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BIPARTITE THRESHOLD GRAPHS

V. A. Baransky, T.A. Senchonok

A triple of distinct vertices (x, v, y) in a graph G = (V, E) such that xv ∈ E and vy /∈ E is called lifting if
deg(x) ≤ deg(y) and lowering if deg(x) ≥ 2 + deg(y). A transformation ϕ of a graph G that replaces G with
ϕ(G) = G−xv+vy is called an edge rotation corresponding to a triple of vertices (x, v, y). For a lifting (lowering)
triple (x, v, y), the corresponding edge rotation is called lifting (lowering). An edge rotation in a graph G is
lifting if and only if its inverse in the graph ϕ(G) is lowering. A bipartite graph H = (V1, E, V2) is called a
bipartite threshold graph if it has no lifting triples such that x, y ∈ V1 and v ∈ V2 or x, y ∈ V2 and v ∈ V1. The
aim of paper is to give some characteristic properties of bipartite threshold graphs. In particular, every such
graph (V1, E, V2) is embedded in the threshold graph (K(V1), E, V2), where K(V1) is the complete graph on
the vertex set V1. Note that a graph is a threshold graph if and only if it has no lifting triples of vertices. Every
bipartite graph can be obtained from a bipartite threshold graph by means of lowering edge rotations. Using
the obtained results and Kohnert’s criterion for a partition to be graphical, we give a new simple proof of the
well-known Gale–Ryser theorem on the representation of two partitions by degree partitions of the parts in a
bipartite graph.
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