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1. Introduction

In the following let O be a complete discrete valuation ring, with field of fractions K of
characteristic 0 and residue field k, an algebraically closed field of characteristic two. We assume K
to be large enough for all finite groups considered in this paper. The triple (K,O, k) is usually
called p-modular system. We say that two algebras A and B are Morita equivalent if there is an
equivalence of categories of A-modules and B-modules. Donovan’s conjecture states that for each
fixed p-group D there are only finitely many Morita equivalence classes of blocks of finite groups
with defect group D. The conjecture is still open, but it has been proved for abelian 2-groups in [12]
over k and later in [13] over O.

A classification of all Morita equivalence classes of blocks with a smaller elementary abelian
defect 2-group (C2)

n has been done by Alperin for n = 1 [1], various authors for n = 2 [6; 16; 22],
Eaton for n = 3, 4 [9; 10] and the author for n = 5 [2]. We classify principal blocks with defect
group (C2)

6. The reason we restrict our attention to principal blocks is that, at the moment, the
general method to classify blocks described in [3] does not allow us to deal with arbitrary blocks in
this case, mainly because in many cases we are unable to compute Picard groups of various blocks
involved.

In Section 2 we establish our notation and define several algebraic objects. In Section 3 we list
many classic reductions in modular representation theory, and prove some technical lemmas. In
Section 4 we examine blocks of normal subgroups with odd index, describing a method originally
developed in [3] and used in [2]. In Section 5 we prove our main theorem, and in Section 6 we examine
nonprincipal blocks with defect group (C2)

6 and give a list that we conjecture to be complete.

1This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.
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Theorem 1.1. Let G be a finite group with an elementary abelian Sylow 2-subgroup D of or-
der 64, and let B be the principal block of OG. Then B is Morita equivalent to the principal block
of precisely one of the following groups:

(i) (C2)
6 (inertial quotient {1})

(ii) A4 × (C2)
4 (i.q. (C3)1)

(iii) A5 × (C2)
4 (i.q. (C3)1)

(iv) ((C2)
4
⋊C3)× (C2)

2 (i.q. (C3)2)
(v) (C2)

6
⋊ C3 (i.q. (C3)3)

(vi) ((C2)
4
⋊C5)× (C2)

2 (i.q.C5)
(vii) ((C2)

3
⋊C7)× (C2)

3 (i.q. (C7)1)
(viii) SL2(8)× (C2)

3 (i.q. (C7)1)
(ix) (C2)

6
⋊2 C7 (i.q. (C7)2)

(x) (C2)
6
⋊4 C7 (i.q. (C7)3)

(xi) (C2)
6
⋊ C9 (i.q. C9)

(xii) A4 ×A4 × (C2)
2 (i.q. (C3 × C3)1)

(xiii) A4 ×A5 × (C2)
2 (i.q. (C3 × C3)1)

(xiv) A5 ×A5 × (C2)
2 (i.q. (C3 × C3)1)

(xv) ((C2)
4
⋊C3)×A4 (i.q. (C3 × C3)3)

(xvi) ((C2)
4
⋊C3)×A5 (i.q. (C3 × C3)3)

(xvii) (C2)
6
⋊ (C3 × C3) (i.q. (C3 × C3)2)

(xviii) ((C2)
4
⋊C5)×A4 (i.q. (C15)1)

(xix) ((C2)
4
⋊C5)×A5 (i.q. (C15)1)

(xx) ((C2)
4
⋊C15)× (C2)

2 (i.q. (C15)2)
(xxi) SL2(16) × (C2)

2 (i.q. (C15)2)
(xxii) (C2)

6
⋊ C15 (i.q. (C15)3)

(xxiii) ((C2)
3
⋊C7)×A4 × C2 (i.q. (C21)1)

(xxiv) ((C2)
3
⋊C7)×A5 × C2 (i.q. (C21)1)

(xxv) SL2(8) ×A4 × C2 (i.q. (C21)1)
(xxvi) SL2(8) ×A5 × C2 (i.q. (C21)1)
(xxvii) (C2)

6
⋊ C21 (i.q. (C21)2)

(xxviii) ((C2)
3
⋊ (C7 ⋊ C3))× (C2)

3 (i.q. (C7 ⋊ C3)1)
(xxix) J1 × (C2)

3 (i.q. (C7 ⋊ C3)1)
(xxx) Aut(SL2(8))× (C2)

3 (i.q. (C7 ⋊ C3)1)
(xxxi) (C2)

6
⋊ (C7 ⋊ C3) (i.q. (C7 ⋊ C3)2)

(xxxii) (SL2(8)× (C2)
2)⋊ C3 × C2 (i.q. (C7 ⋊ C3)2)

(xxxiii) (C2)
6
⋊ (C7 ⋊ C3) (i.q. (C7 ⋊ C3)3)

(xxxiv) (C2)
6
⋊ (C7 ⋊ C3) (i.q. (C7 ⋊ C3)4)

(xxxv) A4 ×A4 ×A4 (i.q. C3 ×C3 × C3)
(xxxvi) A4 ×A4 ×A5 (i.q. C3 ×C3 × C3)
(xxxvii) A4 ×A5 ×A5 (i.q. C3 ×C3 × C3)
(xxxviii) A5 ×A5 ×A5 (i.q. C3 ×C3 × C3)

(xxxix) (C2)
6
⋊ 31+2

+ (i.q. 31+2
+ )

(xl) (C2)
6
⋊ 31+2

− (i.q. 31+2
− )

(xli) ((C2)
5
⋊C31)× C2 (i.q. C31)

(xlii) SL2(32) × C2 (i.q. C31)
(xliii) ((C2)

4
⋊C15)×A4 (i.q. C15 × C3)

(xliv) ((C2)
4
⋊C15)×A5 (i.q. C15 × C3)

(xlv) SL2(16) ×A4 (i.q. C15 × C3)
(xlvi) SL2(16) ×A5 (i.q. C15 × C3)
(xlvii) ((C2)

3
⋊C7)× ((C2)

3
⋊ C7) (i.q. C7 ×C7)

(xlviii) ((C2)
3
⋊C7)× SL2(8) (i.q. C7 ×C7)
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(xlix) SL2(8) × SL2(8) (i.q. C7 × C7)
(l) (C2)

6
⋊ C63 (i.q. C63)

(li) SL2(64) (i.q. C63)
(lii) (C2)

6
⋊ (C7 ⋊ C9) (i.q. C7 ⋊ C9)

(liii) ((C2)
3)⋊ (C7 ⋊ C3))×A4 × C2 (i.q. ((C7 ⋊ C3)× C3)1)

(liv) ((C2)
3)⋊ (C7 ⋊ C3))×A5 × C2 (i.q. ((C7 ⋊ C3)× C3)1)

(lv) J1 ×A4 × C2 (i.q. ((C7 ⋊ C3)× C3)1)
(lvi) J1 ×A5 × C2 (i.q. ((C7 ⋊ C3)× C3)1)
(lvii) Aut(SL2(8))×A4 × C2 (i.q. ((C7 ⋊ C3)× C3)1)
(lviii) Aut(SL2(8))×A5 × C2 (i.q. ((C7 ⋊ C3)× C3)1)
(lix) ((C2)

6
⋊ ((C7 ⋊ C3)× C3) (i.q. ((C7 ⋊ C3)× C3)2)

(lx) A4 ≀ C3 (i.q. C3 ≀ C3)
(lxi) A5 ≀ C3 (i.q. C3 ≀ C3)
(lxii) ((C2)

3)⋊ (C7 ⋊ C3))× ((C2)
3)⋊ C7) (i.q. (C7 ⋊ C3)× C7)

(lxiii) ((C2)
3)⋊ (C7 ⋊ C3))× SL2(8) (i.q. (C7 ⋊ C3)× C7)

(lxiv) J1 × ((C2)
3)⋊ C7) (i.q. (C7 ⋊ C3)× C7)

(lxv) J1 × SL2(8) (i.q. (C7 ⋊ C3)× C7)
(lxvi) Aut(SL2(8))× ((C2)

3)⋊ C7) (i.q. (C7 ⋊ C3)× C7)
(lxvii) Aut(SL2(8))× SL2(8) (i.q. (C7 ⋊ C3)× C7)
(lxviii) (C2)

6
⋊ ((C7 ⋊ C7)⋊ C3) (i.q. ((C7 ⋊ C7)⋊4 C3))

(lxix) (SL2(8)× ((C2)
3
⋊ C7))⋊ C3 (i.q. ((C7 ⋊ C7)⋊4 C3))

(lxx) (SL2(8)× SL2(8))⋊ C3 (i.q. ((C7 ⋊ C7)⋊4 C3))
(lxxi) (C2)

