Том 23 № 4

2017

УДК 512.54 +519.17

СИММЕТРИЧЕСКИЕ 2-РАСШИРЕНИЯ 2-МЕРНОЙ РЕШЕТКИ. ІІ

Е. А. Коновальчик¹, К. В. Костоусов

Исследование симметрических q-расширений d-мерной кубической решетки Λ^d представляет интерес для теории групп и теории графов. Для небольших $d \geq 1$ и q > 1 (особенно для q = 2) исследование симметрических q-расширений решетки Λ^d актуально также в связи с молекулярной кристаллографией и некоторыми физическими теориями. Ранее в работе В.И. Трофимова доказана конечность числа симметрических 2-расширений решетки Λ^d для произвольного целого положительного d. Настоящая статья представляет собой вторую и завершающую часть работы, посвященной описанию всех, с точностью до эквивалентности, реализаций симметрических 2-расширений решетки Λ^2 для произвольного целого положительного d. Настоящая статья представляет собой вторую и завершающую часть работы, посвященной описанию всех, с точностью до эквивалентности, реализации симметрических 2-расширений решетки Λ^2 (мы доказываем, что имеются 162 такие реализации). В опубликованной ранее первой части нашей работы были перечислены все, с точностью до эквивалентности, реализации симметрических 2-расширений решетки Λ^2 , такие что лишь единичный их автоморфизм оставляет на месте все блоки системы импримитивности (87 реализаций). В настоящей, второй части, работы перечисляются остальные реализации симметрических 2-расширений решетки Λ^2 .

Ключевые слова: симметрическое расширение графа, *d*-мерная решетка.

E. A. Konoval'chik, K. V. Kostousov. Symmetrical 2-extensions of the 2-dimensional grid. II.

The investigation of symmetrical q-extensions of a d-dimensional cubic grid Λ^d is of interest both for group theory and for graph theory. For small $d \geq 1$ and q > 1 (especially for q = 2), symmetrical q-extensions of Λ^d are of interest for molecular crystallography and some phisycal theories. Earlier V. Trofimov proved that there are only finitely many symmetrical 2-extensions of Λ^d for any positive integer d. This paper is the second and concluding part of our work devoted to the description of all, up to equivalence, realizations of symmetrical 2-extensions of Λ^2 (we show that there are 162 such realizations). In the first part of our work, which was published earlier, we found all, up to equivalence, realizations of symmetrical 2-extensions of Λ^2 such that only the trivial automorphism fixes all blocks of the imprimitivity system (87 realizations). In the present paper, we find the remaining realizations of symmetrical 2-extensions of Λ^2 .

Keywords: symmetrical extension of a graph, d-dimensional grid.

MSC: 05C25 DOI: 10.21538/0134-4889-2017-23-4-192-211

1. Введение

Под d-мерной решеткой Λ^d для целого положительного числа d далее понимается d-мерная кубическая решетка, т.е. граф, вершинами которого являются все упорядоченные наборы $(a_1, \ldots a_d)$ из d целых чисел, причем две вершины (a'_1, \ldots, a'_d) и (a''_1, \ldots, a''_d) смежны тогда и только тогда, когда $|a'_1 - a''_1| + \ldots + |a'_d - a''_d| = 1$. Следуя [1], назовем связный граф Г симметрическим расширением решетки Λ^d посредством графа Δ , если существуют такая вершинно-транзитивная группа G автоморфизмов графа Γ и такая система импримитивности σ группы G на множестве $V(\Gamma)$ вершин графа Γ , что имеется изоморфизм φ факторграфа Γ/σ на решетку Λ^d и блоки σ порождают в Γ подграфы, изоморфные Δ . Для целого положительного числа q граф Γ называется симметрическим q-расширением решетки Λ^d , если Γ является симметрическим расширением решетки Λ^d посредством некоторого графа Δ , такого что $|V(\Delta)| = q$. Четверка ($\Gamma, G, \sigma, \varphi$) с указанными компонентами называется реализацией симметрического расширения Γ решетки Λ^d посредством графа Δ или, соответственно, q-расширения Γ решетки Λ^d , а Γ мы будем называть графом этой реализации. Наряду с чисто

¹Работа выполнена при поддержке молодежного гранта ИММ УрО РАН за 2013 г.

математическим интересом симметрические q-расширения решетки Λ^d для небольших $d \geq 1$ и q > 1 представляют интерес для молекулярной кристаллографии и некоторых физических теорий (см. [2]). При этом для кристаллографии из всех симметрических q-расширений решеток Λ^d наибольший интерес представляют, по-видимому, симметрические 2-расширения. Они естественным образом возникают при рассмотрении "молекулярных" кристаллов, "молекулы" которых состоят из двух "атомов" или, более общо, имеют выделенную ось.

Естественно рассматривать реализации симметрических q-расширений решетки Λ^d (q и d — целые положительные числа) с точностью до определяемой следующим образом эквивалентности (см. [3]). Назовем две реализации $R_1 = (\Gamma_1, G_1, \sigma_1, \varphi_1)$ и $R_2 = (\Gamma_2, G_2, \sigma_2, \varphi_2)$ эквивалентными и будем писать $R_1 \sim R_2$, если найдется изоморфизм графа Γ_1 на граф Γ_2 , переводящий σ_1 в σ_2 . Реализацию ($\Gamma, G, \sigma, \varphi$) симметрического q-расширения решетки Λ^d назовем максимальной, если $G = \operatorname{Aut}_{\sigma}(\Gamma)$ — группа всех автоморфизмов графа Γ , сохраняющих разбиение σ . Ясно, что каждая реализация симметрического q-расширения решетки Λ^d имеет эквивалентную ей максимальную реализацию.

В [3, теорема 2] В.И. Трофимовым доказана конечность числа реализаций симметрических 2-расширений *d*-мерной решетки, с точностью до эквивалентности, для произвольного целого положительного числа *d*, а также предложен алгоритм для построения всех, с точностью до эквивалентности, таких реализаций. Данная работа посвящена описанию всех, с точностью до эквивалентности, реализаций симметрических 2-расширений решетки Λ^2 . В первой части работы (см. [5]) были перечислены все, с точностью до эквивалентности, реализации ($\Gamma, G, \sigma, \varphi$) симметрических 2-расширений решетки Λ^2 , такие что лишь единичный автоморфизм графа Γ оставляет на месте все блоки системы импримитивности σ . Во второй части работы перечислены остальные реализации симметрических 2-расширений решетки Λ^2 . По предложению 4 из [3] такое разбиение всех реализаций симметрических 2-расширений решетки Λ^2 на два класса совпадает с определенным следующим образом разбиением на классы I и II соответственно.

Для произвольной реализации ($\Gamma, G, \sigma, \varphi$) симметрического 2-расширения решетки Λ^2 и произвольной пары смежных вершин B_1, B_2 графа Γ/σ множество ребер графа Γ , один конец которых лежит в B_1 , а другой — в B_2 , будем называть *связью*. Возможны следующие типы связей: $mun \ 1$ — четыре ребра; $mun \ 2$ — два ребра, не имеющие общих концов; $mun \ 3$ — одно ребро; $mun \ \overline{3}$ — три ребра; $mun \ 4$ — два ребра, имеющие общий конец. Реализациями *класса* I назовем реализации, которые обязательно содержат связи типов, отличных от 1 и 2. Реализациями *класса* II назовем реализации, связи в которых исчерпываются связями типов 1 и 2.

Как в [5], реализацию симметрического расширения решетки Λ^2 посредством графа K_2 (полного графа на двух вершинах) будем называть *насыщенной* реализацией симметрического 2-расширения решетки Λ^2 . Соответственно реализацию симметрического расширения решетки Λ^2 посредством графа, дополнительного к K_2 , будем называть *ненасыщенной* реализацией симметрического 2-расширения решетки Λ^2 .

В [5] нами показано, что, с точностью до эквивалентности, существует в точности 87 реализаций симметрических 2-расширений решетки Λ^2 класса I, из которых 49 — насыщенные и 38 — ненасыщенные (см. теорему 1 и следствие 1 из [5]). Среди графов насыщенных реализаций симметрических 2-расширений решетки Λ^2 класса I имеется в точности 46 попарно неизоморфных; среди графов ненасыщенных реализаций класса I имеется в точности 36 попарно неизоморфных; а среди всех графов реализаций класса I имеется в точности 78 попарно неизоморфных (см. следствие 2 и следствие 3 из [5]). В части II работы нами показано, что, с точностью до эквивалентности, существует в точности 75 реализаций симметрических 2-расширений решетки Λ^2 класса II, из которых 38 насыщенные и 37 ненасыщенные (см. теорему 1 и следствие 1). Графы всех этих 75 реализаций являются попарно неизоморфными (см. следствие 2). Очевидно, что реализация симметрического 2-расширения решетки Λ^2 класса I не может быть эквивалентна реализация класса II. Однако существует единственная, с точностью до эквивалентности, реализация класса II, граф которой изоморфен графу реализации класса II (см. следствие 2). Таким образом, всего среди графов реализаций симметрических 2-расширений решетки Λ^2 имеется в точности 152 попарно неизоморфных графов. Среди них в точности 84 графа изоморфны графам насыщенных реализаций и 73 графа изомофны графам ненасыщенных реализаций.

В [5] для каждой, с точностью до эквивалентности, реализации симметрического 2-расширения решетки Λ^2 класса I была найдена эквивалентная ей кристаллографическая реализация. В части II работы мы не занимаемся построением кристаллографических реализаций симметрических 2-расширений решетки Λ^2 класса II, поскольку не для всех таких реализаций существуют эквивалентные им кристаллографические реализации. Нетрудно показать, например, что для реализации R_{Σ_1,γ_2} (вторая реализация в табл. 3) не существует эквивалентной ей кристаллографической реализации.

Статья структурирована следующим образом. В разд. 3 приведено описание реализаций симметрических 2-расширений решетки Λ^2 класса II (теорема 1 и следствие 1). Оно получено посредством комбинаторных соображений в разд. 4 и независимо с помощью алгоритма из [3], реализованного в пакете GAP, в разд. 5. В разд. 2 содержатся предварительные результаты.

