Том 24 № 3

УДК 519.17

ГРАФ С МАССИВОМ ПЕРЕСЕЧЕНИЙ $\{18,15,1;1,5,18\}$ НЕ ЯВЛЯЕТСЯ ВЕРШИННО СИММЕТРИЧНЫМ¹

К. С. Ефимов

А. А. Махнев и В. П. Буриченко нашли возможные массивы пересечений дистанционно регулярных локально циклических графов с числом вершин, не большим 1000. Ими была предложена программа исследования реберно симметричных графов с указанными массивами пересечений. Окрестность вершины в таком графе является объединением изолированных многоугольников. В работе изучаются автоморфизмы гипотетического дистанционно регулярного графа с массивом пересечений {18, 15, 1; 1, 5, 18}. В частности, доказано, что группа автоморфизмов этого графа действует интразитивно на множестве вершин

Ключевые слова: дистанционно регулярный граф, автоморфизм графа.

K. S. Efimov. A graph with intersection array $\{18, 15, 1; 1, 5, 18\}$ is not vertex-symmetric.

A. A. Makhnev and V. P. Burichenko found possible intersection arrays of distance-regular locally cyclic graphs with at most 1000 vertices. They proposed a program for studying arc-transitive graphs with these intersection arrays. The neighborhood of a vertex in such a graph is the union of isolated polygons. We study automorphisms of a hypothetical distance-regular graph with intersection array $\{18, 15, 1; 1, 5, 18\}$. In particular, we prove that the automorphism group of this graph acts intransitively on the vertex set.

Keywords: distance-regular graph, graph automorphism.

MSC: 05C25, 20B25

DOI: 10.21538/0134-4889-2018-24-3-62-67

Введение

Мы рассматриваем неориентированные графы без петель и кратных ребер. Для вершины a графа Γ через $\Gamma_i(a)$ обозначим i-окрестность вершины a, т. е. подграф, индуцированный Γ на множестве всех его вершин, находящихся на расстоянии i от a. Положим $\Gamma(a) = \Gamma_1(a)$, $a^{\perp} = \{a\} \cup \Gamma(a)$. Если граф Γ фиксирован, то вместо $\Gamma(a)$ будем писать [a]. Для множества X вершин графа Γ через X^{\perp} обозначим $\cap_{x \in X} x^{\perp}$. Если не оговорено противное, то слово "подграф" будет означать "индуцированный подграф".

Пусть \mathcal{F} — некоторый класс графов. Граф Γ назовем локально \mathcal{F} -графом, если [a] лежит в \mathcal{F} для любой вершины a графа Γ . Если при этом класс \mathcal{F} состоит из графов, изоморфных некоторому графу Δ , то граф Γ назовем локально Δ -графом.

Степенью вершины называется число вершин в ее окрестности. Граф Γ называется регулярным степени k, если степень любой вершины из Γ равна k. Граф Γ назовем реберно регулярным с параметрами (v,k,λ) , если он содержит v вершин, регулярен степени k и каждое его ребро лежит в λ треугольниках. Граф Γ — вполне регулярный граф c параметрами (v,k,λ,μ) , если он реберно регулярен с соответствующими параметрами и $[a] \cap [b]$ содержит μ вершин для любых двух вершин a,b, находящихся на расстоянии 2 в Γ . Вполне регулярный граф диаметра 2 называется сильно регулярным графом.

Если вершины u, w находятся на расстоянии i в Γ , то через $b_i(u, w)$ (через $c_i(u, w)$) обозначим число вершин в пересечении $\Gamma_{i+1}(u)$ ($\Gamma_{i-1}(u)$) с [w]. Граф Γ диаметра d называется дистанционно регулярным c массивом пересечений $\{b_0, b_1, \ldots, b_{d-1}; c_1,$

 $^{^{1}}$ Работа выполнена при финансовой поддержке РНФ, проект 14-11-00061-П.

..., c_d }, если значения $b_i(u,w)$ и $c_i(u,w)$ не зависят от выбора вершин u,w на расстоянии i в Γ для любого i=0,...,d. Положим $a_i=k-b_i-c_i$. Заметим, что для дистанционно регулярного графа b_0 — это степень графа, $c_1=1$.

