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ABSTRACT CONVEXITY OF FUNCTIONS WITH RESPECT
TO THE SET OF LIPSCHITZ (CONCAVE) FUNCTIONS

V.V. GOROKHOVIK, A. S. TYKОUN

The paper is devoted to the abstract H-convexity of functions (where H is a given set of elementary functions)
and its realization in the cases when H is the space of Lipschitz functions or the set of Lipschitz concave functions.
We introduce the notion of regular H-convex functions. These are functions representable as the upper envelopes
of the set of their maximal (with respect to the pointwise ordering) H-minorants. As a generalization of the
global subdifferential of a convex function, we introduce the set of maximal support H-minorants at a point
and the set of lower H-support points. Using these tools, we formulate necessary as well as sufficient conditions
for global minima of nonsmooth functions. In the second part of the paper, the abstract notions of H-convexity
are realized in the specific cases when functions are defined on a metric or normed space X and the set of
elementary functions is the space L(X,R) of Lipschitz functions or the set LĈ(X,R) of Lipschitz concave
functions, respectively. An important result of this part of the paper is the proof of the fact that, for a lower
semicontinuous function bounded from below by a Lipschitz function, the set of its lower L-support points
and the set of lower LĈ-support points coincide and are dense in the effective domain of the function. These
results extend the known Brøndsted–Rockafellar theorem on the existence of a subdifferential of convex lower
semicontinuous functions to the wider class of lower semicontinuous functions and go back to the Bishop–Felps
theorem on the density of support points in the boundary of a closed convex set, which is one of most important
results of classical convex analysis.
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