2. Предварительные результаты

В [5] приведена система представителей $\mathbf{H} = \{H_1, \ldots, H_{35}\}$ всех классов сопряженных вершинно-транзитивных подгрупп группы $\operatorname{Aut}(\Lambda^2)$. Для реализации $R = (\Gamma, G, \sigma, \varphi)$ симметрического 2-расширения решетки Λ^2 произвольный элемент g группы G индуцирует подстановку на σ , которая обозначается через g^{σ} , и соответственно группа G индуцирует на σ группу подстановок, которая обозначается через G^{σ} и является вершинно-транзитивной группой автоморфизмов графа Γ/σ . Группа $\varphi G^{\sigma} \varphi^{-1}$ сопряжена в $\operatorname{Aut}(\Lambda^2)$ с некоторой группой $H \in \mathbf{H}$. В описанной ситуации будем говорить, что группа $\varphi G^{\sigma} \varphi^{-1} \leq \operatorname{Aut}(\Lambda^2)$ coomsemcmsyem реализации R.

Каждой насыщенной реализации $R = (\Gamma, G, \sigma, \varphi)$ класса II следующим образом сопоставим подграф $\Sigma = \Sigma(R)$ решетки Λ^2 , который назовем *подграфом связей типа* 2 *реализации* R. Множество вершин графа Σ совпадает с $V(\Lambda^2)$, и две вершины $v_1, v_2 \in V(\Sigma)$ смежны в графе Σ тогда и только тогда, когда в реализации R между блоками $\varphi^{-1}(v_1)$ и $\varphi^{-1}(v_2)$ имеется связь типа 2. Ясно, что при этом граф Σ является допустимым относительно группы $\varphi G^{\sigma} \varphi^{-1}$, сопряженной в Aut (Λ^2) с некоторой группой $H \in \mathbf{H}$.

Подграф Σ решетки Λ^2 будем называть *допустимым*, если $V(\Sigma) = V(\Lambda^2)$ и он является допустимым относительно некоторой вершинно-транзитивной подгруппы группы Aut(Λ^2). Два допустимых подграфа Σ_1 и Σ_2 решетки Λ^2 назовем *эквивалентными*, если один из них переходит в другой под действием некоторого автоморфизма из Aut(Λ^2). Очевидно, что подграфы связей типа 2 эквивалентных насыщенных реализаций класса II сами являются эквивалентными.

Непосредственно проверяется, что допустимые подграфы решетки Λ^2 , с точностью до эквивалентности, исчерпываются графами $\Sigma_1, ..., \Sigma_{18}$, естественным образом изображенными в табл. 1. Под изображением подграфа Σ_i приводится список групп $H \in \mathbf{H}$, таких что Σ_i является допустимым относительно подгруппы, сопряженной с H в Aut(Λ^2). Переменные χ_1, χ_2, χ_3 , имеющиеся на изображениях, нам понядобятся ниже для нахождения реализаций с такими подграфами связей типа 2.

Для произвольных целых чисел i, j подграф решетки Λ^2 , порожденный множеством вершин $\{(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)\}$, будем называть *клеткой* решетки Λ^2 .

Множество клеток решетки Λ^2 будем называть *допустимым*, если оно является допустимым относительно некоторой вершинно-транзитивной подгруппы группы Aut(Λ^2). Два допустимых множества клеток назовем *эквивалентными*, если одно из них переходит в другое под действием некоторого автоморфизма из Aut(Λ^2). Непосредственно проверяется, что в табл. 2 приводятся все, с точностью до эквивалентности, допустимые множества клеток решетки Λ^2 (клетки, входящие в множество, помечены черным цветом). Под каждым изображением допустимого множества клеток приводится список групп $H \in \mathbf{H}$, таких что это множество клеток является допустимым относительно подгруппы, сопряженной с H в Aut (Λ^2) .

Таблица 1

Допустимые подграфы решетки Λ^2

Таблица 1 (окончание)

Допустимые подграфы решетки Λ^2

Таблица 2

Допустимые множества клеток решетки Λ^2

3. Основной результат

По [3, предложение 5] задача описания всех, с точностью до эквивалентности, симметрических 2-расширений решетки Λ^2 сводится к задаче описания всех насыщенных симметрических 2-расширений решетки Λ^2 . А именно, каждую ненасыщенную реализацию симметрического 2-расширения решетки Λ^2 можно получить из некоторой насыщенной реализации путем удаления в ее графе всех ребер, содержащихся внутри блоков. В результате такой операции для произвольной насыщенной реализацию, либо же ее граф становится несвязным. При этом получающиеся ненасыщенные реализации эквивалентны тогда и только тогда, когда эквивалентны исходные насыщенные реализации.

Теорема. В табл. 3 (см. ниже) приведены все, с точностью до эквивалентности, насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II (все приведенные в табл. 3 реализации попарно неэквивалентны).

Полное изображение каждой из приведенных в табл. 3 реализаций получается путем периодического продолжения (с периодом 4 по обоим направлениям) приведенного фрагмента. На фрагментах изображений пары близких вершин образуют блоки из σ , центральный блок соответствует вершине (0,0) решетки Λ^2 , блок справа от него соответствует вершине (1,0), блок сверху — вершине (0,1). В качестве группы автоморфизмов берется группа всех автоморфизмов изображенного графа, сохраняющих блоки. Под изображением перечислены группы из **H**, сопряженные в $\operatorname{Aut}(\Lambda^2)$ с гомоморфными образами (возникающими при естественном отображении изображенного графа на решетку Λ^2) всех вершинно-транзитивных подгрупп этой группы. Реализации в таблице 3 обозначаются через $R_{\Sigma,\gamma}$ или $R_{\Sigma(...)}$, где Σ – допустимый подграф решетки Λ^2 из табл. 1, являющийся подграфом связей типа 2 данной реализации, γ (если есть) — допустимое множество клеток из табл. 2, которому соответствует данная реализация (в смысле леммы 3 и абзаца перед ней в разд. 4). Аргументы в скобках после Σ (если есть) означают типы расширений циклов графа Σ (см. замечание 2 и абзац перед ним в разд. 4).

Теорема доказывается посредством комбинаторных соображений в разд. 4 и, независимо, с помощью алгоритма из [3], реализованного в пакете GAP, в разд. 5.

Следствие 1. С точностью до эквивалентности существует 38 насыщенных и 37 ненасыщенных реализаций симметрических 2-расширений решетки Λ^2 класса II.

Д о к а з а т е л ь с т в о. Каждой насыщенной реализации симметрического 2-расширения решетки Λ_2 из табл. З сопоставим реализацию, в графе которой внутри каждого блоков убрано ребро (см. начало настоящего раздела). При этом только граф первой реализации потеряет связность.

Следствие 2. Графы всех, с точностью до эквивалентности, реализаций симметрических 2-расширений решетки Λ^2 класса II являются попарно неизомофными (75графов). Среди них есть единственный граф — граф реализации 1) R_{Σ_1,γ_1} из табл. 3 — изоморфный графу реализации симметрического 2-расширения решетки Λ^2 класса I — графу $\overline{\Gamma}_{\beta_1(\overline{3},2),H_3}$, см. [5, рис. 1b].

Д о к а з а т е л ь с т в о. Изоморфизм между двумя указанными графами легко строится непосредственно. Для доказательства остальных утверждений следствия 2 при помощи GAP для каждого из 75 графов реализаций класса II из следствия 1, а также для каждого из 78 графов реализаций класса I (см. следствие 2 и следствие 3 из [5]) был построен подграф, порожденный множеством вершин, удаленных от некоторой произвольно выбранной вершины на расстояние ≤ 4 . Среди полученных 153 конечных графов изоморфными оказались только два, соответствующие указанным в формулировке следствия графам.

Таблица З

Насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II

Насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II

Таблица 3 (продолжение)

Насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II

4. Комбинаторное доказательство теоремы

Всюду в этом разделе под реализацие
йRпониматеся насыщенная реализация симметрического 2-расширения решетк
и Λ^2 класса II.

Пусть имеется некоторая реализация $R = (\Gamma, G, \sigma, \varphi)$, и Σ — граф ее связей типа 2. Без ограничения общности мы будем считать, что Σ совпадает с одним из графов в таблице 1.

Цикл графа Σ будем называть элементарным, если на изображении графа Σ в таблице 1 он ограничивает один из прямоугольников, на которые разбивается плоскость. Цикл $y_0, y_1, ..., y_l = y_0$ графа Γ , такой что $y_i^{\sigma} \neq y_{i+1}^{\sigma}$ для каждого i = 0, ..., l - 1 и все $y_1, ..., y_l$ различны, будем называть расширением элементарного цикла $x_0, x_1, ..., x_m = x_0$ графа Σ (относительно данной реализации R), если $\varphi(y_i^{\sigma}) = x_{i+k \pmod{m}}$ для некоторого целого k и любого i = 0, ..., l - 1. Справедливо следующее очевидное утверждение.

Лемма 1. Пусть R — реализация, Σ — граф ее связей типа 2 и $x_0, x_1, ..., x_m = x_0$ элементарный цикл графа Σ . Тогда этот цикл либо имеет единственное с точностью до циклических перестановок и обращения порядка входящих в него вершин расширение, причем это расширение имеет длину 2m, либо имеет ровно два с точностью до циклических перестановок и обращения порядка входящих в них вершин расширения, причем оба они имеют длину m и не имеют общих вершин.

Следующее утверждение является ключевым для доказательства теоремы.

Лемма 2. Пусть R_1, R_2 — насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II, такие что $\Sigma(R_1) = \Sigma(R_2) = \Sigma$, и для каждого элементарного цикла графа Σ в R_1 и R_2 реализуется одна и та же возможность из леммы 1 (для разных циклов, возможно, разная). Тогда $R_1 \cong R_2$.

Доказательство. Пусть $R_1 = (\Gamma_1, G_1, \sigma_1, \varphi_1)$ и $R_2 = (\Gamma_2, G_2, \sigma_2, \varphi_2).$

Если $\Sigma \in \{\Sigma_9, ..., \Sigma_{18}\}$ то эквивалентность R_1 и R_2 очевидна.

