. According to [13, Corollary 4.2.8], the lattice of all local formations is not distributive.
The author does not know if there exist conditions under which the lattice of all ω-fibered (fibered)
formations is a distributive lattice.

The author is grateful to M.M. Sorokina for constructive comments and valuable advices during
writing this work.
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