Граф Γ диаметра d называется $\partial ucmanuuonno mpansumuвным, если для любого <math>i \in \{0,...,d\}$ и для любых двух пар вершин (u,w) и (y,z) с d(u,w)=d(y,z)=i найдется автоморфизм g графа Γ такой, что $(u^g,w^g)=(y,z)$. Для подмножества X автоморфизмов графа Γ через $\mathrm{Fix}(X)$ обозначается множество всех вершин графа Γ , неподвижных относительно любого автоморфизма из X. Далее, через $p_{ij}^l(x,y)$ обозначим число вершин в подграфе $\Gamma_i(x)\cap \Gamma_j(y)$ для вершин x,y, находящихся на расстоянии l в графе Γ . В дистанционно регулярном графе числами $p_{ij}^l(x,y)$ не зависят от выбора вершин x,y, обозначаются через p_{ij}^l и называются числами пересечений графа Γ .

Граф называется реберно симметричным, если его группа автоморфизмов действует транзитивно на множестве его дуг (упорядоченных ребер). Граф Грюнберга— Кегеля группы H это граф, множество вершин которого совпадает с $\pi(H)$ (множество простых делителей |H|) и две вершины p,r смежны тогда и только тогда, когда H содержит элемент порядка pr.

В работе [1, теорема 2] найдены массивы пересечений дистанционно регулярных локально циклических графов с числом вершин, не большим 1000.

Продолжается исследование реберно симметричных графов с массивами пересечений из [1, теорема 2, п. (3)]. Окрестность вершины в таком графе является объединением изолированных многоугольников. В данной работе изучаются автоморфизмы гипотетического дистанционно регулярного графа с массивом пересечений {18, 15, 1; 1, 5, 18}.

Пусть Γ является дистанционно регулярным графом с массивом пересечений $\{18,15,1;1,5,18\}$. Тогда Γ имеет v=1+18+54+3=76 вершин и спектр $18^1,3^{38},-1^{18},-6^{19}$. Порядок коклики в Γ не превосходит $(1-k/\theta_d)^{-1}v=19$, а порядок клики в Γ не превосходит $1-k/\theta_d=4$. Далее, $b^-=b_1/(\theta_3+1)=-3,\ b^+=b_1/(\theta_1+1)=3$ и если C является 4-кликой в Γ , то по предложению 4.4.6 из [2] каждая вершина из $\Gamma-C$ смежна с 0 или с $b^-+1-k/\theta_3=1$ вершинами из C. Если Γ содержит полный двудольный $K_{4,t}$ -подграф, то снова по предложению 4.4.6 из [2] имеем $8t/(t+4)\leq 4$, поэтому $t\leq 4$.

Теорема. Пусть Γ — дистанционно регулярный граф, имеющий массив пересечений $\{18,15,1;1,5,18\}$, $G=\mathrm{Aut}(\Gamma)$, g — элемент из G простого порядка p и $\Omega=\mathrm{Fix}(g)$. Тогда $\pi(G)\subseteq\{2,3,19\}$ и выполняются следующие утверждения:

- $(1)~\Omega- пустой граф и либо$
 - (i) p = 19, $\alpha_3(g) = 0$, $\alpha_1(g) = 19$, либо
 - (ii) p = 2, $\alpha_3(g) = 4s$, s нечетно $u \alpha_1(g) = 18l + 5s + 1$;
- (2) p = 3, Ω является одновершинным графом, антиподальным классом или 4-кликой;
- (3) p=2, Γ содержит t антиподальных классов, пересекающих Ω по s вершинам, $\alpha_3(g)=t(4-s)$ и либо
 - (i) t = 1, s = 4 $u \alpha_1(g) = 0$, либо
 - $(ii) \ t = 3, \ \Omega шестиугольник \ u \ \alpha_1(g) = 18l 2, \ либо$
- $(iii)\ t=5,\ \Omega$ является графом $K_{5,5}\ c$ удаленным максимальным паросочетанием и $lpha_1(g)=18l-16.$

Следствие. Группа автоморфизмов дистанционно регулярного графа с массивом пересечений $\{18, 15, 1; 1, 5, 18\}$ действует интранзитивно на множестве вершин.