Предположим поэтому, что $\Sigma \in {\Sigma_1, ..., \Sigma_8}$. Пусть $x_0, x_1, ..., x_m = x_0$ — некоторый элементарный цикл графа Σ , и пусть $y_0, y_1, ..., y_l = y_0$ — его расширение относительно реализации R_1 , а $y'_0, y'_1, ..., y'_{l'} = y'_0$ — его расширение относительно реализации R_2 . По условию имеем l' = l. Без ограничения общности будем считать, что $\varphi_1(y_0^{\sigma_1}) = \varphi_2((y'_0)^{\sigma_2}) = x_0, \varphi_1(y_1^{\sigma_1}) = \varphi_2((y'_1)^{\sigma_2}) = x_1$. Начнем строить изоморфизм ψ между графами реализаций R_1 и R_2 , полагая $\psi(y_i) = y'_i$ для i = 0, ..., l - 1. Если l = m, то аналогичное соответствие устанавливаем между оставшимися расширениями элементарного цикла $x_0, x_1, ..., x_m$ в R_1 и R_2 .

Если $\Sigma \notin \{\Sigma_7, \Sigma_8\}$, то пусть $z_0, z_1, ..., z_n = z_0$ — еще один элементарный цикл графа Σ , имеющий общие ребра с циклом $x_0, x_1, ..., x_m$. Пусть, без ограничения общности, $z_0, z_1, ..., z_k \in$ $\{x_0, x_1, ..., x_m\}$ и $z_{n-1}, z_{k+1} \notin \{x_0, x_1, ..., x_m\}$. Пусть $w_0, w_1, ..., w_p = w_0$ — расширение этого цикла относительно реализации R_1 , а $w'_0, w'_1, ..., w'_{p'} = w'_0$ – его расширение относительно реализации R_2 . По условию имеем p' = p. Без ограничения общности будем считать, что $\varphi_1(w_0^{\sigma_1}) = \varphi_2((w_0')^{\sigma_2}) = z_0, \ \varphi_1(w_1^{\sigma_1}) = \varphi_2((w_1')^{\sigma_2}) = z_1.$ Циклически сдвигая на m, если нужно, обозначения вершин цикла $w'_0, w'_1, ..., w'_{p'},$ будем считать, что $\psi(w_0) = w'_0$ (и, следовательно, $\psi(w_i) = w'_i$ для i = 1, ..., k). Продолжим строить изоморфизм ψ , полагая $\psi(w_i) = w'_i$ для i = k + 1, ..., p - 1. Если n = p, то аналогичное соответствие устанавливаем между вторыми расширениями элементарного цикла $z_0, x_z, ..., x_n$ в R_1 и R_2 . Продолжим подобным образом строить изоморфизм ψ , выбирая последующие элементарные циклы графа Σ так, чтобы выполнялись следующие два условия. Во-первых, чтобы пересечение множества вершин каждого последующего цикла с объединением множеств вершин предыдущих циклов являлось сообственным подмножеством вершин некоторого подпути этого цикла. Во-вторых, чтобы в объединение вершин выбираемых циклов рано или поздно вошла каждая вершина из компоненты связности графа Σ, содержащей вершину x₀. Легко видеть, что эти два условия могут быть выполнены.

Таким образом мы построим изоморфизм между подграфами графов Γ_1 и Γ_2 , являющимися симметрическими 2-расширениями компоненты связности графа Σ , содержащей вершину x_0 . Повторяя, если нужно (т. е. в случае $\Sigma \in \{\Sigma_6, \Sigma_7, \Sigma_8\}$), подобное построение для каждой компоненты связности графа Σ , получим искомый изоморфизм ψ между графами Γ_1 и Γ_2 .

Будем говорить, что реализация R coomeemcmeyem допустимому подмножеству клеток γ_i (i = 1, ..., 8), если множество клеток, содержащих элементарные циклы длины 4, для которых

реализуется первая возможность из леммы 1, переводится в γ_i некоторым автоморфизмом решетки Λ^2 . В табл. 3 реализации, у которых подграф связей типа 2 совпадает с Σ_1 и которые соответствуют допустимому подмножесту клеток γ решетки Λ^2 , обозначаются через $R_{\Sigma_1,\gamma}$. Из леммы 2 вытекает следующее утверждение.

Лемма 3. Пусть R — реализация и $\Sigma(R) = \Sigma_1$. Тогда

(1) если каждое расширение каждого элементарного цикла графа Σ_1 является циклом длины 4, то $R \sim R_{\Sigma_1, \gamma_1}$;

(2) если каждое расширение каждого элементарного цикла графа Σ_1 является циклом длины 8, то $R \sim R_{\Sigma_1,\gamma_2}$;

(3) если не выполняются условия первых двух случаев, то либо $R \sim R_{\Sigma_1,\gamma_3}$, либо $R \sim R_{\Sigma_1,\gamma_5}$, либо $R \sim R_{\Sigma_1,\gamma_6}$, либо $R \sim R_{\Sigma_1,\gamma_7}$, либо $R \sim R_{\Sigma_1,\gamma_7}$, либо $R \sim R_{\Sigma_1,\gamma_7}$.

В графах $\Sigma_2, ..., \Sigma_8$ снабдим определенные элементарные циклы переменными $\chi_1, \chi_2, \chi_3 \in \{0, 1\}$, как показано в табл. 1. Теперь для каждой реализации, у которой граф связей типа 2 совпадает с одним из этих графов, значения переменных χ_i отражают, какая реализуется возможность из упоминаемых в лемме 1: значение 0 соответствует второй возможности, а значение 1 соответствует первой возможности. Таков принцип обозначения реализаций 9-28 в табл. 3.

Лемма 4. Если $\Sigma(R) = \Sigma_2$, то либо $R \sim R_{\Sigma_2(0,0)}$, либо $R \sim R_{\Sigma_2(1,0)}$, либо $R \sim R_{\Sigma_2(0,1)}$, либо $R \sim R_{\Sigma_2(0,1)}$.

Д о к а з а т е л ь с т в о. Элементарные циклы графа Σ_2 имеют длины 4 и 8. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов длины 4 графа Σ_2 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 , а для всех элементарных циклов длины 8 — переменной χ_2 . Из леммы 2 следует, что, придавая переменным χ_1 , χ_2 значения 0, 1, мы получим, с точностью до эквивалентности, четыре реализации, изображенные на рис. 1.

Лемма 5. Если $\Sigma(R) = \Sigma_3$, то либо $R \sim R_{\Sigma_3(0)}$, либо $R \sim R_{\Sigma_3(1)}$.

Доказательство. Элементарные циклы графа Σ_3 имеют длину 6. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов

графа Σ_3 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 . Из леммы 2 следует, что, придавая переменной χ_1 значения 0, 1, мы получим, с точностью до эквивалентности, две реализации, изображенные на рис. 2.

Лемма 6. Если $\Sigma(R) = \Sigma_4$, то либо $R \sim R_{\Sigma_4(0,0)}$, либо $R \sim R_{\Sigma_4(1,0)}$, либо $R \sim R_{\Sigma_4(1,1)}$, либо $R \sim R_{\Sigma_4(0,1)}$.

Д о к а з а т е л ь с т в о. Элементарные циклы графа Σ_4 имеют длину 4 или 8. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов длины 4 графа Σ_4 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 , а для всех элементарных циклов длины 8 — переменной χ_2 . Из леммы 2 следует, что, придавая переменным χ_1 , χ_2 значения 0, 1, мы получим, с точностью до эквивалентности, четыре реализации, изображенные на рис. 3.

Лемма 7. Если $\Sigma(R) = \Sigma_5$, то либо $R \sim R_{\Sigma_5(0)}$, либо $R \sim R_{\Sigma_5(1)}$.

Доказательство. Элементарные циклы графа Σ_5 имеют длину 6. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов графа Σ_5 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 . Из леммы 2 следует, что, придавая переменной χ_1 значения 0, 1, мы получим, с точностью до эквивалентности, две реализации, изображенные на рис. 4.

Лемма 8. Если $\Sigma(R) = \Sigma_6$, то либо $R \sim R_{\Sigma_6(0,0)}$, либо $R \sim R_{\Sigma_6(1,1)}$, либо $R \sim R_{\Sigma_6(0,1,1)}$, либо $R \sim R_{\Sigma_6(0,1,0)}$.

Д о к а з а т е л ь с т в о. Приводимое ниже доказательство сопроводим рис. 5. Элементарные циклы графа Σ_6 имеют длину 4. Положим сначала $\chi_1 = \chi_2 = 0$. В силу вершинной симметричности графа реализации *R* из леммы 2 следует, что $R \cong R_{\Sigma_6(0,0)}$.

Положим теперь $\chi_1 = \chi_2 = 1$. В силу вершинной симметричности графа реализации R из леммы 2 следует, что $R \cong R_{\Sigma_6(1,1)}$.

Положим далее $\chi_1 = 0$, $\chi_2 = 1$. В силу вершинной транзитивности реализации R имеем либо $\chi_3 = \chi_2$, либо $\chi_3 = \chi_1$. В первом случае реализация может соответствовать только разбиению на клетки γ_5 (см. табл. 2), и из леммы 2 следует $R \cong R_{\Sigma_6(0,1,1)}$. Во втором случае

реализация может соответствовать только разбиению на клетки γ_7 , и из леммы 2 следует $R \cong R_{\Sigma_6(0,1,0)}$.

Наконец, полагая $\chi_1 = 1, \chi_2 = 0$, мы получим реализации, эквивалентные только что рассмотренным.

Лемма 9. Если $\Sigma(R) = \Sigma_7$, то либо $R \sim R_{\Sigma_7(0)}$, либо $R \sim R_{\Sigma_7(1)}$.

Д о к а з а т е л ь с т в о. Элементарные циклы графа Σ_7 имеют длину 4. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов графа Σ_7 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 . Из леммы 2 следует, что, придавая переменной χ_1 значения 0, 1, мы получим, с точностью до эквивалентности, две реализации, изображенные на рис. 6.

Лемма 10. Если $\Sigma(R) = \Sigma_8$, то либо $R \sim R_{\Sigma_8(0)}$, либо $R \sim R_{\Sigma_8(1)}$.

Д о к а з а т е л ь с т в о. Элементарные циклы графа Σ_8 имеют длину 4. Из вершинной симметричности графа реализации R легко следует, что для всех элементарных циклов графа Σ_8 реализуется та же возможность из леммы 1, что и для цикла, снабженного переменной χ_1 . Из леммы 2 следует, что, придавая переменной χ_1 значения 0, 1, мы получим, с точностью до эквивалентности, две реализации, изображенные на рис. 7.