6
⋊ ((C7 ⋊ C7)⋊ C3) (i.q. ((C7 ⋊ C7)⋊5 C3))

(lxxii) ((C2)
5
⋊ (C31 ⋊ C5))× C2 (i.q. C31 ⋊ C5)

(lxxiii) Aut(SL2(32)) × C2 (i.q. C31 ⋊ C5)
(lxxiv) (C2)

6
⋊ (C63 ⋊ C3) (i.q. C63 ⋊ C3)

(lxxv) SL2(64) ⋊ C3 (i.q. C63 ⋊ C3)
(lxxvi) (C2)

6
⋊ ((C7 ⋊ C3)× (C7 ⋊ C3)) (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))

(lxxvii) ((C2)
3)⋊ (C7 ⋊ C3))× J1 (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))

(lxxviii) ((C2)
3)⋊ (C7 ⋊ C3))×Aut(SL2(8)) (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))

(lxxix) J1 × J1 (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))
(lxxx) J1 ×Aut(SL2(8)) (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))
(lxxxi) Aut(SL2(8))×Aut(SL2(8)) (i.q. (C7 ⋊ C3)× (C7 ⋊ C3))

Moreover, if a block C of OH for a finite group H is Morita equivalent to B, then the defect
group of C is isomorphic to D. If C is the principal block of OH, then the inertial quotient of C is
isomorphic to the inertial quotient of B, and they have the same action on D.

Detailed data about each class of blocks is available on the Block Library [14].

2. Notation and definitions

For a finite group G and a commutative ring R we denote the group algebra as RG. In the
following, R will either be O or k, which are as specified above. For a block B of OG with defect
group D, given a block e of CG(D) such that the Brauer correspondent eG = B (often called a root
of B), we define NG(D, e)/CG(D) to be its inertial quotient (usually denoted as E). It is always a
p′-group, and if the block B is nilpotent then E = 1. We denote the idempotent that specifies the
block B as eB ; in other words, B = OGeB . Moreover, we denote the number of irreducible characters
of KG contained in the block B as k(B), and the number of irreducible Brauer characters of kG
(equivalently, of simple kG-modules) as l(B). The unique block of OG that contains the trivial
module is called the principal block, and we denote it as B0(OG).
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Two R-algebras (in particular, blocks) B and C are Morita equivalent if their module categories
are equivalent as R-linear categories. A more explicit, equivalent definition is the existence of a
(B,C)-bimodule M and of a (C,B)-bimodule N such that M ⊗C N ∼= B as (B,B)-bimodules and
N ⊗B M ∼= C as (C,C)-bimodules. Using bimodules to characterize Morita equivalences allows us
to examine stronger equivalences by looking at special properties of said bimodules.

Two algebras are basic Morita equivalent if there is a Morita equivalence realised by bimodules
with endopermutation source. Two algebras are source algebra equivalent (or Puig equivalent) if the
Morita equivalence is realised by bimodules with trivial source.

If two blocks B and C are Morita equivalent over O, then k(B) = k(C) and l(B) = l(C).
Moreover, the centers Z(B) and Z(C) are isomorphic, and B and C have the same Cartan matrices
and decomposition matrices [23]. The defect groups of B and C have the same order, exponent
and p-rank, so in particular they are isomorphic when one of them is elementary abelian. If two
blocks B and C are basic Morita equivalent then, in addition to the invariants listed above, the
blocks always have isomorphic defect groups and the same fusion system (meaning, in particular,
that they have the same inertial quotient). Finally, if two blocks are source algebra equivalent then
they have isomorphic source algebras.

Given a block of OG, there is a unique block of kG that corresponds to it, via the map OG → kG,
B → B := B ⊗O k. In particular, a Morita equivalence between blocks of OG and OH induces a
Morita equivalence between the corresponding blocks of kG and kH. The converse is not known to
hold, so a classification over O is stronger. There is, however, no known counterexample.

The Picard group of a block B is defined as the group of (B,B)-bimodules that induce a self-
Morita equivalence of B. The group operation is given by the tensor product. In general, blocks
of kG can have infinite Picard groups but, as shown in [15], blocks of OG always have a finite
Picard group. By definition, the Picard group of a block is invariant under Morita equivalences.
There is always an injective map from the outer automorphism group of a block to the Picard group
of said block, which can be used to control the outer automorphism group of a block of which only
the Morita equivalence class is known. We are also interested in a particular subgroup: we define
T (B) ≤ Pic(B) to be the subgroup of the bimodules with trivial source. The main theorem of [4]
gives a bound on the size of this subgroup. Note that, by definition, T (B) is invariant under source
algebra equivalences.

3. Reductions and technical lemmas

Given a group G and a normal subgroup N , we say that a block B of OG covers a block b of
ON if there is a module in B such that the decomposition of its restriction to ON has a summand
in b, or equivalently if eBeb 6= 0. This relation is the main tool we use to obtain our classification,
as the structures of B and b are closely related: as shown in [1, 15.1], the blocks covered by B are
in a single G-orbit (G acts by conjugation), and the defect groups of b are of the form D∩N where
D is a defect group of B. We remark that, since the restriction of the trivial module to a normal
subgroup is still a trivial module, the principal block of G always covers the principal block of N .

The following are standard reductions in modular representation theory.

Theorem 3.1 (Fong’s First Reduction [23]). Let G be a finite group, and let N be a normal
subgroup of G. Let b be a block of ON and B be a block of OG that covers b. Let H be the stabiliser
of b in G acting by conjugation. Then there is a one-to-one correspondence between the blocks of
OG that cover b and the blocks of OH that cover b, where each block is source algebra equivalent to
its correspondent. In particular, if B is principal then so is its correspondent.

Proof. The first claim can be found, among many others, in Proposition 6.8.3 in [23]. The
fact that C is a principal block follows from the uniqueness of C and Brauer’s third main theorem.

We use the following version of Fong’s Second Reduction when G has a normal p′-subgroup.
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Theorem 3.2 [21]. Let G be a finite group and N ⊳ G. Let B be a block of OG with defect
group D that covers a G-stable nilpotent block b of ON with defect group D ∩ N . Then there are
finite groups M ⊳L such that M ∼= D∩N , L/M ∼= G/N , there is a subgroup DL ≤ L with DL

∼= D
and M ≤ DL, and there is a central extension L̃ of L by a p′-group, and a block B̃ of OL̃ which is
Morita equivalent to B and has defect group D̃ ∼= DL

∼= D. If B is the principal block, then so is B̃.

Proof. Guidance on the extraction of this result from [21] can be found in [9, 2.2], and the
last claim is proved in [10, 2.2]. In particular, we use the following immediate consequence.

Corollary 3.3 [10]. Let G be a finite group, let N ⊳ G with N 6≤ Z(G)Op(G). Let B be a
quasiprimitive p-block of OG covering a nilpotent block b of ON . Then there is a finite group H
with [H : Op′(Z(H))] < [G : Op′(Z(G))] and a block BH with isomorphic defect group to the one of
B, such that BH is Morita equivalent to B.

Given a finite group G, a block B of OG with defect group D is nilpotent covered if these exists
a group G̃ and a nilpotent block B̃ of OG̃ such that G ⊳ G̃ and B̃ covers B. A block B is said
to be inertial if it is basic Morita equivalent to its Brauer correspondent in NG(D). The following
proposition relates these concepts.

Lemma 3.4 [30; 34]. Let G be a finite group and let N ⊳G. Let b be a p-block of ON covered
by a block B of OG. Then the following statements hold.

(1) If B is inertial, then b is inertial.

(2) If b is nilpotent covered, then b is inertial.

(3) If p does not divide [G : N ] and b is inertial, then B is inertial.

(4) If b is nilpotent covered, then it has abelian inertial quotient.

Proof. (1), (2) are Theorem 3.13, and (4) is Corollary 4.3 in [30]. (3) is the main theorem of [34].

Given a finite group G and a normal subgroup N , and given a block b of ON , the group G acts
by conjugation on the block b of kN . We define the subgroup G[b] ≤ G as the kernel of the map
G → Out(b). By definition, N ≤ G[b], and G[b] is a normal subgroup of G.

Lemma 3.5. Let G be a finite group and B a block of OG with defect group D. Let N be a
normal subgroup of G that contains D, and suppose that B covers a G-stable block b of ON . Let b̂
be a block of OG[b] covered by B. Then the following statements hold.

(1) b is source algebra equivalent to b̂.

(2) B is the unique block of OG that covers b̂.

Proof. From [18, 2.2] there is a source algebra equivalence between b̂ and b, that lifts to b̂ and
b by [28, 7.8]. Part (2) follows from 3.5 in [27, 3.5]. We can define G[b]O, the subgroup of elements
that act as inner automorphisms on b. Note that, using the canonical map OG → kG, G[b]O ≤ G[b].