1. Автоморфизмы дистанционно регулярного графа с массивом пересечений {18, 15, 1; 1, 5, 18}

Доказательство теоремы опирается на метод Хигмена работы с автоморфизмами дистанционно регулярного графа, представленный в третьей главе монографии Камерона [3].

Подстановочное представление группы $G=\mathrm{Aut}(\Gamma)$ на вершинах графа Γ обычным образом дает матричное представление ψ группы G в $GL(v,\mathbb{C})$. Пространство \mathbb{C}^v является ортогональной прямой суммой собственных подпространств W_0,W_1,\ldots,W_d матрицы смежности A_1 графа Γ . Для любого $g\in G$ матрица $\psi(g)$ перестановочна с A, поэтому подпространство W_i является $\psi(G)$ -инвариантным. Пусть χ_i — характер представления ψ_{W_i} . Тогда (см. [3, § 3.7]) для $g\in G$ получим

$$\chi_i(g) = v^{-1} \sum_{j=0}^d Q_{ij} \alpha_j(g),$$

где $\alpha_j(g)$ — число точек x из X таких, что $d(x,x^g)=j$. Заметим, что значения характеров являются целыми алгебраическими числами и если правая часть выражения для $\chi_i(g)$ — число рациональное, то $\chi_i(g)$ — целое число.

Лемма 1. Пусть Γ — дистанционно регулярный граф с массивом пересечений $\{18,15,1;1,5,18\}$, $G=\operatorname{Aut}(\Gamma)$. Если $g\in G$, χ_1 — характер проекции представления ψ на подпространство размерности 38, χ_2 — характер проекции представления ψ на подпространство размерности 18, то $\alpha_i(g)=\alpha_i(g^l)$ для любого натурального числа l, взаимно простого $c\mid g\mid$,

$$\chi_1(g) = (19\alpha_0(g) + 4\alpha_1(g) - 5\alpha_3(g))/36 - 19/9,$$

$$\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/4 - 1 = -(\alpha_1(g) + \alpha_2(g))/4 + 18.$$

Eсли |g|=p — простое число, то $\chi_1(g)-38$ и $\chi_2(g)-18$ делятся на p.

Доказательство. Имеем

$$Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 38 & 19/3 & -19/9 & -38/3 \\ 18 & -1 & -1 & 18 \\ 19 & -19/3 & 19/9 & -19/3 \end{pmatrix}.$$

Поэтому $\chi_1(g)=(2\alpha_0(g)+\alpha_1(g)/3-\alpha_2(g)/9-2\alpha_3(g)/3)/4$. Подставляя $\alpha_2(g)=76-\alpha_0(g)-\alpha_1(g)-\alpha_3(g)$, получим $\chi_1(g)=(19\alpha_0(g)+4\alpha_1(g)-5\alpha_3(g))/36-19/9$.

Далее, $\chi_2(g) = (18\alpha_0(g) - \alpha_1(g) - \alpha_2(g) + 18\alpha_3(g))/76$. Учитывая равенство $\alpha_0(g) + \alpha_1(g) + \alpha_2(g) + \alpha_3(g) = 76$, получим $\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/4 - 1 = -(\alpha_1(g) + \alpha_2(g))/4 + 18$.

Остальные утверждения леммы следуют из леммы 1 [4].

Пусть до конца работы Γ — дистанционно регулярный граф с массивом пересечений {18, 15, 1; 1, 5, 18}, $G = \operatorname{Aut}(\Gamma)$, g — элемент простого порядка p из G и $\Omega = \operatorname{Fix}(g)$. Заметим, что Γ содержит 19 антиподальных классов, в каждом из которых 4 вершины.

Если g фиксирует антиподальный класс K и $a \in \Omega$, то K пересекает Ω , а если Ω пересекает антиподальные классы K, L, то $|K \cap \Omega| = |L \cap \Omega|$.

Первое утверждение очевидно. Докажем второе утверждение. Вершина из $L \cap \Omega$ попадает в окрестность единственной вершины из $K \cap \Omega$, поэтому $|K \cap \Omega| \leq |L \cap \Omega|$. Симметрично $|L \cap \Omega| \leq |K \cap \Omega|$.

Лемма 2. Если Ω — пустой граф, то $\alpha_3(q) = 4s$ и выполняется одно из утверждений:

- (1) p = 19, $\alpha_3(g) = 0$, $\alpha_1(g) = 19$;
- (2) p = 2, $\alpha_3(g) = 4s$, s нечетно $u \alpha_1(g) = 18l + 5s + 1$.

