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BERNSTEIN–SZEGŐ INEQUALITY FOR TRIGONOMETRIC POLYNOMIALS

IN THE SPACE L0

A. O. Leont’eva

Inequalities of the form ‖f
(α)
n cos θ + f̃

(α)
n sin θ‖p ≤ Bn(α, θ)p‖fn‖p for classical derivatives of order α ∈ N

and Weyl derivatives of real order α ≥ 0 of trigonometric polynomials fn of order n ≥ 1 and their conjugates for
real θ and 0 ≤ p ≤ ∞ are called Bernstein–Szegő inequalities. They are generalizations of the classical Bernstein
inequality (α = 1, θ = 0, p = ∞). Such inequalities have been studied for more than 90 years. The problem of
studying the Bernstein–Szegő inequality consists in analyzing the properties of the best (the smallest) constant
Bn(α, θ)p, its exact value, and extremal polynomials for which this inequality turns into an equality. G. Szegő
(1928), A. Zygmund (1933), and A. I. Kozko (1998) showed that, in the case p ≥ 1 for real α ≥ 1 and any real θ,
the best constant Bn(α, θ)p is nα. For p = 0, Bernstein–Szegő inequalities are of interest at least because the
constant Bn(α, θ)p is the largest for p = 0 over 0 ≤ p ≤ ∞. In 1981, V.V. Arestov proved that, for r ∈ N and
θ = 0, the Bernstein inequality is true with the constant nr in the spaces Lp, 0 ≤ p < 1; i.e., Bn(r, 0)p = nr.
In 1994, he proved that, for p = 0 and the derivative of the conjugate polynomial of order r ∈ N ∪ {0}, i.e.,
for θ = π/2, the exact constant grows exponentially in n; more precisely, Bn(r, π/2)0 = 4n+o(n). In two recent
papers of the author (2018), a similar result was obtained for Weyl derivatives of positive noninteger order
for any real θ. In the present paper, we prove that the formula Bn(α, θ)0 = 4n+o(n) holds for derivatives of
nonnegative integer orders α and any real θ 6= πk, k ∈ Z.
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