Наконец, из леммы 2 следует, что для каждого $i \in \{9, ..., 18\}$, если $\Sigma(R) = \Sigma_i$, то $R \sim R_{\Sigma_i}$. Перебрав все варианты для $\Sigma \in \{\Sigma_1, ..., \Sigma_{18}\}$, мы получили все реализации из табл. 3. Теорема доказана.

5. Доказательство теоремы, использующее компьютерную реализацию подхода из [3]

В этом разделе будет дано другое доказательство теоремы, основанное на компьютерной реализации подхода, предложенного в [3], и условно называемого координатизацией симметрических расширений графов. Этот подход представляется применимым для описания реализаций симметрических 2-расширений решетки Λ^d и в случае d > 2.

Пусть G — группа и L — ее подгруппа. Пусть, кроме того, \mathcal{P} — некоторое множество двухэлементных подмножеств вида $\{L, aL\}, a \in G$, множества G/L левых смежных классов G по L. Тогда через $\Gamma_{G,L,\mathcal{P}}$ обозначается граф с множеством вершин G/L и множеством ребер $\{\lambda_{G/L}(g)(P) : P \in \mathcal{P}, g \in G\}$, где $\lambda_{G/L}$ — действие группы G на G/L левыми сдвигами. При этом $\lambda_{G/L}(G)$ является вершинно-транзитивной группой автоморфизмов графа $\Gamma_{G,L,\mathcal{P}}$.

Пусть теперь H — вершинно-транзитивная группа автоморфизмов решетки Λ^2 и G — центральное расширение группы H посредством группы $\langle c' \rangle$ порядка 2. Пусть $K \leq G$ — прообраз $H_{(0,0)}$ при естественном гомоморфизме $G \to H$ (в частности, $c' \in K$). Пусть L — подгруппа Kиндекса 2, не содержащая c' (откуда следует $K = L \cup c'L$). Тогда $\sigma := \{\lambda_{G/L}(g)(\{L,c'L\}) :$ $g \in G\}$ есть система импримитивности группы $\lambda_{G/L}(G)$ на G/L. Через φ обозначим взаимнооднозначное отображение σ на $V(\Lambda^2)$, такое что $\varphi(\lambda_{G/L}(g)(\{L,c'L\}))$ совпадает с $\bar{g}((0,0))$, где \bar{g} — образ g при естественном гомоморфизме $G \to H$, для всех $g \in G$. Пусть, кроме того, \mathcal{P} — некоторое множество двухэлементных подмножеств вида $\{L, aL\}$, $a \in G$. Если граф $\Gamma_{G,L,\mathcal{P}}$ связен, то четверка ($\Gamma_{G,L,\mathcal{P}}, \lambda_{G/L}(G), \sigma, \varphi$) является реализацией симметрического 2расширения решетки Λ^2 класса II, которую мы будем называть *универсальной реализацией*, *соответствующей* G, L, \mathcal{P} , и для краткости обозначать через $R_{G,L,\mathcal{P}}$.

Пусть даны допустимый подграф Σ решетки Λ^2 и группа $H \leq \operatorname{Aut}(\Lambda^2)$, являющаяся вершинно-транзитивной группой автоморфизмов графа Σ . Пусть h_1, h_2, h_3, h_4 — такой набор элементнов группы H, что $h_1((0,0)) = (1,0), h_2((0,0)) = (-1,0), h_3((0,0)) = (0,1), h_4((0,0)) =$ (0,-1). Положим $J_{\Sigma} := \{j \in \{1,2,3,4\} : h_j((0,0)) \in \Sigma((0,0))\}$, где $\Sigma((0,0)) -$ окрестность (0,0) в графе Σ . Через $\Sigma^{(0,0)}$ обозначим компоненту связности графа Σ , содержащую (0,0). Пусть Q — ограничение стабилизатора множества вершин $V(\Sigma^{(0,0)})$ в группе H на множество $V(\Sigma^{(0,0)})$. Для каждой компоненты связности Σ^* графа Σ , отличной от $\Sigma^{(0,0)}$, выберем в Hэлемент, переводящий $\Sigma^{(0,0)}$ в Σ^* . Получающийся в результате этого конечный или счетный набор элементов группы H обозначим через T.

Пусть $R = (\Gamma, G, \sigma, \varphi)$ — произвольная реализация, такая что $\Sigma(R) = \Sigma$ и $\varphi G^{\sigma} \varphi^{-1} = H$. Пусть $\tilde{\Sigma}^{(0,0)}$ — подграф графа Γ , порожденный множеством вершин $\bigcup_{u \in V(\Sigma^{(0,0)})} \varphi^{-1}(u)$. Пусть \tilde{Q} — ограничение стабилизатора множества вершин $V(\tilde{\Sigma}^{(0,0)})$ в группе G на множество $V(\tilde{\Sigma}^{(0,0)})$. Выберем $v \in \varphi^{-1}((0,0))$ и положим L равным ограничению стабилизатора G_v на множество $V(\tilde{\Sigma}^{(0,0)})$. Очевидно, что \tilde{Q} действует транзитивно на $V(\tilde{\Sigma}^{(0,0)})$. Отождествим множество левых смежных классов \tilde{Q}/L с $V(\tilde{\Sigma}^{(0,0)})$, сопоставляя произвольной вершине $u \in V(\tilde{\Sigma}^{(0,0)})$ смежный класс gL, где g — некоторый элемент группы \tilde{Q} , переводящий v в u. Пусть N — набор представителей всех смежных классов из \hat{Q}/L , отождествленных с вершинами из $\tilde{\Sigma}^{(0,0)}(v)$. Пусть X — некоторое подмножество множества N и $\mathcal{P} := \{\{L, gL\} : g \in X\}$. Если граф $\Gamma_{\tilde{Q},L,\mathcal{P}}$ связен, то мы построили реализацию симметрического 2-расширения $R_{\tilde{Q},L,\mathcal{P}}$ графа $\Sigma^{(0,0)}$ (симметрическое 2-расширение произвольного связного локально-конечного графа определяется аналогично симметрическому 2-расширению решетки Λ^d , см. [3]). Из [3, предложение 6] следует, что $\Gamma_{\tilde{Q},L,\mathcal{P}} \cong \tilde{\Sigma}^{(0,0)}$. Используя выбранный ранее набор элементов T группы H мы следующим образом достроим эту реализацию до реализации $R' = (\Gamma', G', \sigma', \varphi')$, эквивалентной R.

Отождествим $V(\tilde{\Sigma}^{(0,0)})$ с подмножеством V_0 множества $V = \{(i, j, k) : i, j \in \mathbb{Z}, k \in \{0, 1\}\}$ следующим образом. Вершине u поставим в соответствие тройку (i, j, k), в которой $(i, j) = \varphi(u^{\sigma})$, а k выбрано произвольно. При этом множество левых смежных классов \tilde{Q}/L тоже отождествится с V_0 . Построим граф Γ' с множеством вершин V на основе графа реализации $R_0 = R_{\tilde{Q},L,\mathcal{P}}$ с множеством вершин V_0 следующим образом. Для произвольных u = $(i_1, j_1, k_1), w = (i_2, j_2, k_2) \in V$ есть следующие три возможности 1)–3).

1) $(i_1, j_1), (i_2, j_2) \in \Sigma^{(0,0)}$. Если между блоками реализации R_0 , содержащими эти вершины, имеется ровно 2 ребра, то вершины u, w полагаем смежными в Γ' тогда и только тогда, когда они смежны в $\Gamma_{\tilde{Q},L,\mathcal{P}}$. В противном случае u, w полагаем смежными в Γ' тогда и только тогда, когда (i_1, j_1) и (i_2, j_2) смежны в Λ^2 .

2) $(i_1, j_1), (i_2, j_2)$ лежат в некоторой компоненте связности Σ^* графа Σ , отличной от $\Sigma^{(0,0)}$. Это значит, что $(i_1, j_1) = t((i'_1, j'_1))$ и $(i_2, j_2) := t((i'_2, j'_2))$ для некоторых $(i'_1, j'_1), (i'_2, j'_2) \in V(\Sigma^{(0,0)})$ и некоторого $t \in T$. Полагаем u, w смежными в Γ' тогда и только тогда, когда (i'_1, j'_1, k_1) и (i'_2, j'_2, k_2) смежны в Γ' .

3) $(i_1, j_1), (i_2, j_2)$ лежат в разных компонентах связности графа Σ . Полагаем u, w смежными в Γ' тогда и только тогда, когда (i_1, j_1) и (i_2, j_2) смежны в Λ^2 .

Легко видеть, что $\Gamma' \cong \Gamma$. Пусть $G' = \psi G \psi^{-1}$, где ψ — изоморфизм графа Γ на граф Γ' . Полагая $\sigma' = \{\{(i, j, 0), (i, j, 1)\} : i, j \in \mathbb{Z}\}$ и $\varphi'((i, j)^{\sigma'}) = (i, j)$ для всех $i, j \in \mathbb{Z}$, получаем $(\Gamma', G', \sigma', \varphi') \cong (\Gamma, G, \sigma, \varphi)$. Построенную таким образом реализацию $R' = (\Gamma', G', \sigma', \varphi')$ мы будем называть гибридной реализацией, соответствующей $\tilde{Q}, L, \mathcal{P}$ и T.

С использованием этого построения был реализован следующий алгоритм, который генерирует все, с точностью до эквивалентности, насыщенные реализации симметрических 2-расширений решетки Λ^2 класса II.

Алгоритм 1. Генерация всех (с точностью до эквивалентности) насыщенных реализаций симметрических 2-расширений решетки Λ^2 класса II.

Выход: Список реализаций R_i , i = 1, ..., n.

Описание. 1. Перебираем всевозможные Σ из табл. 1.

2. Перебираем всевозможные вершинно-транзитивне подгруппы H группы $\operatorname{Aut}(\Lambda^2)$, относительно которых Σ является инвариантным.

