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KOLMOGOROV WIDTHS OF SOBOLEV CLASSES ON A CLOSED INTERVAL
WITH CONSTRAINTS ON THE VARIATION

A. A. Vasil’eva

We study the problem of estimating Kolmogorov widths in Lg[0, 1] for the Lipschitz classes of functions
with fixed values at several points: M = {f € AC[0,1], ||fllcc < 1, f(j/s) = yj, 0 < j < s}. Applying
well-known results about the widths of Sobolev classes, it is easy to obtain order estimates up to constants
depending on ¢ and y1, ..., yn. Here we obtain order estimates up to constants depending only on g. To this
end, we estimate the widths of the intersection of two finite-dimensional sets: a cube and a weighted Cartesian
product of octahedra. If we take the unit ball of 7} instead of the cube, we get a discretization of the problem on
estimating the widths of the intersection of the Sobolev class and the class of functions with constraints on their
variation: M = {f € AC[0, 1] : [|fllL (0,11 £ 1, flls(G-1)/s,4/5) < €5/s, 1 < j < s}. For sufficiently large n,
order estimates are obtained for the widths of these classes up to constants depending only on p and ¢. If p > ¢
or p > 2, then these estimates have the form ¢(e1, ..., es)n~ !, where ¢(e1, ..., €5) = 0 as (1, ..., €5) = 0
(explicit formulas for ¢ are given in the paper). If p < q and p < 2, then the estimates have the form n=1!
(hence, the constraints on the variation do not improve the estimate for the widths). The upper estimates are
proved with the use of Galeev’s result on the intersection of finite-dimensional balls, whereas the proof of the
lower estimates is based on a generalization of Gluskin’s result on the width of the intersection of a cube and
an octahedron.
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