The following fact about principal blocks covering each other is useful.

Lemma 3.6. Let G be a finite group, and let N⊳G such that p 6 | [G : N ]. Let Eb be the inertial
quotient of the principal block of ON , and EB the inertial quotient of the principal block of OG.
Then Eb is a normal subgroup of EB.

Proof. Recall that for a principal block, the inertial quotient is just E = NG(D)/CG(D).
In fact, the root e of B0(OG) in CG(D) contains the restriction of the trivial module, which is
irreducible and G-stable.

Consider the map NN (D) → NG(D)/CG(D) defined by n 7→ nCG(D). Since nCG(D) = 1
only if n ∈ (N ∩ CG(D)), the kernel of this homomorphism is CN (D). By the first isomorphism



Blocks with defect group (C2)
6 225

theorem, Eb ≤ EB . Now NN (D)/CN (D) ∼= NN (D)CG(D)/CG(D) and, since NN (D)⊳NG(D) and
CG(D)⊳NG(D), we are done.

Now we focus on the case when p = 2, and D = (C2)
6. We need to examine blocks with a

smaller elementary abelian defect group, and in particular we highlight this result on blocks with a
Klein four defect group:

Proposition 3.7 [6; 16; 22]. Let G be a finite group and let B be a block of OG with defect group
D = (C2)

2. Then B is source algebra equivalent to O(C2)
2, OA4 or B0(OA5).

Now we list the possible inertial quotients for a block with defect group (C2)
6 by looking at

conjugacy classes of subgroups of GL6(2) of odd order, computed with Magma [5].
For each listed group, the group algebra O(D⋊E) is a block, and for each different action of E

this block lies in its own corresponding Morita equivalence class.
We use the notation F21 = C7 ⋊ C3 and we denote SmallGroup(147, j) as (C7)

2
⋊j C3 to

distinguish the two different nontrivial semidirect products, that both arise as possible inertial
quotients. In order to distinguish different actions of subgroups in the same isomorphism class, that
correspond to conjugacy classes of subgroups in GL6(2), we denote them as follows.

• (C3)1 is the one with |CD(E)| = 24.

• (C3)2 is the one with |CD(E)| = 22.

• (C3)3 is the one that fixes no nontrivial element of D. It is generated by the 21st power of the
Singer cycle in GL6(2).

• (C3)
2
1 is the one with |CD(E)| = 22.

• (C3)
2
2 is the one realised by the unique subgroup C3 × C3 of C63 ⋊ C3.

• (C3)
3
2 is the one realised in ((C2)

4
⋊ (C3)2)× ((C2)

2
⋊ (C3)1).

• (C7)1 is the one with |CD(E)| = 23.

• (C7)2 is generated by the 9th power of the Singer cycle in GL6(2).

• (C7)3 is a free action on D defined as follows: let x be a Singer cycle of GL6(2), and let y = x9.
Let D = D1 ×D2 with Di = (C2)

3. Then (C7)3 is defined as C7 acting as x on D1, and as x3

on D2.

• (C15)1 is the one with CD(E) = 1, but CD(C3) = (C2)
4.

• (C15)2 is the one with CD(E) = (C2)
2.

• (C15)3 is the one with CD(E) = 1, and CD(C3) = 1.

• (C21)1 is the one with |CD(E)| = 23.

• (C21)2 is the one that fixes no nontrivial element of D. It is generated by the 3rd power of
the Singer cycle in GL6(2).

• (F21)1 is the one with |CD(E)| = 23.

• (F21)2 is the one with |CD(E)| = 2.

• (F21)3 is the one where the unique subgroup C7 acts as (C7)2.

• (F21)4 is the one where the unique subgroup C7 acts as (C7)3.

• (F21 × C3)1 is the one where the unique subgroup C21 acts as (C21)1.

• (F21 × C3)2 is the one where the unique subgroup C21 acts as (C21)2.

We represent the relations between inertial quotients as a diagram: there is an arrow with a dotted
line between two nontrivial subgroups of odd order H,K ≤ GL6(2) whenever K has a subgroup H ′

that is isomorphic to H and whose action on D is the same as the one of H, and [K : H ′] is an odd
prime. The line is continuous if H ′ is a normal subgroup of K (see Fig. 1).

Fong and Harris have shown in [17] that, when p = 2, principal blocks with an abelian
defect group are perfectly isometric to their Brauer correspondent. In particular, this enables us to
determine various invariants that we use to simplify the classification process.



226 Cesare Giulio Ardito

F
ig

.
1



Blocks with defect group (C2)
6 227

Lemma 3.8. Let G be a finite group with an elementary abelian Sylow 2-subgroup D, and let B
be the principal block of OG (or kG). Let E be the inertial quotient of B. Then the number of
isomorphism classes of simple modules l(B) is equal to the number of irreducible characters of OE,
k(E).

Explicitly, when D = (C2)
6 all the possible pairs (E, l(B)) are: (1, 1), (C3, 3), (C5, 5), (C7, 7),

(C9, 9), (C3 ×C3, 9), (C15, 15), (C7 ⋊C3, 5), (C21, 21), ((C3)
3, 27), (31+2

+ , 11), (31+2
− , 11), (C31, 31),

(C15×C3, 45), (C7×C7, 49), ((C7⋊C3)×C3, 15), (C7⋊C9, 15), (C63, 63), (C3 ≀C3, 17), ((C7×C7)⋊2

C3), 19), ((C7×C7)⋊4C3), 19), ((C7⋊C3)×C7, 35), (C31⋊C5, 11), (C63⋊C3, 29), ((C7⋊C3)
2, 25).

Proof. From the main theorem of [17], B is perfectly isometric to its Brauer correspondent b,
the principal block of ONG(D). Note that, by definition, B and b have the same inertial quotient.
From the main theorem of [19] and [23, 6.14.1], b is source algebra equivalent to a twisted group
algebra Oα(D ⋊ E). From the discussion in [31, 2.5], since b is the principal block then α = 1.
In particular l(B) = l(b) = l(O(D ⋊ E)) = k(E). The result follows by computing the number of
irreducible ordinary characters for each possible isomorphism class of inertial quotients.

Due to a theorem of Walter, we know precisely what nonabelian finite simple groups possess an
abelian Sylow 2-subgroup, and hence a principal block with a defect group we are interested into.
Note that, perhaps unsurprisingly, every abelian defect 2-group that occurs in finite simple groups
is elementary abelian.

Proposition 3.9 [33]. Let G be a nonabelian finite simple group with an abelian Sylow 2-
subgroup P . Then one of the following occurs:

(i) G = PSL2(q) with q ≡ 3, 5 (mod 8), P = (C2)
2 and NG(P ) ∼= A4;

(ii) G = PSL2(2
n) for n ∈ N, P = (C2)

n and NG(P ) ∼= (C2)
n
⋊ C2n−1;

(iii) G = 2G2(3
2n+1) for n ∈ N, P = (C2)

3 and NG(P ) ∼= C2 ×A4;

(iv) G = J1, P = (C2)
3 and NG(P ) = (C2)

3
⋊ (C7 ⋊ C3).

Blocks of quasisimple groups with an abelian defect group when p = 2 have been classified
in [8, 6.1]. However, our methods are not currently able to deal with nonprincipal blocks in full
generality, which is why we use Walter’s theorem instead.

4. Crossed products and block chains

We recall the key concepts from [20]. Given a finite group G and a ring with identity A, A is a G-
graded ring if there is a decomposition A =

⊕
g∈G Ag as additive subgroups such that AgAh ⊆ Agh,

and A1 = R is a subring of A containing 1. A G-graded ring A is called a crossed product of A1

with G if for any g ∈ G, Ag contains at least one unit. We call two G-graded rings A and B weakly
equivalent if there is an isomorphism of rings φ : A → B such that φ(Ag) ⊆ Bg for all g ∈ G.
Moreover, we say they are equivalent if φ restricts to the identity map on A1

∼= B1. One of the main
results of [20] is to give a parametrization of all possible crossed products between a ring R and a
group G.

Theorem 4.1. The equivalence classes of crossed products of a ring R with a group G are
parametrized by pairs (ω, ζ), where ω : G → Out(R) is a homomorphism whose corresponding 3-
cocycle in H3(G,U(Z(R))) is zero, and ζ ∈ H2(G,U(Z(R))) where the action of G on U(Z(R)) is
induced by ω. Moreover, weak equivalence classes of crossed products correspond to orbits of Aut(R)
on the set of possible (ω, ζ).