3. Строим группу Q, как описано выше. Перебираем всевозможные центральные расширения \tilde{Q} группы Q посредством группы $\langle c \rangle$ порядка 2. Для того, чтобы найти все такие расширения, мы строим полициклическое представление группы Q (см. [8]; если $\Sigma^{(0,0)} = \Sigma$, то строим при помощи вызова процедуры IsomorphismPcpGroup(H) из GAP-пакета Cryst [6;7], в остальных случаях — вручную). Затем берем множество порождающих элементов $g_1, ..., g_s$ и соответствующих соотношений $W_1(g_1, ..., g_s), ..., W_r(g_1, ..., g_s)$ этого полициклического представления. К порождающим добавляем еще один элемент c, а множество определяющих соотношений расширяем 2^r способами, как это описывается в доказательстве теоремы 1 из [3]. Получивпиеся претенденты на полициклические представления расширения \tilde{Q} , проходят проверку на корректность при помощи процедуры IsConfluent из GAP-пакета Polycyclic [8].

4. Пусть K — прообраз группы $Q_{(0,0)}$ в Q при естественном гоморофизме $Q \to Q$. Перебираем всевозможные подгруппы L индекса 2 группы K, не содержащие c.

5. Перебираем всевозможные подмножества X множества N (см. выше), и выбираем те из них, для которых граф $\Gamma_{\tilde{Q},L,\mathcal{P}}$ связен (см. выше). Если $\Sigma^{(0,0)} \neq \Sigma$, то проверяем имеет ли граф Г' вершинно-транзитивную группу автоморфизмов G, индуцирующую группу H на решетке Λ^2 (см. замечание 1 ниже). Если это так, то записывем получившуюся реализацию в выходной список.

З а м е ч а н и е 1. Нам во всех случаях удалось показать существование группы G, являющейся центральным расширением группы H посредством группы $\langle c' \rangle$, где c' — автоморфизм графа Γ' , меняющий местами вершины в каждом из блоков. Таким образом, во всех случаях удалось достроить гибридную реализацию до универсальной (см. табл. 5, в строках 1-20 c' = c).

Введем обозначения для следующих автоморфизмов Λ^2 :

 $\begin{array}{ll} r_{\frac{\pi}{2}}:(a,b)\mapsto (b,-a), & r_{\pi}:(a,b)\mapsto (-a,-b), & r_{-\frac{\pi}{2}}:(a,b)\mapsto (-b,a), \\ m_{/}:(a,b)\mapsto (b,a), & m_{\backslash}:(a,b)\mapsto (-b,-a), & m_{|}:(a,b)\mapsto (-a,b), \\ m_{-}:(a,b)\mapsto (a,-b), & x:(a,b)\mapsto (a+1,b), & y:(a,b)\mapsto (a,b+1), & \text{где } a,b\in\mathbb{Z}. \end{array}$

Для описания алгоритма 2, проверяющего реализации на эквивалентность, нам понадобится следующее определение из [2]. Реализация $R = (\Gamma, G, \sigma, \varphi)$ симметрического 2-расширения решетки Λ^2 удовлетворяет условию $[p_x, p_y]$ -периодичности, где p_x, p_y — положительные целые числа, если найдутся $g_1, g_2 \in G$, такие что $[g_1, g_2] = 1$ и $\varphi g_1^{\sigma} \varphi^{-1} = x^{p_x}, \varphi g_2^{\sigma} \varphi^{-1} = y^{p_y}$. Следующее утверждение помогает находить p_x и p_y .

Лемма 11. Пусть $R = (\Gamma, G, \sigma, \varphi)$ — реализация симметрического 2-расширения решетки Λ^2 класса II, такая что граф $\Sigma(R)$ связен. Пусть n — наименьшее натуральное число, такое что $x^n \in \varphi G \varphi^{-1}$ и m — наименьшее натуральное число, такое что $y^m \in \varphi G \varphi^{-1}$. Тогда R удовлетворяет условию [n, m]-периодичности или условию [2n, m]-периодичности.

Доказательство. По условию найдутся $g_1, g_2 \in G$, такие что $\varphi g_1^{\sigma} \varphi^{-1} = x^n$, $\varphi g_2^{\sigma} \varphi^{-1} = y^m$. Если $[g_1, g_2] \neq 1$, то $[g_1, g_2] = c'$ и, следовательно $[g_1^2, g_2] = 1$.

З амечание 2. Было проверено, что каждая из сгенерированных при помощи алгоритма 1 реализаций $R = (\Gamma, G, \sigma, \varphi)$, таких что граф $\Sigma(R)$ несвязен, удовлетворяет условию [n, m]-периодичности (числа n, m определяются, как лемме 11).

Пусть $R_i = (\Gamma_i, G_i, \sigma_i, \varphi_i), i = 1, 2, -$ две из сгенерированных при помощи алгоритма 1 реализации. Опишем алгоритм, позволяющий определить, являются ли они эквивалентными. Если реализации эквивалентны, то между их графами существует изоморфизм ψ , сохраняющий блоки и, переводящий $\varphi_1^{-1}((0,0))$ в $\varphi_2^{-1}((0,0))$. Пусть ψ^{σ_1} – подстановка $\sigma_1 \to \sigma_2$, которую индуцирует ψ . Полагая $\bar{\psi} := \varphi_2 \psi^{\sigma_1} \varphi_1^{-1}$, имеем $\bar{\psi} \in \operatorname{Aut}(\Lambda^2)_{(0,0)}$. Нижеописанный алгоритм 2 позволяет определить эквивалентность реализаций в предположении $\bar{\psi} = 1$. В общем случае для проверки реализаций $R_i, i = 1, 2$, на эквивалентность нужно перебрать всевозможные $h \in \operatorname{Aut}(\Lambda^2)_{(0,0)}$ (8 вариантов), и для каждого h сопоставить при помощи алгоритма 2 реализацию R_1 и реализацию $R'_2 = (\Gamma_2, G_2, \sigma_2, h\varphi_2)$. Если хотя бы для какого-то h реализации R_1 и R'_2 окажутся эквивалентными, то $R_1 \cong R_2$.

Алгоритм 2. Проверка двух реализаций на эквивалентность в предположении $\bar{\psi} = 1$. Вход: Реализации $R_i = (\Gamma_i, G_i, \sigma_i, \varphi_i), i = 1, 2$.

Выход: Заключение об их эквивалентности или неэквивалентности.

Описание. Если $\Sigma(R_1) \neq \Sigma(R_2)$, то $R_1 \neq R_2$. В противном случае, используя лемму 11 и замечание 2 после нее, найдем пару (n,m) положительных целых чисел, такую что обе реализации удовлетворяют условию [n,m]-периодичности. Пусть F_i , i = 1, 2, - подграф в Γ_i , порожденный множеством вершин

$$\bigcup_{\substack{k \in \{0, ..., n\}, \\ l \in \{0, ..., m\}}} \varphi_i^{-1}((k, l)).$$

Перебирая биекции между блоками $\varphi_1^{-1}(k,l)$ и $\varphi_2^{-1}(k,l)$ для всех $k \in \{0, ..., n-1\}, l \in \{0, ..., m-1\}$, можно построить 2^{nm} биекций между множествами вершин подграфов F_1 и F_2 (биекция между блоками $\varphi_1^{-1}(n,l)$ и $\varphi_2^{-1}(n,l)$ для $l \in \{0, ..., m-1\}$ и между блоками $\varphi_1^{-1}(k,m)$ и $\varphi_2^{-1}(k,m)$ для $k \in \{0, ..., n-1\}$ устанавливается автоматически из условия периодичности). Если среди них найдется биекция, задающая изморфизм подграфов F_1 и F_2 , то она по периодичности продолжается до изоморфизма графов Γ_i , i = 1, 2, u, следовательно, данные реализации эквивалентны. Если же такого соответствия не найдется, то данные реализации неэквивалентны. Перебор 2^{nm} соответствий вершин подграфов убыстряется за счет использования перебора с возвратом.

Список реализаций, сгенерированный при помощи алгоритма 1 и прореженный с помощью алгоритма 2, содержит 38 реализаций, эквивалентных реализациям, приведенным в табл. 3. Мы приводим этот список ниже в табл. 4 и 5. В табл. 4 приведены гибридные представления тех реализаций из этого списка, у которых подграф связей типа 2 несвязен. В табл. 5 приведены универсальные представления для всех реализаций из этого списка.

В табл. 4 для каждой гибридной реализации, соответствующей $\tilde{Q}, L, \mathcal{P}$ и T мы приводим соответствующую ей группу $H \leq \operatorname{Aut}(\Lambda^2)$, гомоморфные образы порождающих группы \tilde{Q} (за исключением c) в Q (для упрощения обозначений мы приводим их прообразы при естественном гомоморфизме $H \to Q$), определяющие соотношения группы \tilde{Q} , группу L, множество $X \subset \tilde{Q}$, такое что $\mathcal{P} = \{\{L, gL\} : g \in X\}\}$, и набор элементов T группы H.

В табл. 5 для каждой универсальной реализации $R_{G,L,\mathcal{P}}$ мы приводим соответствующую ей группу $H \leq \operatorname{Aut}(\Lambda^2)$, гомоморфные образы порождающих группы G (за исключением c') в H, определяющие соотношения группы G, группу L и множество $X \subset G$, такое что $\mathcal{P} = \{\{L, gL\} : g \in X\}\}.$

В табл. 4 и 5 каждое множество X разбито на четыре части тремя символами ";". Первая часть — элементы, гомоморфные образы которых в группе H отображают (0,0) в (1,0); вторая часть — в (0,1); третья часть — в (-1,0); четвертая часть — в (0,-1). В частности, запись ";;"означает, что соответствующая из четырех частей пуста.

В табл. 4 для реализации 22) из пяти порождающих соотношений $g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_2, g_4^{g_1} = cg_4$ и $g_4^{g_2} = g_4^{-1}$ приведено только четвертое, поскольку остальные четыре такие же, как у реализации 21). Четвертое соотношение отличается множителем *c* в правой части. Во всех реализациях табл. 4 и 5, где мы прибегаем к подобному сокращению, мы приводим только соотношения, отличающиеся наличием множителся *c* (или *c'*) в правой части соотношений для указанных похожих реализаций.

