
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI UrO RAN

Vol. 24 No. 3 2018

MSC: 20D20

DOI: 10.21538/0134-4889-2018-24-3-43-50

EQUIVALENCE OF THE EXISTENCE OF NONCONJUGATE

AND NONISOMORPHIC HALL π-SUBGROUPS

W. Guo, A.A. Buturlakin, D.O.Revin.

Let π be some set of primes. A subgroup H of a finite group G is called a Hall π-subgroup if any prime divisor
of the order |H| of the subgroup H belongs to π and the index |G : H| is not a multiple of any number in π.
The famous Hall theorem states that a solvable finite group always contains a Hall π-subgroup and any two
Hall π-subgroups of such group are conjugate. The converse of the Hall theorem is also true: for any nonsolvable
group G, there exists a set π such that G does not contain Hall π-subgroups. Nevertheless, Hall π-subgroups
may exist in a nonsolvable group. There are examples of sets π such that, in any finite group containing a
Hall π-subgroup, all Hall π-subgroups are conjugate (and, as a consequence, are isomorphic). In 1987 F. Gross
showed that any set π of odd primes has this property. In addition, in nonsolvable groups for some sets π, Hall
π-subgroups can be nonconjugate but isomorphic (say, in PSL2(7) for π = {2, 3}) and even nonisomorphic (in
PSL2(11) for π = {2, 3}). We prove that the existence of a finite group with nonconjugate Hall π-subgroups
for a set π implies the existence of a group with nonisomorphic Hall π-subgroups. The converse statement is
obvious.
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