Given a finite group G and normal subgroup N with index a prime ℓ 6= p, and given a block B
of OG that covers a G-stable block b of ON , then B is a crossed product of b with G/N . Therefore,
we can use the theorem above to determine all possibilities for B for each given b. In most cases we
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will encounter, however, we only know b up to Morita equivalence, and we need a way to extend
this information to the possibilities for B. Let f be a basic idempotent of b, i.e. an idempotent such
that fbf is a basic algebra of b. Then, as shown in [2, 4.2], fBf is a crossed product of fbf with X
and fBf is Morita equivalent to B. The method we use is precisely the one developed in [2, 4.5].
We give a quick summary and establish notation for the benefit of the reader, and refer to [2] for
the technical details.

Method 4.2. Let G be a finite group and B be the principal block of OG with defect group
D ∼= (C2)

6. Let N ⊳G with [G : N ] odd (so G/N is solvable) and let B cover a G-stable block b of
ON . Moreover, suppose that G/N is supersolvable, that CG(N) ≤ N , and that N = ker(G → Out(b))
where the map is given by the action induced by conjugation of G on b. Since [G : N ] is odd, B and
b share a defect group.

For a basic idempotent f for b, by [2, 4.2] we know that B is Morita equivalent to fBf , which
is a crossed product of fbf with G/N . Then we have the following injective homomorphisms:

G/N
α

−−−−→ Out⋆(N)
β

−−−−→ Out(b)
γ

−−−−→ Pic(b) = Pic(fbf) = Out(fbf)

where Out⋆(N) = {Φ ∈ Out(N) : ∀φ ∈ Φ, φ(b) = b}.

For φ ∈ Aut(b), we define the b-b-bimodule φb as: φb = b as sets, and x.m.y = φ(x)my for
x,m, y ∈ b. Then for any g ∈ G the induced action τg ∈ Aut(b) given by conjugation has trivial
source, which means that τgb ∈ T (b), so the image of G/N under γβα is contained in T (b). Note,
however, that T (b) is not invariant under Morita equivalences.

Since G/N is supersolvable, we consider a chain of normal subgroups with prime indices,

N = N0 ⊳N1 ⊳ · · ·⊳Nt = G

and a corresponding chain of blocks bi of ONi such that bi covers bi−1, with bt := B and b0 := b.
We can determine all possibilities for b1 by considering all crossed product weak equivalence classes
specified by possible maps ω1 given by the action of G/N on b. In fact, we can assume that ζ = 1
(with the notation of Theorem 4.1) because N1/N is cyclic (see [10, 4.]).

For each distinct possibility for b1, we can then consider N2 and b2 as a crossed product of b1
with N2/N1. Possibilities for ω2 are controlled by the image of G/N1 in a quotient of Pic(b), but
this is not enough: in fact, while we know the possibilities for the isomorphism class of N2/N1,
we do not automatically know its embedding in Pic(b1). Hence, it is necessary to also compute
Pic(b1) to proceed. This is not merely a technical issue, but a concrete obstruction, and the reason
why a cocycle ζ is needed other than ω in Theorem 4.1 to determine the equivalence class of a
crossed product. An exception is when G/N is not cyclic but still has trivial second cohomology,
such as when G/N ≤ C7 ⋊ C3, in which case we can “jump” from N to G directly by considering
all possibilities for ω without considering a block chain.

We iterate the process to determine all possible block chains and, at the end, all possible Morita
equivalence classes for B.

Since we are only looking at principal blocks in this paper, we can use Lemma 3.8 together with
Lemma 3.6 to detect the inertial quotient of b from knowledge of l(b), and then to exclude some of
the classes determined for b1, . . . , B based on Lemma 3.6. Note that in general the inertial quotient
is not known to be invariant under Morita equivalences, which is why we need to use Lemma 3.8.
Further, note that analysis of crossed products does not distinguish principal blocks, and some
classes can only occur as nonprincipal blocks (any interested reader may compare Lemma 4.11
in [26] about arbitrary blocks with Lemma 3.6).

Now we apply Method 4.2 to the cases we are interested in. We label Morita equivalence classes
as in Theorem 1.1.
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Proposition 4.3. Let G be a finite group and B be the principal block of OG with defect group
D = (C2)

6. Suppose that B is quasiprimitive and that there are H1,H2 ⊳ G, H = H1 × H2 with
H⊳G and [G : H] odd. Then B covers the principal blocks ci of OHi, so B also covers the principal
block c ∼= c1 ⊗ c2 of OH. Suppose that CG(H) ≤ H and H = ker(G → Out(c)). Suppose that
H1,H2 ∈ {(C2)

3, J1,
2G2(q),SL2(8)} for some q = 32m+1, m ∈ N. Then the following holds.

(1) If H1 = SL2(8) and H2 = SL2(8) then B is Morita equivalent to c, or to (lxvii), (lxx), (lxxxi).

(2) If H1 = SL2(8) and H2 = (C2)
3 then B is Morita equivalent to c, or to (xxv), (xxx), (xxxii),

(xlviii), (lvii), (lxiii), (lxvi), (lxix), (lxxviii).

(3) If H1 = SL2(8) and H2 = J1 then B is Morita equivalent to c, or (lxxx).

(4) If H1 = J1 and H2 = (C2)
3 then B is Morita equivalent to c, or (lv), (lxiv), (lxxvii).

(5) If H1 = J1 and H2 = J1 then B is Morita equivalent to c.

(6) If H1 =
2G2(q) and H2 = SL2(8), then B is Morita equivalent to c or (lxxxi).

(7) If H1 =
2G2(q) and H2 = (C2)

3, then B is Morita equivalent to c or (lvii), (lxvi), (lxxviii).

(8) If H1 =
2G2(q) and H2 = J1, then B is Morita equivalent to c.

(9) If H1 = 2G2(q) and H2 = 2G2(q
′) for a possibly different q′ = 32m

′+1, m′ ∈ N, then B is
Morita equivalent to c.

Proof. In cases 1–5 we are dealing with specific groups instead of Morita equivalence classes,
so it suffices to examine their outer automorphism groups. Recall Out(SL2(8)) = C3, Out(J1) = 1
and Out((C2)

3) = GL3(2) with maximal subgroup of odd order is C7 ⋊ C3.
In the notation of Method 4.2, we write T for the maximal possible subgroup of odd order in

the image of G/H under α.

(1) If H1 = H2 = SL2(8) then T = C3 × C3, so G ≤ Aut(SL2(8)) ×Aut(SL2(8)). In particular,
B is among (xlix), (lxvii), (lxxxii) and (lxx).

(2) If H1 = SL2(8) and H2 = (C2)
3 then T = C3× (C7⋊C3), so in particular B is among (viii),

(xxv), (xxx), (xxxii), (xlviii), (lvii), (lxiii), (lxvi), (lxix), and (lxxviii).

(3) If H1 = SL2(8) and H2 = J1 then T = C3, so B is either in (lxv) or in (lxxx).

(4) If H1 = J1 and H2 = (C2)
3 then T = C7⋊C3, so B is among (xxix), (lv), (lxiv) and (lxxvii).

(5) If H1 = J1 and H2 = J1 then T = 1, so G = H and hence B is in (lxxix).

In cases 6–9 we are dealing with an infinite family of groups, so while for each possibility the
group T is known, there could be an arbitrary number of Morita equivalence classes for B. From [32]
every degree of an irreducible character of the principal block of H1 occurs with multiplicity 1
or 2, which implies that every automorphism of the principal block of H1 is inner. Hence since
H = ker(G → Out(c)) in our situation β(α(OutG(H1))) = 1 (that is, G acts trivially on H1). So in
cases 6-8 we can limit our analysis to the subgroup Out(H2), and, in case 9, G = H.

The block B of G is a crossed product of c with G/H, and from [9] the principal blocks of
2G2(q) with q as specified above are in the same Morita equivalence class. Hence the possible Morita
equivalence classes for B can be determined simply by applying Method 4.2. We take a chain of
normal subgroups {Ni} of length t, where N0 := H and Nt := G, and consider the corresponding
block chain {bt}.

(6) If H1 = 2G2(q) and H2 = SL2(8) then T = C3, so the only nontrivial possibility for the
Morita equivalence class of B is (lxxxi), realised by the principal block of 2G2(q) × Aut(SL2(8)).
There is only one such Morita equivalence class, independent of the choice of q [9].

(7) If H1 = 2G2(q) and H2 = (C2)
3 then T = C7 ⋊ C3, so the only nontrivial possibilities for

the Morita equivalence class of B are (lvii), (lxvi), (lxxviii), in each case realised by the principal
blocks of 2G2(q)× ((C2)

3
⋊ F ) for the appropriate choice of F .

