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KOLMOGOROV WIDTHS OF SOBOLEV CLASSES ON A CLOSED INTERVAL

WITH CONSTRAINTS ON THE VARIATION

A.A. Vasil’eva

We study the problem of estimating Kolmogorov widths in Lq[0, 1] for the Lipschitz classes of functions

with fixed values at several points: M̃ = {f ∈ AC[0, 1], ‖ḟ‖∞ ≤ 1, f(j/s) = yj , 0 ≤ j ≤ s}. Applying
well-known results about the widths of Sobolev classes, it is easy to obtain order estimates up to constants
depending on q and y1, . . . , yn. Here we obtain order estimates up to constants depending only on q. To this
end, we estimate the widths of the intersection of two finite-dimensional sets: a cube and a weighted Cartesian
product of octahedra. If we take the unit ball of lnp instead of the cube, we get a discretization of the problem on
estimating the widths of the intersection of the Sobolev class and the class of functions with constraints on their
variation: M = {f ∈ AC[0, 1] : ‖ḟ‖Lp[0, 1] ≤ 1, ‖ḟ‖L1[(j−1)/s, j/s] ≤ εj/s, 1 ≤ j ≤ s}. For sufficiently large n,
order estimates are obtained for the widths of these classes up to constants depending only on p and q. If p > q
or p > 2, then these estimates have the form ϕ(ε1, . . . , εs)n−1, where ϕ(ε1, . . . , εs) → 0 as (ε1, . . . , εs) → 0
(explicit formulas for ϕ are given in the paper). If p ≤ q and p ≤ 2, then the estimates have the form n−1

(hence, the constraints on the variation do not improve the estimate for the widths). The upper estimates are
proved with the use of Galeev’s result on the intersection of finite-dimensional balls, whereas the proof of the
lower estimates is based on a generalization of Gluskin’s result on the width of the intersection of a cube and
an octahedron.
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