Доказательство. Так как $76=4\cdot 19$, то p=2 или 19. Из целочисленности $\chi_2(g)$ следует, что $\alpha_3(g)=4s$.

Пусть p=19. Тогда $\alpha_3(g)$ делится на 76 и $\alpha_3(g)$ равно 76 или 0. В первом случае получим противоречие с тем, что 19 не делит r. Во втором случае $\chi_1(g)=(\alpha_1(g)-19)/9$, поэтому $\alpha_1(g)=19$.

Пусть p=2. Тогда s нечетно и $\chi_1(g)=(\alpha_1(g)-5s-19)/9$, поэтому $\alpha_1(g)=18l+5s+1$. \square В леммах 3–5 предполагается, что Ω содержит вершину a. Заметим, что если $a,b\in\Omega$ и p>5, то $[a]\cap[b]\subset\Omega$. Кроме того, при p>2 имеем $\lambda_\Omega=2$.

Лемма 3. Выполняются следующие утверждения:

- (1) если p не равно 2 или 3, то Ω содержит по вершине из [a] и из $\Gamma_2(a)$;
- (2) ecnu p > 3, $mo \Gamma_3(a) \subset \Omega$;
- (3) любая вершина из Ω смежна с некоторой вершиной из $\Gamma \Omega$.

Доказательство. Если $p \neq 2$ или 3, то p не делит $|\Gamma_i(a)|$, поэтому Ω содержит по вершине из [a] и из $\Gamma_2(a)$.

Для любой вершины a из Ω подграф $\Gamma_3(a)$ является g-допустимым, и в случае p>3 имеем $\Gamma_3(a)\subset\Omega$.

Допустим, что Ω содержит [a], тогда любая вершина $u \in \Gamma_2(a)$ лежит в $[a_i] \cap [a_j]$ для двух несмежных вершин a_i, a_j из [a] (иначе $[a] \cap [u]$ является 5-кликой, противоречие). Если $u \notin \Omega$, то $u^{\langle g \rangle}$ является p-кокликой. Так как $[a_i] \cap [a_j]$ содержит a, u, u^g для любых двух вершин a_i, a_j из $[a] \cap [u]$, то $[a] \cap [u]$ является кокликой и $(\{a\} \cup u^{\langle g \rangle}) \cup ([a] \cap [u])$ — полный двудольный $K_{5,p+1}$ -подграф. Отсюда p=2 и в $\Gamma_3(a)$ есть вершина b из Ω . Заметим, что $[b] \subset \Omega$, иначе [b] содержит вершину x из $\Gamma - \Omega$ и $[x] \cap [x^g]$ содержит b и 5 вершин из [a], противоречие. Теперь для вершины $y \in \Gamma_2(a) \cap \Gamma_2(b) - \Omega$ получим $[[y] \cap [y^g] \cap \Omega] \geq 10$, противоречие.

Лемма 4. Выполняются следующие утверждения:

- (1) число p не больше 3;
- (2) если p=3, то Ω является одновершинным графом, антиподальным классом или 4-кликой.

Д о к а з а т е л ь с т в о. Пусть p>3. Тогда $|\Omega|=4r$, где r — число антиподальных классов, попадающих в Ω , Ω — регулярный граф степени r-1 и p делит 19-r. Число ребер между Ω и $\Gamma-\Omega$ не меньше 4r(19-r), но не больше 3(76-4r), поэтому $r\leq 3$. Если r=1, то p=2 или 3 — противоречие. Если r=2, то p=17, противоречие с тем, что $\lambda,\mu\leq 5$. Если r=3, то p=2, противоречие.

Пусть p=3. Тогда $|\Omega|$ сравнимо с 1 по модулю 3. Заметим, что любой антиподальный класс пересекает Ω по 1 или 4 вершинам.

Пусть Γ содержит t антиподальных классов, пересекающих Ω по s вершинам. Тогда t сравнимо с 1 по модулю 3, $|\Omega| = st$, $\alpha_3(g) = (4-s)t$, $\alpha_1(g) + \alpha_2(g) = 76-4t$, $\chi_1(g) = (19st + 4\alpha_1(g) - 5(4-s)t)/36 - 19/9 = (24st - 20t + 4\alpha_1(g) - 76)/36$.