(8) If H1 = 2G2(q) and H2 = J1 then T = 1, so G = H. Note that all the possibilities for c
are Morita equivalent, since c = c1 ⊗OJ1 and all the possibilities for c1 are Morita equivalent, still
from [9].
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(9) If H1 = 2G2(q) and H2 = 2G2(q
′) then G = H. Then all the possibilities for c are Morita

equivalent, since c = c1 ⊗ c2 and all the possibilities for c1 and c2 are Morita equivalent. �

Proposition 4.4. Let G be a finite group and B be the principal block of OG with defect group
D = (C2)

6. Suppose that B is quasiprimitive and that there are H1,H2 ⊳ G, H = H1 × H2 with
H ⊳ G and [G : H] odd. Then B covers the principal blocks ci of OHi, so B also covers the
principal block c ∼= c1 ⊗ c2 of OH. Suppose that CG(H) ≤ H and H = ker(G → Out(c)). Suppose
that H1 ∈ {J1,

2G2(q),SL2(8)} for some q = 32m+1, m ∈ N, and that c2 is Morita equivalent to
O(A4 × C2) or to B0(O(A5 × C2)). Then the following holds.

(1) If H1 = SL2(8) and c2 is Morita equivalent to O(A4 × C2) then B is Morita equivalent to c,
or (lvii), (xxxii).

(2) If H1 = SL2(8) and c2 is Morita equivalent to B0(O(A5 × C2)) then B is Morita equivalent
to c, or (lviii).

(3) If H1 = J1 and c2 is Morita equivalent to O(A4 × C2) then B is Morita equivalent to c.

(4) If H1 = J1 and c2 is Morita equivalent to B0(O(A5 × C2)) then B is Morita equivalent to c.

(5) If H1 =
2G2(q) and c2 is Morita equivalent to O(A4 × C2) then B is Morita equivalent to c.

(6) If H1 = 2G2(q) and c2 is Morita equivalent to B0(O(A5 × C2)) then B is Morita equivalent
to c.

Proof. From [11], Pic(O(A4 × C2)) = S3 × C2 and Pic(B0(O(A5 × C2))) = C2 × C2. We use
Method 4.2. Moreover, we can apply the same argument as in Proposition 4.3 to cases 5 and 6 to show
that β(α(OutG(H1))) = 1 and hence we can limit our analysis to the subgroup Out(H2) ≤ Pic(c2).
Let T be the maximal subgroup of odd order of Pic(c) that we need to consider. We take a chain of
normal subgroups {Ni} of length t, where N0 := H and Nt := G, and consider the corresponding
block chain {bt}.

(1) If H1 = SL2(8) and c2 is Morita equivalent to O(A4 × C2) then T = C3 × C3, so t ≤ 2. If
G = N , we are done. If G/N0

∼= C3, the possibilities for the Morita equivalence class of B are as
follows:

(a) (lvii), realised when N0 = SL2(8)×A4 × C2;

(b) (viii), realised when N0 = SL2(8)× PSL3(7);

(c) A nonprincipal block of O((SL2(8) × (C2)
2) ⋊ 31+2

+ ) × C2), realised when N0 = SL2(8) ×
PSL3(7)× C2.

From Lemma 3.6 the inertial quotient of B contains C21 as a subgroup. Then by Lemma 3.8 case (b)
cannot occur, since l(B) = 7, but k(E) 6= 7 in all cases where C21 ≤ E. Similarly, case (c) cannot
occur, since l(B) = 7 but k(E) 6= 7 whenever C21 ≤ E.

If G/N ∼= C3 × C3, then we consider the group H ′ = Aut(SL2(8)) ×H2, its principal block c′

and N ′
0 := H ′. Note that H ′⊳G. From [11], Pic(B0(O(Aut(SL2(8))))) = C3, hence the subgroup of

Pic(c′) that we need to consider is T ′ = C3×C3. There are three possible embeddings of G/N ′
0
∼= C3

in T ′, which correspond to the following possibilities for the Morita equivalence class of B:

• (xxx), realised when N ′
0 = Aut(SL2(8)) × PSL3(7) ×C2;

• (xxv), which is realised when N ′
0 = Aut(SL2(8)) × C3 ×A4 × C2 (see [2, 4.13]);

• (xxxii), realised when N ′
0 = Aut(SL2(8))× C3 × PSL3(7) × C2 (see [2, 4.13]).

From Lemma 3.8 none of these possibilities can occur, as the inertial quotient of B must contain
E = C3 × (C7 ⋊ C3) as a normal subgroup and so be equal to E, and k(E) = 15, but in each of
these possibilities the number of simple modules is different from 15.

(2) If H1 = SL2(8) and c2 is Morita equivalent to B0(O(A5 × C2)) then T = C3, so t ≤ 1. If
G = N , we are done. Otherwise, by Method 4.2 the only possibility for the Morita equivalence class
of b1 is (lviii), realised when N0 = SL2(8)×A5 × C2.
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(3) If H1 = J1 and c2 is Morita equivalent to O(A4 × C2) then T = C3, so t ≤ 1. If G = N0,
we are done. Otherwise, by Method 4.2 the only possibility for the Morita equivalence class of b1
would be (xxix). However from Proposition 3.6 the inertial quotient of b1 is (C7 ⋊ C3) × C3 or a
group that contains it, and in this case l(b1) = 5, but k(E) 6= 5 in every possible situation, so this
case cannot occur.

(4) If H1 = J1 and c2 is Morita equivalent to B0(O(A5 × C2)) then T = 1, so G = N0 and we
are done.

(5) If H1 =
2G2(q) and c2 is Morita equivalent to O(A4×C2) then T = C3, so t ≤ 1. If G = N0,

we are done. Otherwise, by Method 4.2 the only possibility for the Morita equivalence class of b1
would be (xxix). However, with an identical argument as in case (4), this case cannot occur. Then
G = N0.

(6) If H1 =
2G2(q) and c2 is Morita equivalent to B0(O(A5 × C2)) then T = 1, so G = N0 and

we are done. �

Proposition 4.5. Let G be a finite group and B be the principal block of OG with defect group
D = (C2)

6. Suppose that B is quasiprimitive, and that there are H1,H2,H3⊳G, H = H1×H2×H3

with H ⊳ G and [G : H] odd. Then B covers the principal blocks ci of OHi, so B also covers
the principal block c = c1 ⊗ c2 ⊗ c3 of OH. Suppose that CG(H) ≤ H and H = ker(G → Out(c)).
Suppose that H1,H2,H3 ∈ {(C2)

2, A5,PSL2(q)} for some odd q. Then each block ci is source algebra
equivalent to either O(C2)

2, OA4 or B0(O(A5)). For brevity, we call these respectively nilpotent, of
type A4 and of type A5. Further, suppose that if ci is nilpotent then Hi

∼= (C2)
2. Then the following

holds.

(1) If c1 is nilpotent, c2 is of type A4 and c3 is of type A5, then B is Morita equivalent to c or
(xiii), (xvi) or (xxxvi).

(2) If c1 is nilpotent and c2 and c3 are of type A5, then B is Morita equivalent to c or (xxxvii).

(3) If c1, c2 are of type A4 and c3 is of type A5, then B is Morita equivalent to c.

(4) If c1 is of type A4 and c2, c3 are of type A5, then B is Morita equivalent to c.

(5) If c1, c2, c3 are of type A5, then B is Morita equivalent to c.

Proof. We use Method 4.2, together with the Picard groups computed in [11]. The image of
G/H under γβα is contained in Pic(c1) × Pic(c2) × Pic(c3), and we denote its maximal subgroup
of odd order by T . We take a chain of normal subgroups {Ni} of length t, where N0 := H and
Nt := G, and consider the corresponding block chain {bt}.

(1) In this case, G/H ≤ C3 × Pic(c2) × Pic(c3) as H1
∼= (C2)

2. Then T = C3 × C3. From
Lemma 3.6 the inertial quotient of B must contain C3 ×C3 as a normal subgroup, so in particular
looking at every possibility listed in Lemma 3.8 we have that l(B) ≥ 9. If G = N0, we are done.
Otherwise, if G/N0

∼= C3 we have three possibilities for the Morita equivalence class of b1:

(a) (xxxv), realised when N0 = (C2)
2 ×A4 ×A5;

(b) (iii), realised when N0 = (C2)
2 × PSL3(7)×A5;

(c) A nonprincipal block of B0(O(((C2)
4
⋊31+2)×A5)), realised when N0 = (C2)

2×PSL3(7)×A5.

Note that in cases (b) and (c) l(b1) = 3, so these cases cannot occur as principal blocks.

If G/N ∼= C3 × C3, then we consider H ′
1 = (H1 ⋊ C3) which now has a block c′1 of type A4.