Таблица 4

H	образы порождающих $ ilde{Q}$	соотношения \tilde{Q}	L	X	$T \cup \{1\}$
1)-20)	$\tilde{Q} = G$ (см. табл. 5)	см. табл. 5	см. табл. 5	см. табл. 5	{1}
21) H_{13}	$ar{g}_1 = x^{-1} m_{ }, ar{g}_2 = m, \ ar{g}_4 = y$	$g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_4^{g_1} = g_4, g_4^{g_2} = g_4^{-1}$	$=g_2,\qquad \langle g_2 \rangle$	$\{;g_4;g_1;g_4^{-1}\}$	$\{t^i: i \in \mathbb{Z}\},$ где $t = x^2$
22) Все т	ак же, как в 21), кроме	$g_4^{g_1} = cg_4$			
23) H_{15}	$ar{g}_1 = x^{-1}m_{ }, ar{g}_2 = ym_{-}, \ ar{g}_3 = y^2$	$\begin{array}{c} g_1^2 = 1, g_2^2 = 1, \ g_2^{g_1} = \\ g_3^{g_1} = cg_3, \ g_3^{g_2} = g_3^{-1} \end{array}$	$= g_2, \qquad 1$	$\{;g_2;g_1;g_3^{-1}g_2\}$	$\{t^i:i\in\mathbb{Z}\},$ где $t=yx^2$
24) H_{25}	$ar{g}_1 = x^{-1} m_{ }, ar{g}_2 = y m_{-}, \ ar{g}_3 = y^2$	$\begin{array}{c} g_1^2 = 1, g_2^2 = 1, \ g_2^{g_1} = \\ g_3^{g_1} = cg_3, \ g_3^{g_2} = g_3^{-1} \end{array}$	$= g_2, \qquad 1$	$\{;g_2;g_1;cg_3^{-1}g_2\}$	$\{t^i:i\in\mathbb{Z}\},$ где $t=x^2$
25) H_{15}	$\bar{g}_1 = x^{-1}m_{ }, \ \bar{g}_2 = ym_{-}$	$g_1^2 = 1, g_2^2 = 1, g_2^{g_1} =$	$= g_2, \qquad 1$	$\{;g_2;g_1;\}$	$\{t_2^jt_1^i:i,j\in\mathbb{Z}\},$ где $t_1=y^2,t_2=yx^2$
26) Все т	ак же, как в 25), кроме	$g_2^{g_1} = cg_2$			
27) H_{23}	$egin{array}{lll} ar{g}_1 = x m_ert, \ ar{g}_2 = y x m_igwedge , \ ar{g}_3 = m_/ \end{array}$	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_3^2 = \\ g_2^{g_1} = g_3, g_3^{g_1} = g_2, \\ g_3^{g_2} = g_3 \end{array}$	1, $\langle g_3 \rangle$	$\{g_1; g_3g_1;;\}$	$\{t_2^j t_1^i: i, j \in \mathbb{Z}\},$ где $t_1 = x^2, t_2 = y^2$
28) Все т	ак же, как в 27), кроме	$g_3^{g_2} = cg_3$			
29) H_7	$egin{array}{lll} ar{g}_1 = ym_{ar{ar{l}}}, \ ar{g}_2 = m_{ar{ar{l}}}, \ ar{g}_3 = yx^{-1} \end{array}$	$\begin{array}{l} g_1^2 = g_3, g_2^2 = 1, \\ g_2^{g_1} = g_2 g_3, g_3^{g_1} = g_3 \\ g_3^{g_2} = g_3^{-1} \end{array}$, $\langle g_2 \rangle$	$\{g_1^{-1};g_1;;\}$	$\{t^i: i\in \mathbb{Z}\},$ где $t=y^2$
30) H_{14}	$ar{g}_1 = ym, ar{g}_2 = xr_\pi, \ ar{g}_3 = y^2$	$\begin{array}{c} g_1^2 = 1, g_2^2 = 1 \\ g_2^{g_1} = g_3 g_2, g_3^{g_1} = g_3^- \\ g_3^{g_2} = g_3^{-1} \end{array}$	-1, 1	$\{g_2; g_1; ; \}$	$\{t^i: i \in \mathbb{Z}\},$ где $t=x^2$
31) H_{15}	$ \begin{array}{l} \bar{g}_1 = x m_{\mid}, \ \bar{g}_2 = y m_{-}, \\ \bar{g}_3 = y^2 \end{array} $	$\begin{array}{l} g_1^2 = g_3, g_2^2 = 1, \\ g_2^{g_1} = g_3 g_2, g_3^{g_1} = g_3 \\ g_3^{g_2} = g_3^{-1} \end{array}$	3, 1	$\{g_2g_1;g_2;;\}$	$\{t^i: i, \in \mathbb{Z}\},$ где $t=x^2y$
32) H_3	$ar{g}_1=m,ar{g}_2=m_ert,\ ar{g}_3=x$	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1 \\ g_2^{g_1} = g_2, g_3^{g_1} = g_3, \\ g_3^{g_2} = g_3^{-1} \end{array}$	$\langle g_1,g_2 angle$	$\{g_3;;g_3^{-1};\}$	$\{y^i:i,\in\mathbb{Z}\}$
33) H ₉	$\bar{g}_2 = x r_{\pi}$	$g_2^2 = 1$	1	$\{g_2;;;\}$	$egin{array}{lll} \{t_2^j t_1^i h^k: i,j\in \mathbb{Z},\ k\in\{0,1\}\},\ \mathrm{rge}\ h=y^{-1}m_ackslash,\ t_1=y^3x,t_2=y^4 \end{array}$
34) H_{24}	$\bar{g}_3 = x m_{\parallel}$	$g_3^2 = 1$	1	$\{g_3;;;\}$	$ \begin{array}{l} \{t_2^j t_1^i h^k: i, j \in \mathbb{Z}, \\ k \in \{0, 1, 2, 3\}\}, \\ \text{где } h = y^{-1} x^2 r, \\ t_1 = y^2 x^2, t_2 = y^4 \end{array} $

Реализации симметрических 2-расширений решетки Λ^2 класса II. Гибридные представления Реализации симметрических 2-расширений решетки Λ^2 класса II. Гибридные представления

Н	образы порождающих $ ilde{Q}$	соотношения \tilde{Q}	L	X	$T \cup \{1\}$
35) H_{15}	$\bar{g}_2 = ym$	$g_2^2 = 1$	1	$\{g_2;;;\}$	$egin{array}{l} \{t_2^j t_1^i h^k: i,j \in \mathbb{Z}, \ k \in \{0,1\}\}, \ ext{rge} \ h = x^{-1}m_ , \ t_1 = y^2, \ t_2 = yx^2 \end{array}$
36) H_6	$\bar{g}_1 = xm_{\mid}, \bar{g}_2 = m$	$g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_2$	$\langle g_2 \rangle$	$\{g_1;;;\}$	$\{t_2^j t_1^i: i, j \in \mathbb{Z}\},\ t_1 = yx, t_2 = y^2$
37) H_{13}	$\bar{g}_1 = xm_{\mid}, \bar{g}_2 = m$	$g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_2$	$\langle g_2 \rangle$	$\{g_1;;;\}$	$\{t_2^j t_1^i: i, j \in \mathbb{Z}\},\ t_1 = x^2, t_2 = y$
38) H_1	$ar{g}_1 = m_/, \ ar{g}_2 = r, \ ar{g}_3 = r_\pi$	$g_1^2 = 1, g_2^2 = g_3, g_3^2 = 1, g_2^{g_1} = g_2^{-1}, g_3^{g_1} = g_3$	$\langle g_1,g_2 angle$	$\{;;;\}$	$\{y^jx^i:i,j\in\mathbb{Z}\}$

Таблица 5

Реализации симметрических 2-расширений решетки Λ^2 класса II. Универсальные представления

