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ON SOME GROUPS OF 2-RANK 1

B. E. Durakov

The structure of finite groups of 2-rank 1 is largely defined by the classical Burnside and Brauer—Suzuki
theorems. Burnside proved that all elements of odd order of a finite group with a cyclic 2-Sylow subgroup form
a normal subgroup. S.I. Adyan showed that this statement does not hold in the class of periodic groups even
in the case when a Sylow 2-subgroup has order 2 and coincides with the center of the group. The results of
Burnside, Brauer, and Suzuki can be formulated as one theorem: in a finite group G of 2-rank 1, the image of any
involution in the quotient group G/O(G) lies in the center of this quotient group. It is unknown whether the same
statement holds for a periodic group G (V.P. Shunkov’s Question 4.75 from the “Kourovka Notebook”). There is
no answer even when the centralizer of the involution i is a locally cyclic group (V.D. Mazurov’s Question 15.54
from the “Kourovka Notebook”). In Theorem 1, we give a partial affirmative answer to Question 4.75 under
an additional condition: in the group G an involution i generates a finite subgroup with any element of order
not divisible by 4. In particular, Question 4.75 is solved positively in the classes of binary finite and conjugate
binary finite groups. In Theorem 2, we study the structure of a nonlocally finite group G with a finite involution
and an involution ¢ whose centralizer is a locally cyclic 2-group. An involution i of a group G is called finite if
the subgroup (i,19) is finite for every g € G. In particular, Theorem 2 defines the structure of a counterexample
(under the assumption of its existence) to Question 15.54.
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