Let H ′ = H ′
1 ×H2 ×H3. Note that H ′ ⊳G. Let N ′

0 = H ′: then G/N ′
0 ≤ C3 and T ′ ∼= C3 × C3 ≤

Pic(c′1) × Pic(c2) × Pic(c3), so there are three possible embeddings which determine the following
Morita equivalence classes for B:

• (xiii), realised when N ′
0 = A4 × PSL3(7)×A5;

• (xvi), realised as a crossed product when N ′
0 = PSL3(7)× PSL3(7)×A5.
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Note that the first case occurs with two different embeddings.

(2) In this case, T = C3. There is a unique possibility for the Morita equivalence class of B,
which is (xxxvii), realised when N0 = (C2)

2 × (A5)
2.

(3) In this case, T = C3×C3 so t ≤ 2. From Lemma 3.6 the inertial quotient of b1 must contain
(C3)

3 as a normal subgroup, so in particular looking at every possibility from Lemma 3.8 we have
that l(b1) = 27 or l(b1) = 17.

The block b1 is Morita equivalent to a crossed product of the basic algebra of c with X1 = N1/N0

as detailed before; let ω1 be the corresponding homomorphism. Then the possibilities for the Morita
equivalence class of b1 are as follows:

(a) (xiii), realised when N0 = PSL3(7)×A4 ×A5;

(b) (xvi), realised when N0 = PSL3(7)
2 ×A5.

In both cases l(b1) = 9, a contradiction. Then G = N0 and B = c.

(4) In this case, T = C3. As in the previous case the inertial quotient of b1 must contain (C3)
3

as a normal subgroup. There is a single nontrivial possibility for the Morita equivalence class of B:
(xiv), realised when N0 = PSL3(7) × (A5)

2. However, in this case l(B) = 9, a contradiction.

(5) In this case, T = 1 so G = N0 and B = c and we are done. �

Proposition 4.6. Let G be a finite group and B be a quasiprimitive block of OG with defect
group D = (C2)

6. Suppose that H = H1×H2×H3 ⊳G, and that G acting by conjugation permutes
transitively the set {Hi}i=1,2,3. Suppose that [G : H] is odd, and let c be the unique block of OH
covered by B. Suppose that CG(H) ≤ H, and that H1

∼= H2
∼= H3 ∈ {A5,PSL2(q)} for some odd q.

Then each block ci is source algebra equivalent to OA4 or B0(O(A5)). For brevity, we call these
respectively of type A4 and of type A5. Then the following statements hold.

(1) If c1 is of type A4 then B is Morita equivalent to c or to O(D ⋊ E) for a subgroup of odd
order E ≤ GL6(2).

(2) If c1 is of type A5 then B is Morita equivalent to c or to (lxi).

Proof. Let σ : G → S3 be the homomorphism given by the action of G by permutation on
the set {Hi}. Then N = ker(σ) is a normal subgroup of G of index 3. Let bN be the unique block
of ON covered by B.

(1) In this case, since each block ci is source algebra equivalent to OA4, then the block c is
source algebra equivalent to O(A4)

3. In particular, it is basic Morita equivalent to that block, and
hence inertial. Then from Proposition 3.4 B is also inertial, and we are done.

(2) We compute T (B0(O(A5)
3)). From the main theorem of [4], there is an exact sequence

1 → OutD(ici) → T (c) → Out(D,Fc)

where i is a source algebra idempotent for c, and Fc is the fusion system of the block. Let Dj

be a defect group for cj , the block of Hj covered by c. Then D = D1 × D2 × D3. First, note
that the subgroup T (c1) ≀ S3 ≤ T (c). From Lemma 3.1 in [10], OutD(ici) =

∏3
j=1OutDj

(cj) since
each block cj is equal to its source algebra, as seen in Proposition 3.7. From [4, 1.5] we have that
OutDj

(cj) = 1, so OutD(ici) = 1. From Remark 1.2.f in [4], Out(D,Fc) ∼= NGL6(2)((C3)
3)/(C3)

3 ∼=
C2 ≀ S3. Then the last map in the sequence above is surjective and T (c) = C2 ≀ S3.

Suppose initially that H = ker(G → Out(c)). In this case, following Method 4.2, there is an
embedding of N/H in Pic(c1) × Pic(c2) × Pic(c3) = (C2)

3. Then N = H since Pic(ci) ∼= C2 for
each i and G/H is odd. Since we have a source algebra equivalence we can limit our analysis to
T (c) and we do not need to consider the whole Pic(c). As computed above, T (c) = C2 ≀ C3, so
there is a unique possibility for the map ω : G/N → T (c) that specifies this crossed product, which
corresponds to B being Morita equivalent to (lxi), realised in the example (A5)

3 ⊳ (A5 ≀ C3).



Blocks with defect group (C2)
6 233

Now suppose that G[c] = ker(G → Out(c)) strictly contains H. From Proposition 3.5, the
unique block ĉ of G[c] covered by B is source algebra equivalent to c. In particular T (ĉ) = T (c).
Then we can repeat the argument above to obtain the same result. �

Remark 4.7. Just as in [2], the assumption that H = ker(G → Out(c)) in each of the
propositions can be dropped, as in any relevant case we can reduce to such a situation without
modifying the final deductions on γ(β(α(G/H))). It is, in fact, sufficient to note that by definition
ker(G → Out(c)) = G[c]O (as defined in Proposition 3.5), and that H ≤ G[c]O. Let ĉ be the
principal block of G[c], which from Proposition 3.5 is source algebra equivalent to c. Then we can
replace H and c with G[c] and ĉ respectively in Propositions 4.3, 4.4 and 4.5 an obtain the same
possible Morita equivalence classes for B (see also Corollary 4.11 in [2]).

5. Principal blocks with defect group (C2)
6

We classify the principal blocks with a normal defect group as a separate case.

Theorem 5.1. Let B be a block of OG for G a finite group with a normal abelian Sylow 2-
subgroup D ∼= (C2)

6. Then B is Morita equivalent to O(D ⋊ E) where E is a subgroup of GL6(2)
of odd order acting faithfully on D.

Proof. From the main theorem of [19], in this situation B is source algebra equivalent to
a twisted group algebra Oα(D ⋊ E) where E = NG(D, e)/CG(D) is its inertial quotient, so in
particular E ≤ GL6(2) and E has odd order. From [23, 6.14] the cocycle α corresponds to the one
defined in [31, 2.5], so since B is the principal block α = 1. To get all possibilities for E, since the
action on D is faithful by definition, it is enough to consider all the conjugacy classes of odd order
subgroups of Aut(D) = GL6(2). �

We listed all the possible inertial quotients in Section 3. To show that each inertial quotient
corresponds to a distinct class of blocks, it is enough to compute each Cartan matrix, with two
exceptions: the pairs E = (C7)2 and (C7)3 (see Section 4), and (C7 ⋊C3)3 and (C7 ⋊C3)4. In these
cases computing dim(J2(Z(G))) with Magma [5] shows that the blocks are not Morita equivalent.

Proof of Theorem 1.1. Let B be the principal block of OG for a finite group G with Sylow
2-subgroup D = (C2)

6, such that B is not Morita equivalent to any of the blocks in the statement of
the theorem and such that ([G : O2′(Z(G))], |G|) is minimised in the lexicographic ordering. Then
B has defect group D.

First, we show that these hypotheses on B imply two important facts:

(I) B is quasiprimitive, that is, for any normal subgroup N ⊳G any block of ON covered by B
is G-stable. In fact, let N ⊳ G, and let b be a block of ON covered by B. We write IG(b) for the
stabiliser of b under conjugation by G. Then we can consider the Fong-Reynolds correspondent BI

as in Proposition 3.1, the unique block of IG(b) covering b and with Brauer correspondent B, that
is Morita equivalent to B and shares a defect group with it. In particular, using Brauer’s third main
theorem, BI is the principal block of IG(b) since B is its Brauer correspondent. By minimality, it
follows that IG(b) = G, and the same is true for any block of any normal subgroup of G.

(II) If there is a normal subgroup N ⊳ G such that B covers a nilpotent block b of ON , then
N ≤ O2(G)Z(G). This follows from minimality and quasiprimitivity, using Corollary 3.3.

Since the principal blocks of G and G/O2′(G) are isomorphic, by minimality we can assume
that O2′(G) = 1. Then when B covers a nilpotent block b of a normal subgroup M , (II) implies
that M ≤ O2(G).

From Proposition 5a-d in [17], it holds that

N = O2′(G) = S0 ×
t∏

i=1

Si
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where S0 is a 2-group and each Si is a nonabelian simple group. Note that by definition [G : N ] is
odd, so D ≤ N . Also note that O2(G) = S0, and that Op(G) = 1 for each p 6= 2. Then the Fitting
subgroup F (G) = S0.

Each Si is, by definition, a component of G, and since G/N has odd order and is, therefore,
solvable, any component of G is among the Si listed. Then E(G) =

∏
Si, so F ∗(G) = N and in

particular CG(N) ≤ N : therefore N ⊳G ≤ Aut(N).