Н	образы порожд. G	соотношения группы G	L	X
1) H_1	$egin{array}{lll} ar{g}_1 = m_{/}, ar{g}_2 = r, \ ar{g}_3 = r_{\pi}, ar{g}_4 = x, \ ar{g}_5 = y \end{array}$	$\begin{array}{l} g_1^2 = 1, g_2^2 = g_3, g_3^2 = 1, g_2^{g_1} = g_2^{-1}, \\ g_3^{g_1} = g_3, g_4^{g_1} = g_5, g_5^{g_1} = g_4, g_3^{g_2} = g_3, \\ g_4^{g_2} = g_5, g_5^{g_2} = g_4^{-1}, g_4^{g_3} = g_4^{-1}, \\ g_5^{g_3} = g_5^{-1}, g_5^{g_4} = g_5 \end{array}$	$\langle g_1, g_2 \rangle$	$\{g_4;g_5;g_4^{-1};g_5^{-1}\}$
2) Все та	к же, как в 1), кроме	$g_5^{g_4} = c'g_5$		
3) H_{13}	$ar{g}_1 = x m_{ }, \ ar{g}_2 = m_{-}, \ ar{g}_3 = x^2, \ ar{g}_4 = y$	$ \begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_2, g_3^{g_1} = g_3^{-1}, \\ g_4^{g_1} = g_4, g_3^{g_2} = g_3, g_4^{g_2} = g_4^{-1}, g_4^{g_3} = c'g_4 \end{array} $	$\langle g_2 \rangle$	$\{g_1; g_4; g_3^{-1}g_1; g_4^{-1}\}$
4) H ₁₅	$egin{array}{lll} ar{g}_1 = x^{-1} m_{ }, \ ar{g}_2 = x r_{\pi}, \ ar{g}_3 = y x^2, \ ar{g}_4 = y^2 \end{array}$	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_4 g_3^{-2} g_2, g_3^{g_1} = g_4 g_3^{-1}, \\ g_4^{g_1} = c' g_4, g_3^{g_2} = g_3^{-1}, g_4^{g_2} = g_4^{-1}, g_4^{g_3} = c' g_4 \end{array}$	1	$\{g_2; g_4 g_3^{-1} g_2 g_1; \\ g_1; g_3^{-1} g_2 g_1\}$
5) Все та	к же, как в 4), кроме	$g_3^{g_1} = c'g_4g_3^{-1}, g_3^{g_2} = c'g_3^{-1}$		
6) H ₁₉	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_3^2 = 1, g_2^{g_1} = c'g_5^{-1}g_4g_3, \\ g_3^{g_1} = g_4g_2, g_4^{g_1} = g_5g_4^{-1}, g_5^{g_1} = c'g_5, \\ g_3^{g_2} = g_3, g_4^{g_2} = g_4^{-1}, g_5^{g_2} = g_5g_4^{-2}, \\ g_4^{g_3} = c'g_4, g_5^{g_3} = g_5^{-1}g_4^2, g_5^{g_4} = c'g_5 \end{array}$	$\langle g_2,g_3 angle$	$ \{ g_1; g_5 g_4^{-1} g_1; \\ g_5 g_4^{-2} g_1; g_4^{-1} g_1 \} $
7) H ₂₃	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_3^2 = 1, g_2^{g_1} = g_3, \\ g_3^{g_1} = g_2, g_4^{g_1} = g_4^{-1}, g_5^{g_1} = g_5, \\ g_3^{g_2} = g_3, g_4^{g_2} = g_5^{-1}, g_5^{g_2} = g_4^{-1}, \\ g_4^{g_3} = g_5, g_5^{g_3} = g_4, g_5^{g_4} = c'g_5 \end{array}$	$\langle g_3 angle$	$\{ \begin{array}{l} g_1; g_3 g_1; \\ g_4^{-1} g_1; g_5^{-1} g_3 g_1 \} \end{array}$
 8) Все та 	к же, как в 7), кроме	$g_3^{g_2} = c'g_6$		
9) H ₂₄	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} g_1^2 = g_3 g_2, g_2^2 = g_5 g_4^{-2}, g_3^2 = 1, \\ g_2^{g_1} = g_5^{-1} g_4 g_3, g_3^{g_1} = g_5^{-1} g_4 g_2, g_4^{g_1} = g_5 g_4^{-1} \\ g_5^{g_1} = g_5 g_4^{-2}, g_3^{g_2} = g_5 g_4^{-2} g_3, g_4^{g_2} = g_5^{-1} g_4, \\ g_5^{g_2} = g_5^{-1}, g_4^{g_3} = g_5 g_4^{-1}, g_5^{g_3} = g_5, g_5^{g_4} = g_5 \end{array}$	1	$ \begin{array}{l} \{g_3;g_5g_4^{-1}g_1;\\ g_4^{-1}g_3g_2g_1;\\ g_5^{-1}g_4g_2,c'g_5^{-1}g_4g_2\} \end{array}$
10) Bce 1	ак же, как в 9), кроме	$\begin{array}{l} g_{3}^{g_{1}}=c'g_{5}^{-1}g_{4}g_{2}, \ g_{4}^{g_{1}}=c'g_{5}g_{4}^{-1}, \\ g_{5}^{g_{1}}=c'g_{5}g_{4}^{-2}, \ g_{3}^{g_{2}}=c'g_{5}g_{4}^{-2}g_{3}, \\ g_{4}^{g_{3}}=c'g_{5}g_{4}^{-1} \end{array}$		
11) Все т	так же, как в 9), кроме	$\begin{array}{l} g_2^2 = c'g_5g_4^{-2}, g_5^{q_1} = c'g_5g_4^{-2}, \\ g_3^{g_2} = c'g_5g_4^{-2}g_3, g_4^{g_2} = c'g_5^{-1}g_4 \end{array}$		
12) Все т	ак же, как в 9), кроме	$\begin{array}{l} g_2^2 = c'g_5g_4^{-2}, g_3^{g_1} = c'g_5^{-1}g_4g_2, \\ g_4^{g_1} = c'g_5g_4^{-1}, g_4^{g_2} = c'g_5^{-1}g_4, \\ g_4^{g_3} = c'g_5g_4^{-1} \end{array}$		
13) H ₉	$egin{array}{lll} ar{g}_1 &= y^{-1} m_{ar{ar{\lambda}}}, \ ar{g}_2 &= x r_{\pi}, \ ar{g}_3 &= y^3 x, ar{g}_4 &= y^4 \end{array}$	$\begin{array}{c} g_1^2 = g_4^{-1}g_3, g_2^2 = 1, \\ g_2^{g_1} = g_3^{-1}g_2, g_3^{g_1} = g_4^2g_3^{-3}, g_4^{g_1} = g_4^3g_3^{-4}, \\ g_3^{g_2} = g_3^{-1}, g_4^{g_2} = g_4^{-1}, g_4^{g_3} = g_4 \end{array}$	1	$\{g_2; g_4 g_3^{-1} g_2, \\ c' g_4 g_3^{-1} g_2; \\ g_4 g_3^{-1} g_1; g_1\}$
14) Bce 1	так же, как в 13), кроме	$g_3^{g_1} = c'g_4^2g_3^{-3}, g_4^{g_1} = c'g_4^3g_3^{-4}, g_4^{g_2} = c'g_4^{-1}$		
15) H_{15}	$ \bar{g}_1 = x^{-1} m_{ }, \bar{g}_2 = x r_{\pi}, \bar{g}_3 = y x^2, \ \bar{g}_4 = y^2 $	$\begin{array}{l} g_1^2 = 1, g_2^2 = 1, g_2^{g_1} = g_4 g_3^{-2} g_2, \\ g_3^{g_1} = g_4 g_3^{-1}, g_4^{g_1} = g_4, g_3^{g_2} = g_3^{-1}, \\ g_4^{g_2} = g_4^{-1}, g_4^{g_3} = g_4 \end{array}$	1	$ \begin{array}{l} \{g_2;g_4g_3^{-1}g_2g_1;g_1;\\g_3^{-1}g_2g_1,c'g_3^{-1}g_2g_1\} \end{array} \\$
16) Bce 1	ак же, как в 15), кроме	$g_4^{g_1} = c'g_4, \ g_4^{g_3} = c'g_4$		
17) Все т	так же, как в 15), кроме	$g_3^{g_1} = c'g_4g_3^{-1}, g_3^{g_2} = c'g_3^{-1}$		
18) Все т	ак же, как в 15), кроме	$g_3^{g_1} = c'g_4g_3^{-1}, g_4^{g_1} = c'g_4, g_3^{g_2} = c'g_3^{-1}, g_4^{g_3} = c'g_4$		
19) H ₆	$ar{g}_1 = x m_{ }, \ ar{g}_2 = m_{-}, \ ar{g}_3 = y x, \ ar{g}_4 = y^2$	$\begin{array}{l} g_1^2=1, g_2^2=1, g_2^{g_1}=g_2, \\ g_3^{g_1}=g_4g_3^{-1}, g_4^{g_1}=g_4, g_3^{g_2}=g_4^{-1}g_3, \\ g_4^{g_2}=g_4^{-1}, g_9^{g_3}=g_4 \end{array}$	$\langle g_2 \rangle$	$ \{ g_1; g_4 g_3^{-1} g_1; \\ g_4 g_3^{-2} g_1, \\ c' g_4 g_3^{-2} g_1; g_3^{-1} g_1 \} $

Таблица 5 (окончание)

Реализации симметрических 2-расширений решетки Λ^2 класса II. Универсальные представления

