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ON DENDRITES GENERATED BY POLYHEDRAL SYSTEMS AND THEIR

RAMIFICATION POINTS

A. V. Tetenov, M. Samuel, D.A. Vaulin

The methods of construction of self-similar dendrites in R
d and their geometric properties are considered.

These issues have not yet been studied in the theory of self-similar fractals. We construct and analyze a class

of P -polyhedral dendrites K in R
d, which are defined as attractors of systems S = {S1, . . . , Sm} of contracting

similarities in R
d sending a given polyhedron P to polyhedra Pi ⊂ P whose pairwise intersections either

are empty or are singletons containing common vertices of the polyhedra, while the hypergraph of pairwise

intersections of the polyhedra Pi is acyclic. We prove that there is a countable dense subset GS(VP ) ⊂ K such

that for any of its points x the local structure of a neighbourhood of x in K is defined by some disjoint family

of solid angles with vertex x congruent to the angles at the vertices of P . Therefore, the ramification points of

a P -polyhedral dendrite K have finite order whose upper bound depends only on the polyhedron P . We prove

that the geometry and dimension of the set CP (K) of the cutting points of K are defined by its main tree,

which is a minimal continuum in K containing all vertices of P . That is why the dimension dimH CP (K) of

the set CP (K) is less than the dimension dimH (K) of K and dimH CP (K) = dimH (K) if and only if K is a

Jordan arc.
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