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TENSOR REPRESENTATIONS AND GENERATING SETS OF INVOLUTIONS

OF SOME MATRIX GROUPS

Ya. N.Nuzhin

It is well known that all irreducible representations of Chevalley groups over infinite fields and modular
representations in nice characteristics of fields of definition are exhausted by subrepresentations of tensor
products of their natural representations. We consider two specific subrepresentations of this kind and use
them to answer two questions on the number of generating involutions of some matrix groups. For an integral
domain D of characteristic different from 2, we establish the irreducibility of the symmetric and external
squares of the natural representation of the group SLn(D) and find their kernels (Theorem 1). Denote by n(G)
(by nc(G)) the minimum number of generating (and also conjugate, respectively) involutions of G whose product
is 1. Problems on finding the numbers n(G) and nc(G) for finite simple groups are written by the author in the
Kourovka Notebook (Question 14.69). Based on Theorem 1 and L. L. Scott’s inequality, we prove the following
result. Let G be SL3(D) or SL6(D), where D is an integral domain of characteristic different from 2. Then
n(G) > 5 and, in particular, G is not generated by three involutions two of which commute; moreover, if D is
the ring of integers or a finite field (of odd order), then n(G) = nc(G) = 6 (Theorem 2).
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