Пусть s=4. Если t=1, то $\chi_1(g)=\alpha_1(g)/9$, $\chi_1(g)-38$ делится на 3, поэтому $\alpha_1(g)=27l+18$. Если t=4, то Ω — объединение четырех изолированных клик, противоречие с тем, что для несмежных вершин a,b из разных антиподальных классов, попадающих в Ω , подграф $\Omega(a)\cap [b]$ содержит 2 или 5 вершин.

Пусть s=1. Тогда Ω является t-кликой. Если t=1, то $\chi_1(g)=(\alpha_1(g)/9-2,\,\alpha_1(g)=27l+9.$ Если t=4, то $\chi_1(g)=(\alpha_1(g)-15)/9$ и Ω является 4-кликой.

Лемма 5. Если p=2, то Γ содержит t антиподальных классов, пересекающих Ω по s вершинам, $\alpha_3(g)=t(4-s)$ и выполняется одно из следующих утверждений:

- (1) t = 1, s = 4 $u \alpha_1(g) = 0$;
- (2) t = 3, $\Omega шестиугольник и <math>\alpha_1(g) = 18l 2$;
- $(3)\ t=5,\ \Omega$ является графом $K_{5,5}\ c\ y$ даленным максимальным паросочетанием и $\alpha_1(g)=18l-16.$

Доказательство. Пусть p=2 и Γ содержит t>0 антиподальных классов, пересекающих Ω по s вершинам. Тогда Ω — регулярный граф степени t-1, число $|\Omega|$ четно,

любой антиподальный класс пересекает Ω по 0, 2 или 4 вершинам и t нечетно. Пусть K — антиподальный класс, содержащий вершину a. Тогда $K \cap \Omega = \{a, a_2, ..., a_s\}$.

Заметим, что $\mu_{\Omega} \in \{1,3,5\}$, $\lambda_{\Omega} \in \{0,2\}$. Далее, $\alpha_3(g) = t(4-s)$, поэтому $\chi_2(g) = t-1$ четно и $\chi_1(g) = (24st-20t+4\alpha_1(g)-76)/36$.

Пусть t=1. Тогда Ω лежит в антиподальном классе графа Γ и $|\Omega|=s, s\in\{2,4\}$. С другой стороны, если $d(u,u^g)=2$, то [u] пересекает Ω . Обратно, если $a\in\Omega$ и $u\in[a]$, то $d(u,u^g)=2$, иначе $[u]\cap[u^g]$ содержит 2 вершины из Ω , противоречие. Значит, $\alpha_2(g)=18s, \,\alpha_1(g)=72-18s.$ и $\chi_1(g)=(24s+4(72-18s)-96)/36=(-4s+16)/3$, поэтому s=4.

Пусть t=3. Тогда Ω — объединение изолированных циклов. Отсюда s=2, Ω — шестиугольник или объединение двух треугольников. Так как для несмежных вершин $a,b\Omega$ из разных антиподальных классов подграф $\Omega(a)\cap [b]$ содержит нечетное число вершин, то Ω — шестиугольник. В этом случае $\chi_1(g)=(2+\alpha_1(g))/9$ и $\alpha_1(g)=18l-2$.

Пусть t=5. Тогда $\Omega(a)$ — коклика, четырехугольник или объединение изолированной вершины и треугольника. Если s=4, то $\Omega(a)$ — коклика, Ω — дистанционно регулярный граф с массивом пересечений $\{4,3,1;1,1,4\}$, противоречие с тем, что для собственных значений n,-m этого графа верны равенства $k=mn=4,\ \mu=(m-1)(n+1)/r$ и $\lambda=\mu+n-m$. Если s=2, то $\Omega(a)$ не является объединением изолированной вершины и треугольника. Так как Ω не является локально четырехугольным графом, то $\Omega(a)$ — коклика для некоторой вершины $a\in\Omega$ и $\Omega(a^*)$ — также коклика для антипода a^* вершины a в Ω . Поэтому Ω является графом $K_{5,5}$ с удаленным максимальным паросочетанием. Далее, $\chi_1(g)=(\alpha_1(g)+16)/9$ и $\alpha_1(g)=18l-16$.