Let b be the principal block of N , and for i ≥ 1, let bi be the principal block of Si. Note that
each of these blocks is covered by B. Then from [1, 15.1] its defect group is of the form Di = D∩Si.
Since Si ∩O2(G) = {1}, (II) implies that each bi is not a nilpotent block, so in particular |Di| ≥ 22.
Then since Si ∩ Sj = {1}, t ≤ 3.

In the following, whenever examining a block c with defect group (C2)
2, we remark that from

Proposition 3.7 there is always a source algebra equivalence between c and one of O(C2)
2, OA4 or

B0(OA5). For brevity, we will say that c is, respectively, nilpotent or of type A4 or A5.

Let s = log2(|S0|). We examine each possibility for t and s, using Proposition 3.9 to determine
the possibilities for each Si.

Suppose that t = 0. Then D = S0, so B has a normal defect group. Then Proposition 5.1 gives
a contradiction, since every block already appears in the list.

Suppose that t = 1. Then S1 = E(G) and the following statements hold.

• If s = 0 then S1 = SL2(64). Since Out(SL2(64)) = C6, then G/N ≤ C3. If G = N then B is as
in case (li), a contradiction. If G = N ⋊C3 then B is as in case (lxxv), again a contradiction.

• If s = 1 then S1 = SL2(32). Since Out(SL2(32)) = C5, then G/N ≤ C5. If G = N then
B is as in case (xlii), a contradiction. If G = N ⋊ C5 then B is as in case (lxxiii), again a
contradiction.

• If s = 2 then S1 = SL2(16). Since Out(SL2(16)) = C4, then G = N and B is as in case (xxi),
a contradiction.

• If s = 3 then S1 = SL2(8), J1 or 2G2(3
2m+1). Then Proposition 4.3 gives a contradiction, as

B already appears in the list.

• If s = 4 then S1 = A5 or S1 = PSL2(q) for some odd q. If b1 is of type A4 then b is inertial, so
Proposition 3.4 implies that B is also inertial, and then Proposition 5.1 gives a contradiction.
If b1 is of type A5 then we can apply Method 4.2, noting that the fact that Pic(b1) = C2 (see
[4]) implies that the image of G/N under the map γβα is contained in Out(S0), and therefore
B = b1 ⊗ B′ where B′ is a block with normal defect group (C2)

4. Now applying the main
theorem of [10] leads to a contradiction, as all such Morita equivalence classes already appear
in our list.

• If s = 5 then b1 is nilpotent, so (II) implies that S1 ≤ S0, a contradiction.

• If s = 6 then t = 0, a contradiction.

Suppose that t = 2. Then S1 × S2 = E(G) and s ≤ 2 because each Di has at least order four.
Without loss of generality we suppose that |D1| ≥ |D2|. Then the following statements hold.

• If s = 0 and |D1| = 24 then S1 = SL2(16) and S2 = A5 or S2 = PSL2(q) for some odd q. Since
Out(SL2(16)) = C4, a 2-group, then G/N ≤ Out(S2), so G ≤ S1 × Aut(S2). In particular,
B = b1 ⊗ b2 where b1 is the principal block of SL2(16), and b2 has defect group (C2)

2, and
hence B is Morita equivalent to (xxi), (xlv) or (xlvi), a contradiction.

• If s = 0 and |D1| = 23 then S1, S2 ∈ {SL2(8), J1,
2G2(3

2m+1)}. Then Proposition 4.3 gives a
contradiction, as B already appears in the list.

• If s = 1 then S1 ∈ {SL2(8), J1,
2G2(3

2m+1)}, and S2 = A5 or S2 = PSL2(q) for some odd q.
Then Proposition 4.3 applied considering H2 = S0 × S2 gives a contradiction, as B already
appears in the list.
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• If s = 2 then Si = A5 or Si = PSL2(qi) for odd qi, i = 1, 2. If each bi is of type A4 then
b is inertial, so Proposition 3.4 implies that B is also inertial, a contradiction because of
Proposition 5.1. Otherwise Proposition 4.5 gives a contradiction, as the Morita equivalence
class of B already appears in the list.

Finally suppose that t = 3. Then s = 0, and E(G) = S1 × S2 × S3, where each Di = (C2)
2 and

each bi is not nilpotent. The group G acts on E(G) by possibly permuting the three components,
giving a homomorphism σ : G → Sym(3). Let M = ker(σ). Since N ≤ M , then either G = M or
[G : M ] = 3.

If G = M then each Si is a normal subgroup of G, and we can apply Proposition 4.5 to obtain
a contradiction, as the Morita equivalence class of B already appears in the list. If [G : M ] = 3
then we are in the situation described in Proposition 4.6, so B is Morita equivalent to a block with
a normal defect group or to (lxi), again a contradiction.

Therefore, in every possible case we have a contradiction to B being a minimal counterexample,
and we are done.

To see that the classes are distinct it is enough to compute the Cartan matrices for each block,
a process that produces distinct matrices in each case except for the pairs (ix), (x) and (xxxi),
(xxxiii), which can be distinguished by computing dim(J2(Z(B))) as observed in Proposition 5.1.

To see that in our case the inertial quotients are invariant under Morita equivalences, note that
from Theorem 4.33 in [7], the principal block of OG is derived equivalent to its Brauer correspondent
in ONG(D) (and, trivially, they have the same inertial quotient). The latter is a principal block with
a normal defect group so, using Proposition 5.1, it is source algebra equivalent to O(D⋊E) where E
is the inertial quotient of B. So if C is the principal block of OH then there is a derived equivalence
between O(D⋊E) and O(D⋊E′) where E′ is the inertial quotient of C. Using Magma [5], we verified
computationally that each block c = O(D⋊E) is uniquely determined by the triple (k(c), l(c), Z(c))
(recall that derived equivalences induce an isomorphism between the centers), which implies that
E ∼= E′ via a map that preserves the action on D.

The last claim follows from Corollary 1.6 in [24], as the isomorphism class of an elementary
abelian defect group is always invariant under Morita equivalences. �

6. Purely nonprincipal Morita equivalence classes of blocks

Since Method 4.2 involves crossed products, it considers the blocks involved just as algebras,
and as a result of this we lose the ability to distinguish some group-theoretic properties of blocks:
among these, distinguishing principal blocks from nonprincipal blocks. In Section 4 we saw some
examples of blocks that can only arise as nonprincipal blocks. The aim of this sek is to give a survey
of the currently known examples which, together with the blocks determined in Theorem 1.1, we
conjecture to be a complete list of representatives of blocks with defect group (C2)

6.

Given a Morita equivalence class of blocks of finite groups, we say that it is purely nonprincipal
if it contains no principal blocks of finite groups. Examples of these classes are case (a) in the main
theorem of [10], and the classes (a), (b) and (c) in the main theorem of [2]. Clearly, all the classes
of blocks with defect group (C2)

6 that do not appear in Theorem 1.1 are purely nonprincipal.

As we mentioned in the proof of Proposition 5.1, any block with a normal defect group D is
source algebra equivalent to a twisted group algebra Oα(D ⋊ E) where E is the inertial quotient,
and when B is principal the twist α = 1. It follows that every nontrivial twisted group algebra not
Morita equivalent to an untwisted one is in a purely nonprincipal Morita equivalence class. We also
saw that α can be chosen as β−1 where β ∈ H2(E, k×). In particular, to find some examples of
nonprincipal blocks with a normal defect group we can look at cases when the inertial quotient has
a nontrivial Schur multiplier, and take central extensions. In this normal defect group case whenever
l(B) 6= k(E) the block has to be in a purely nonprincipal Morita equivalence class, to not contradict
the main theorem of [17]. We constructed the following examples:
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Example 6.1. Let G be a block with defect group (C2)
4 Morita equivalent to case (a) in the

main theorem of [10]. Then the following statements hold.

• The block B1 of G× (C2)
2 has one simple module, but since k(B1) = 32 and k((i)) = 64 then

it is in a new Morita equivalence class.

• The block B2 of G×A4 has the same Cartan matrix as (ii), but k(B2) = 32, so it is in a new
Morita equivalence class.

• The block B3 of G×A5 has the same Cartan matrix as (iii) but k(B3) = 32, so it is in a new
Morita equivalence class.

Example 6.2. We can use cases (b) and (c) in the main theorem of [2] to construct two purely
nonprincipal Morita equivalence classes, by considering the direct product of any representative of
each class with C2. These blocks have Cartan matrices that do not appear as the Cartan matrix of
any of the blocks in Theorem 1.1, so they form distinct Morita equivalence classes and are, hence,
purely nonprincipal.

