
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI UrO RAN

Vol. 27 No. 1 2021

UDK 512.542, 512.547

ON А QUESTION CONCERNING THE TENSOR PRODUCT OF MODULES

A. V.Konygin

MSC: 20C33, 20B15, 20C20, 20D06

DOI: 10.21538/0134-4889-2021-27-1-103-109

Assume that G is a group, K is an algebraically closed field, and V1 and V2 are KG-modules. The following
question is considered: under what constraints on G, K, V1, and V2 does V1 ⊗ V2

∼= V1 ⊗ I hold, where I is
the trivial KG-module (of dimension dim(V2))? Earlier, when considering a problem of P. Cameron on finite
primitive permutation groups, the author obtained and used some results on this question. This work continues
the study of the question. The following results were obtained. 1. Assume that G is a nontrivial connected
reductive algebraic group, and V1 and V2 are faithful semisimple KG-modules. Then V1 ⊗ V2 ≇ V1 ⊗ I. 2.
Assume that G is a nontrivial finite group, char(K) = 0, V1 is a KG-module, and V2 is a faithful KG-module.

Then V1 ⊗ V2
∼= V1 ⊗ I if and only if V1 is the direct sum of

dim(V1)
|G|

regular KG-modules. In addition, we

consider the question of the possibility that V1 ⊗ V2
∼= V1 ⊗ I in the case where G = SL2(pn), V1 and V2 are

simple KG-modules, and char(K) = p.
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