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INTEGRABILITY PROPERTIES OF FUNCTIONS WITH A GIVEN BEHAVIOR
OF DISTRIBUTION FUNCTIONS AND SOME APPLICATIONS

A.A.Kovalevsky

We establish that if the distribution function of a measurable function v given on a bounded domain Ω
of Rn (n > 2) satisfies, for sufficiently large k, the estimate meas{|v| > k} 6 k−αφ(k)/ψ(k), where α > 0,
φ : [1,+∞) → R is a nonnegative nonincreasing measurable function such that the integral of the function
s → φ(s)/s over [1,+∞) is finite, and ψ : [0,+∞) → R is a positive continuous function with some additional
properties, then |v|αψ(|v|) ∈ L1(Ω). In so doing, the function ψ can be bounded or unbounded. We give
corollaries of the corresponding theorems for some specific ratios of the functions φ and ψ. In particular, we
consider the case where the distribution function of a measurable function v satisfies, for sufficiently large k,
the estimate meas{|v| > k} 6 Ck−α(ln k)−β with C,α > 0 and β > 0. In this case, we strengthen our previous
result for β > 1 and, on the whole, we show how the integrability properties of the function v differ depending
on which of the intervals [0, 1] or (1,+∞) contains β. We also consider the case where the distribution function
of a measurable function v satisfies, for sufficiently large k, the estimate meas{|v| > k} 6 Ck−α(ln ln k)−β

with C,α > 0 and β > 0. We give examples showing the accuracy of the obtained results in the corresponding
scales of classes close to Lα(Ω). Finally, we give applications of these results to entropy and weak solutions of
the Dirichlet problem for nonlinear elliptic second-order equations with right-hand side in some classes close
to L1(Ω) and defined by the logarithmic function or its double composition.
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