Example 6.3. Let q 6= 2 be a prime. A general phenomenon observed in the previous construc-
tions of purely nonprincipal Morita equivalence classes is that some of them appear in central
extensions of groups of type M = (D1⋊E1⋊Cq)× (D2⋊E2⋊Cq) by a third Cq, so for the moment
we focus on blocks with a normal defect group. By replicating this process in all possible cases, we
found some purely nonprincipal blocks, as follows.

1. When M = ((C2)
4
⋊C15)×A4, a central extension by C3 gives the group (C2)

6
⋊ (C5×31+2

+ ),
which has two nonprincipal blocks with 5 simple modules and the same Cartan matrix as (iv) in
Theorem 1.1, but 24 irreducible characters (while (iv) has 32).

2. When M = ((C2)
3
⋊C7)

2, a central extension by C7 gives the group (C2)
6
⋊ 71+2

+ , which has
six nonprincipal blocks with 1 simple module and 16 irreducible characters, so it is distinct from (i)
in Theorem 1.1 and Example 6.1 both.

3. When M = ((C2)
3
⋊ (C7 ⋊ C3))

2, a central extension by C3 gives the group (C2)
6
⋊ ((C7 ×

C7) ⋊ 31+2
+ ), which has two nonprincipal blocks with 7 simple modules and a new Cartan matrix

(meaning it is not the Cartan matrix of any of the blocks of Theorem 1.1).

In all of these cases, we claim that for each fixed group all the nonprincipal blocks are Morita
equivalent, and that considering the central extension 31+2

− instead of 31+2
+ gives nonprincipal blocks

in the same Morita equivalence class. To prove this, note that q1+2
+ = (Cq × Cq)⋊ Cq, and q1+2

− =
Cq2⋊Cq, so each central extension G contains a normal subgroup N = (D1⋊E1⋊Cq)×(D2⋊E2)×Cq

or N = (D1 ⋊E1⋊Cq2)× (D2 ⋊E2), so in each case, each nonprincipal block of OG covers a block
b of ON that is Morita equivalent to a block of (D1 ⋊ E1 ⋊ Cq) × (D2 ⋊ E2). Thus, following
Method 4.2, B is Morita equivalent to a crossed product of the basic algebra of b and Cq, specified
by an element of the image of G/N in Pic(b). Since N is a direct product, the image of G/N is
actually contained in Pic(b1) × Pic(b2), where b = b1 ⊗ b2. If there is only one subgroup Cq × Cq

contained in Pic(b1) × Pic(b2), then there are three possibilities for B: two of them are given by
Cq = G/N ≤ Pic(bi) where i = 1, 2, and the third one by the diagonal embedding. Since each
extension we considered does not fix the irreducible characters neither of N1 nor of N2, in each case
the element in Pic(b) corresponding to the Morita equivalence class of B is the one given by the
diagonal embedding of Cq. In particular, there is a unique possibility for the Morita equivalence
class of B, as we claimed. It remains to show that for each case the Sylow q-subgroup of Pic(bi) is
Cq: for our three examples this can be deduced from the Picard groups computed in [11] and the
main theorem of [25].

Example 6.4. When M = (C2)
4
⋊ (C3)2 ×A4 (with the notation of [10]), a central extension

by C3 gives the group (C2)
6
⋊ 31+2

+ (distinct from the one appearing in (xxxix), where 31+2
+ acts

faithfully on (C2)
6), which has two nonprincipal blocks with 1 simple module but 24 irreducible
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characters (while (iv) has 32), which means that the blocks form a distinct Morita equivalence
class from any other class with one simple module seen so far. We conjecture that also in this case
choosing the other central extension (31+2

− ) gives the same Morita equivalence class of blocks.

Example 6.5. The only case in which the Schur multiplier is not a cyclic group that we
encounter is when M = (A4)

3, since in this case M(E) = (C3)
3. Since M is not a perfect group, there

is not a universal central extension, but all central extensions by M(E) lie in the same isoclinism
equivalence class. One example of such an extension is given by G = (C2)

6
⋊SmallGroup(729, 122),

where SmallGroup(729, 122) = ((C3)
2 × 31+2

+ ) ⋊ C3 and (C3)
2 acts trivially on (C2)

6. This group
has twelve nonprincipal blocks with 24 irreducible characters, six with 32 irreducible characters and
eight with 16 irreducible characters: any two blocks with the same number of irreducible characters
share Cartan matrices and every other invariant. Each of these blocks is purely nonprincipal, since
the triple (k(c), l(c),CartanMatrix(c)) does not occur in any of the blocks in Theorem 1.1. We
conjecture that these blocks form three Morita equivalence classes, and explicit computation of
examples suggests that, moreover, any block of a central extension of (A4)

3 by (C3)
k for k = 1, 2, 3

is Morita equivalent to a block of OG. In particular, we conjecture that each nonprincipal block
with 32 irreducible characters of OG is Morita equivalent to the block B2 in Example 6.1.

Example 6.6. In any of the constructions above, whenever we have considered the group
((C2)

n
⋊ C2n−1) ⋊ Ck where k divides n, we could have instead considered SL2(2

n) ⋊ Ck. In the
above, this arose only when n = 3, but for bigger defect groups the same construction could be
replicated (for instance, (SL2(32) ⋊ C31)

2
⋊ 51+2

+ gives an example of a nonprincipal block with
defect group (C2)

10). By substituting (C2)
3
⋊ C7 with SL2(8), we obtain an additional example of

a purely nonprincipal block in the group SL2(8)
2
⋊ 31+2

+ . Note that the same process constructs one
of the blocks in Example 6.2.

We propose the following conjecture.

Conjecture 6.7. The purely nonprincipal Morita equivalence classes of blocks with defect group
(C2)

6 are the following. For each group listed, there is only one relevant Morita equivalence class of
nonprincipal blocks:

(a) ((C2)
4
⋊ 31+2

+ )× (C2)
2;

(b) ((C2)
4
⋊ 31+2

+ )×A4;
(c) ((C2)

4
⋊ 31+2

+ )×A5;
(d) ((C2)

5
⋊ (C7 ⋊ 31+2

+ ))× C2;
(e) ((SL2(8)× (C2)

2)⋊ 31+2
+ )× C2;

(f) (C2)
6
⋊ (C7 ⋊ 31+2

+ )2;
(g) (C2)

6
⋊ (C5 × 31+2

+ );
(h) (C2)

6
⋊ 71+2

+ ;
(i) (C2)

6
⋊ 31+2

+ ;
(j) (C2)

6
⋊ ((C3)

2
⋊ 31+2

+ ) = (C2)
6
⋊ SmallGroup(243, 3);

(k) (C2)
6
⋊ SmallGroup(729, 122)b1 ;

(l) (C2)
6
⋊ SmallGroup(729, 122)b2 ;

(m) (C2)
6
⋊ SmallGroup(1029, 12);

(n) (C2)
6
⋊ ((C7 × C7)⋊ 31+2

+ );
(o) SL2(8)

2
⋊ 31+2

+ .
In particular, any block of a finite group with defect group (C2)

6 is Morita equivalent to a block listed
above or to a block in the list of Theorem 1.1.

The blocks that appear in the list above but were not mentioned in any of the examples were
simply obtained by taking a central extension of groups D ⋊E with M(E) = C3 or C7, depending
on the cases. In case (f), the subscript means that the inertial quotient acts as in case (lix) of
Theorem 1.1.
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A proof of this conjecture is currently out of reach, as the method used in [2] for (C2)
5 requires

data that we do not currently have. In particular, when dealing with arbitrary blocks we have to use
the main theorem of [8] instead of Walter’s result in Proposition 3.9, which requires consideration
of more classes of blocks. Moreover, the generalised Fitting subgroup of a group G with a block
that is a minimal counterexample has a more complicated structure that involves central products
instead of direct products. Finally, we cannot assume that the defect group of our block is the Sylow
2-subgroup of G, so we have to study normal subgroups of index 2, which requires the theory of
(G,B)-local systems, originally developed by Usami and Puig in [29] (see Section 3 in [2]).

All of this is necessary because there is no current “good"characterization of purely nonprincipal
blocks, so we have to look at the general case of an arbitrary block in order to classify all Morita
equivalence classes.

Nevertheless, in all known examples the only purely nonprincipal Morita equivalence classes are
the ones with a Brauer correspondent source algebra equivalent to a twisted group algebra with
a nontrivial twist. Broué’s abelian defect group conjecture implies that all such blocks cannot be
principal, but we ask the inverse question: is there any purely nonprincipal Morita equivalence class
of blocks that has a Brauer correspondent source algebra equivalent to a group algebra? A proof
of Broué’s conjecture would give a negative answer for derived equivalence classes, but perhaps
some purely nonprincipal Morita example could still be found in the derived equivalence class of a
principal block.
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