H	образы порожд. G	соотношения группы G	L	X
20) Bce т	ак же. как в 19), кроме	$a_{41}^{g_1} = c'a_4, a_{22}^{g_2} = c'a_{41}^{-1}a_2, a_{33}^{g_3} = c'a_4$		
20) 200 1		$a^2 - 1$ $a^2 - 1$		
(0,1) U	$\bar{g}_1 = x^{-1} m_{ }, \ \bar{g}_2 = m_{-},$	$g_1 = 1, g_2 = 1,$ $g_1 = 1, g_1 = -1, g_1$	(.)	$\{g_3g_1, c'g_3g_1;$
21) H_{13}	$\bar{q}_3 = x^2, \ \bar{q}_4 = y$	$g_{2}^{*} = g_2, g_{3}^{*} = g_3, g_{4}^{*} = g_4,$	$\langle g_2 \rangle$	$q_4; q_1; q_4^{-1}$
		$g_3^{g_2} = g_3, g_4^{g_2} = g_4^{-1}, g_4^{g_3} = g_4$		0-70-704
22) Все т	ак же, как в 21), кроме	$g_4^{g_1} = c'g_4$		
	$\bar{a}_1 = \pi^{-1}m$, $\bar{a}_2 = \mu m$	$g_1^2 = 1, g_2^2 = 1,$		$\{g_4g_3^{-1}g_2g_1,$
23) H_{15}	$g_1 = x m_{ }, \ g_2 = ym_{-}, \ g_2 = ym_{-},$	$g_2^{g_1} = g_2, g_3^{g_1} = c'g_3, g_3^{g_2} = g_3^{-1},$	1	$c'g_4g_3^{-1}g_2g_1;$
	$g_3 = y^2, g_4 = yx^2$	$q_{4}^{\tilde{g}_{1}} = q_{4}^{-1}q_{3}, q_{4}^{g_{2}} = q_{4}q_{2}^{-1}, q_{4}^{\tilde{g}_{3}} = c'q_{4}$		$a_2; a_1; a_2^{-1} a_2$
	_	$a_1^2 = 1, a_2^2 = 1.$		
24) Har	$\bar{g}_1 = x^{-1}m_{ }, \ \bar{g}_2 = ym_{-},$	$a_{g1}^{g_1} - a_{g2}^{g_2} a_{g1}^{g_1} - a_{g2}^{g_2} - a_{g2}^{-1}$	1	$\{g_4g_1, c'g_4g_1;$
24) 1125	$\bar{g}_3 = y^2, \ \bar{g}_4 = x^2$	$g_2 = g_2, g_3 = c g_3, g_3 = g_3$	1	$g_2; g_1; c'g_3^{-1}g_2\}$
		$g_4^{-} = g_4^{-}, g_4^{-} = g_4^{-}, g_4^{-} = g_4^{-}$		(
	1	$q_1^2 = 1, q_2^2 = 1,$		$\{g_4g_3 \ g_2g_1,$
25) H_{15}	$\bar{g}_1 = x^{-1} m_{ }, \ \bar{g}_2 = y m_{-},$	$a_2^{g_1} = a_2, a_2^{g_1} = a_3, a_2^{g_2} = a_2^{-1}.$	1	$c'g_4g_3^{-1}g_2g_1;$
20) 1115	$ar{g}_3 = y^2, ar{g}_4 = yx^2$	$g_{2}^{g_{1}} = g_{2}^{-1} g_{3}^{g_{3}} = g_{3}^{g_{3}} = g_{3}^{g_{3}} = g_{4}^{g_{3}} = g_{4}^{g_{3}} = g_{4}^{g_{4}}$	1	$g_2; g_1;$
		$g_4 - g_4 \ g_3, g_4 - g_4 g_3 \ , g_4 - g_4$		$g_3^{-1}g_2, c'g_3^{-1}g_2\}$
26) Все т	ак же, как в 25), кроме	$g_2^{g_1} = c'g_2$		
				$\{g_1; g_3g_1;$
27) Все т	ак же, как в 7), кроме	$q_{z}^{g_{4}} = q_{5}$ и		$q_{4}^{-1}q_{1}, c'q_{4}^{-1}q_{1};$
.,		55 50		$a_{z}^{-1}a_{z}a_{1} c'a_{z}^{-1}a_{z}a_{1}$
28) Bce т	ak we kak p 27) kdome	$a^{g_2} - c'a_2$		95 9391,° 95 9391J
20) Dec 1	ar me, kar b 21), kpome	$\frac{g_3}{a^2 - a_2} = \frac{g_3}{a^2 - 1}$		[a ⁻¹ , a.,
20) II	$ar{q}_1=ym_{ar{\lambda}},ar{q}_2=m_{ar{\lambda}},$	$g_1 - g_3, g_2 - 1,$	/ \	$\{g_1; g_1; \dots, g_1; \dots, g_n\}$
29) H_7	$\bar{a}_3 = yx^{-1}, \ \bar{a}_4 = y^2$	$g_{21}^{51} = g_2 g_3, g_3^{51} = g_3, g_3^{52} = g_3^{-1},$	$\langle g_2 \rangle$	$g_4 \ g_3 g_1, c' g_4 \ g_3 g_1;$
	50 5 7 J 4 5	$g_4^{g_1} = g_4^{-1}g_3^2, g_4^{g_2} = g_4g_3^{-2}, g_4^{g_3} = g_4$		$g_1g_4^{-1}, c'g_1g_4^{-1}\}$
	$\overline{a}_{1} - ama$ $\overline{a}_{2} - ma$	$g_1^2 = 1, g_2^2 = 1$		$\{g_2; g_1;$
$30) H_{14}$	$g_1 = ym, g_2 = xr_{\pi},$	$g_2^{g_1} = g_3 g_2, g_3^{g_1} = g_3^{-1}, g_3^{g_2} = g_3^{-1}$	1	$g_2 g_4^{-1}, c' g_2 g_4^{-1};$
ŕ	$g_3 = y^2, g_4 = x^2$	$q_4^{\tilde{g}_1} = q_4, q_4^{g_2} = q_4^{-1}, q_4^{g_3} = q_4$		$q_1 q_2^{-1}, c' q_1 q_2^{-1}$
		$a_1^2 = a_3, a_2^2 = 1.$		$\{a_{2}a_{1};a_{2};$
31) H1F	$\bar{g}_1 = x m_{\parallel}, \ \bar{g}_2 = y m_{-},$	$a_{1}^{g_{1}} = a_{2}a_{2} a_{2}^{g_{1}} = a_{2} a_{2}^{g_{2}} = a_{1}^{-1}$	1	(3231, 32)
01) 1115	$\bar{g}_3 = y^2, \bar{g}_4 = yx^2$	$g_{2}^{g_{1}} = g_{3}^{-1} g_{2}^{g_{2}} = g_{1} g_{3}^{-1} g_{3}^{g_{3}} = g_{1}$	1	$a^{-1}a^{-$
		$g_4 - g_4 - g_4 - g_3, g_4 - g_4 g_3, g_4 - g_4$		$93 \ 92, \ 93 \ 92$
20) 11	$\bar{g}_1 = m, \ \bar{g}_2 = m_ ,$	$g_1 - 1, g_2 - 1$ $g_1 - 1, g_1 - 1$		$\{g_3; g_4, c'g_4;$
32) 113	$\bar{g}_3 = x, \bar{g}_4 = y$	$g_2 - g_2, g_3 - g_3, g_4 - g_4$,	$\langle g_1,g_2\rangle$	$g_3^{-1}; g_4^{-1}, c'g_4^{-1} \}$
		$g_3^{32} = g_3$, $g_4^{32} = g_4, g_4^{33} = g_4$		-1
				$\{g_2; g_4g_3 \ g_2, \dots, g_{4}g_{13} \ g_{13} \}$
33) Все т	ак же, как в 13), кроме			$c'g_4g_3^{-1}g_2; g_4g_3^{-1}g_1,$
				$c'g_4g_3^{-1}g_1;g_1,c'g_1\}$
				$\{g_3; g_5g_4^{-1}g_1,$
				$c'q_5q_4^{-1}q_1;$
34) Bce т	акже как в 9) кроме			$a_{-1}^{-1}a_{2}a_{2}a_{1}$
				$a_{4}^{-1}a_{2}a_{2}a_{3}$
				$c g_4 g_3 g_2 g_1,$
				$g_5 \ g_4 g_2, c \ g_5 \ g_4 g_2 \}$
25) 5	>			$\{g_2, c'g_2; g_4g_3^{-}g_2g_1;$
35) Bce т	ак же, как в 15), кроме			$g_1, c'g_1;$
				$g_3^{-1}g_2g_1, c'g_3^{-1}g_2g_1\}$
				$\{g_1; g_4 g_3^{-1} g_1,$
9C) D				$c'g_4g_3^{-1}g_1;$
зој все т	ак же, как в 19), кроме			$q_4 q_2^{-2} q_1, c' q_4 q_2^{-2} q_1$:
				$a_{2}^{-1}a_{1}, c'a_{2}^{-1}a_{1}$
				$\{a_1, a_4, c'a_4, a^{-1}a_5\}$
37) Все т	ак же, как в 3), кроме	$g_{4}^{g_{3}}=g_{4}$ и		(91, 94, 0, 94, 93, 91, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
				$\{c \ g_3 \ g_1; g_4 \ , c \ g_4 \}$
90) P	1 \			$\{g_4, c \ g_4; g_5, c \ g_5; \\ -1 \ , -1 \}$
38) Все т	ак же, как в 1), кроме			$g_4^{-}, c g_4^{-};$
				$g_5^{-1}, c'g_5^{-1}$

Авторы благодарны В.И. Трофимову за полезное обсуждение результатов данной статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Trofimov V.I. Symmetrical extensions of graphs and some other topics in graph theory related with group theory // Тр. Ин-та математики и механики УрО РАН. 2011. Т. 17, № 4. С. 316–320.
- 2. Неганова Е.А., Трофимов В.И. Симметрические расширения графов// Изв. РАН. Сер. математическая. 2014. Т. 78, № 4. С. 175–206.

- 3. **Трофимов В.И.** Конечность числа симметрических 2-расширений *d*-мерной решетки и сходных с ней графов // Тр. Ин-та математики и механики УрО РАН. 2013. Т. 19, № 3. С. 290–303.
- 4. **Трофимов В.И.** Несколько замечаний о симметрических расширениях графов // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20, № 2. С. 284–293.
- 5. Коновальчик Е.А., Костоусов К.В. Симметрические 2-расширения 2-мерной решетки. І // Тр. Ин-та математики и механики УрО РАН. 2016. Т. 22, № 1. С. 159–179.
- GAP Groups, Algorithms, Programming a System for Computational Discrete Algebra. Ver. 4.5.7: [e-resource]. 2012. URL: http://www.gap-system.org.
- Bettina Eick, Franz Gahler, Werner Nickel. GAP package Cryst Computing with crystallographic groupsCryst. Ver. 4.1: [e-resource]. 2013. URL: https://www.gap-system.org/Packages/cryst.html.
- 8. Bettina Eick, Max Horn, Werner Nickel. GAP package Polycyclic. Ver. 2.11: [e-resource]. 2013. URL: https://www.gap-system.org/Packages/polycyclic.html.

Коновальчик Елена Александровна

канд. физ.-мат. наук

науч. сотрудник Института математики и механики им. Н. Н. Красовского УрО РАН, г. Екатеринбург

старший преподаватель кафедры высшей математики ФГБОУ ВО

Магнитогорский государственный технический университет им. Г.И. Носова,

г. Магнитогорск

e-mail: nega-le@yandex.ru

Костоусов Кирилл Викторович

канд. физ.-мат. наук, науч. сотрудник

Институт математики и механики им. Н. Н. Красовского УрО РАН

kkostousov@gmail.com

REFERENCES

- Trofimov V.I. Symmetrical extensions of graphs and some other topics in graph theory related with group theory. *Proc. Steklov Inst. Math. (Suppl.).* 2012, 279, suppl. 1, pp. 107–112. doi: 10.1134/S0081543812090088.
- Neganova E.A., Trofimov V.I. Symmetrical extensions of graphs. *Izv. Math.* 2014, vol. 78, no. 4, pp. 809–835. doi: 10.1070/IM2014v078n04ABEH002707.
- 3. Trofimov V.I. The finiteness of the number of symmetrical 2-extensions of the *d*-dimensional lattice and similar graphs. *Proc. Steklov Inst. Math. (Suppl.).* 2014, **285**, suppl. 1, pp. 169–182. doi: 10.1134/S0081543814050198.
- 4. Trofimov V.I. Some remarks on symmetrical extensions of graphs. Proc. Steklov Inst. Math. (Suppl.). 2015, 289, suppl. 1, pp. 199–208. doi: 10.1134/S0081543815050181.
- Konovalchik E.A., Kostousov K.V. Symmetrical 2-extensions of a 2-dimensional grid. I. Trudy Inst. Mat. Mekh. UrO RAN. 2016, vol. 22, no. 1, pp. 159–179 (in Russian).
- 6. GAP Groups, Algorithms, Programming a System for Computational Discrete Algebra. Ver. 4.5.7: [e-resource]. 2012. Available at: http://www.gap-system.org.
- 7. Bettina Eick, Franz Gahler, Werner Nickel. *GAP package Cryst Computing with crystallographic groupsCryst*, Ver. 4.1, e-resource, 2013. Available at: https://www.gap-system.org/Packages/cryst.html.
- 8. Bettina Eick, Max Horn, Werner Nickel. *GAP package Polycyclic*. Ver. 2.11, [e-resource, 2013. Available at: https://www.gap-system.org/Packages/polycyclic.html.

The paper was received by the Editorial Office on January 12, 2017. *Elena Aleksandrovna Konoval'chik*, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia; Nosov Magnitogorsk State Technical University, Magnitogorsk, 455000 Russia, e-mail: asmi@imm.uran.ru.

Kirill Viktorovich Kostousov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: asmi@imm.uran.ru.

Поступила 12.01.2017