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MARKOV’S WEAK INEQUALITY FOR ALGEBRAIC POLYNOMIALS

ON A CLOSED INTERVAL

N. S. Payuchenko

For a real algebraic polynomial Pn of degree n, we consider the ratio Mn(Pn) of the measure of the set of

points from [−1, 1] where the absolute value of the derivative exceeds n2 to the measure of the set of points

where the absolute value of the polynomial exceeds 1. We study the supremum Mn = supMn(Pn) over the

set of polynomials Pn whose uniform norm on [−1, 1] is greater than 1. It is known that Mn is the supremum

of the exact constants in Markov’s inequality in the class of integral functionals generated by a nondecreasing

nonnegative function. In this paper we prove the estimates 1 + 3/(n2 − 1) ≤ Mn ≤ 6n+ 1 for n ≥ 2.
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