Пусть $t \geq 7$. Если s = 2, то Ω — регулярный граф степени t - 1 и $|\Omega| = 2t$. Поэтому Ω содержится в $a^{\perp} \cup a_{2}^{\perp}$. Тогда $\lambda_{\Omega} + \mu_{\Omega} + 1 = t - 1 \leq 7$, противоречие.

Если s=4, то число ребер между $\Gamma-\Omega$ и Ω равно st(19-t), но не больше 5(76-st), поэтому $t\leq 5$, противоречие. Лемма, а вместе с ней и теорема доказаны.

2. Граф с массивом пересечений $\{18, 15, 1; 1, 5, 18\}$ не является вершинно симметричным

До конца работы предполагается, что Γ является дистанционно регулярным графом с массивом пересечений $\{18,15,1;1,5,18\}$ и группа $G={\rm Aut}(\Gamma)$ действует транзитивно на множестве вершин графа Γ .

Лемма 6. Пусть f — элемент порядка 19 из G. Тогда $C_G(f) = \langle f \rangle$.

Д о к а з а т е л ь с т в о. Если g — элемент порядка p из $C_G(f)$, p < 19, то ввиду теоремы p = 2 и Ω — пустой граф. Противоречие с тем, что $\alpha_1(f) = 19$.

Завершим доказательство следствия. Так как простых $\{2,3,19\}$ -групп нет, то группа G разрешима. Но тогда ввиду леммы 6 индекс $|G:G_a|$ не равен 76. Следствие доказано.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Буриченко В.П.**, **Махнев А.А.** О вполне регулярных локально циклических графах // Тез. докл. 42 Всеросс. конф. "Современные проблемы математики". Екатеринбург, 2011. С. 181–184.
- 2. **Brouwer A.E., Cohen A.M., Neumaier A.** Distance-regular graphs. Berlin: Springer, 1989. P. 391–412. (Part of the Ergebnisse der Mathematik und ihrer Grenzgebiete book series: MATHE3, vol. 18.) doi: 10.1007/978-3-642-74341-2 13.
- 3. Cameron P.J., van Lint J. Graphs, codes and their links. Cambridge: Cambridge Univ. Press, 1991. 252 p. (Ser. London Math. Soc. Student Texts. No 22.) ISBN-10: 0521413257.
- 4. **Гаврилюк А.Л., Махнев А.А.** Об автоморфизмах дистанционно регулярного графа с массивом пересечений {56, 45, 1; 1, 9, 56} // Докл. АН. 2010. Т. 432, № 5. С. 512–515.

Ефимов Константин Сергеевич

Поступила 26.06.2018

канд. физ.-мат. наук

Уральский федеральный университет,

Уральский государственный экономический университет,

Институт математики и механики им. Н.Н. Красовского УрО РАН,

г. Екатеринбург

e-mail: konstantin.s.efimov@gmail.com

REFERENCES

- 1. Burichenko V.P., Makhnev A.A. On completely regular locally cyclic graphs In: *Modern problems of mathematics*: Abstr. all-russian conf., Ekaterinburg, Russia, 2011, pp. 181–184 (in Russian).
- 2. Brouwer A.E., Haemers W.H. Graph Spectrum. In: Spectra of Graphs. Universitext. Springer, New York. 2012, pp. 1–20. doi: 10.1007/978-1-4614-1939-6-1.
- 3. Cameron P.J., van Lint J. Graphs, codes and their links, Ser. London Math. Soc. Student Texts. No 22. Cambridge: Cambridge Univ. Press, 1991, 252 p. ISBN-10: 0521413257.
- 4. Gavrilyuk A.L., Makhnev, A.A. On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$. Dokl. Math., 2010, vol. 81, no. 3, pp. 439–442. doi: 10.1134/S1064562410030282.

The paper was received by the Editorial Office on June 26, 2018.

Funding Agency: This work was supported by the Russian Science Foundation (project no. 14-11-00061-Π).

Konstantin Sergeevich Efimov, Cand. Sci. (Phys.-Math.), Ural Federal University, Yekaterinburg, 620002 Russia; Ural State University of Economics, Yekaterinburg, 620144 Russia; Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: konstantin.s.efimov@gmail.com.