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EXPLICIT EXPRESSION FOR HYPERBOLIC LIMIT CYCLES
OF A CLASS OF POLYNOMIAL DIFFERENTIAL SYSTEMS

Rachid Boukoucha

We consider systems of differential equations in the plane,

,_ dw ,_dy

-2 _p =
T = (z,y), v %

= Q({E, y)7

where the dependent variables z and y and the independent one (the time) ¢ are real, and P(z,y), Q(x,y) are
polynomials in the variables x and y with real coefficients. These differential systems are mathematical models
and arise in many fields of application like biology, economics, physics and engineering, etc. The existence of limit
cycles is one of the more difficult objects to study in the qualitative theory of differential systems in the plane.
There is a huge literature dedicated to this topic. It is known that for differential systems defined on the plane the
existence of a first integral determines their phase portrait. Thus for polynomial differential systems a natural
question arises: given a polynomial differential system in the plane, how to recognize if it has a first integral?
There is a strong relation between the invariant algebraic curves and the theory of integrability. In this paper
we introduce explicit expressions for invariant algebraic curves and for the first integral. Finally, we determine
sufficient conditions for a class of polynomial differential systems to possess an explicitly given hyperbolic limit
cycle. Concrete examples exhibiting the applicability of our results are introduced. The elementary method
used in this paper seems to be fruitful to investigate more general planar dynamical systems in order to obtain
explicitly some or all of their limit cycles at least in the case of hyperbolic cycles. In the spirit of the inverse
approach to dynamical systems, we look for them as the ovals of suitably chosen invariant algebraic curves.
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P. Bykyma. fIBHOe BbIparkeHune Il THIEPOOINIECKIX IPEIEIbHBIX [IUKJIOB OJHOIO KJIACCa MOJIMHOMUAIBHBIX
nuddepeHInaTbHBIX CUCTEM.

PaccmarpuBarorcs: cucreMsr nuddepeHnnaabHbIX YPaBHEHUN Ha IIJIOCKOCTH

dx dy
== =P(z,y), y =—== .Y,
¥ =— (@y), ¥ =— =Qy)

IJle 3aBUCHMbIE IIEPEMEHHBbIE T U Y, a TaKXKe He3aBUCHMasl IlepeMeHHasi (BpeMsi) t BeriecTBeHHBbI, a P(x,y) u
Q(z,y) — BelIeCTBEHHBIE MHOTOWIEHBI OT [EPEMEHHBIX T W Y. Takue MareMaTHIeCKue MOAEIH BO3HUKAIOT BO
MHOI'MX HPHUKJIAJHBIX O0JIACTAX B OHMOJIOrMU, SKOHOMUKH, TeXHuke U T.J1. CyliecTBOBaHUE IIPEIEeIbHBIX IIUKJIOB
npejcraBiser coboil oauH U3 Hanbosee TPYAHBIX [JIs U3YUEHUsT BOIIPOCOB KAaYECTBEHHONW TEOPHH IIOCKHUX IHd-
depeHnraNbHBIX CUCTEM, M 9TOU TeMe IOCBSIIEHO OIPDOMHOE KOJIUYeCTBO PaboT. VI3BECTHO, YTO CyIeCTBOBaHUE
[IepBOr0 HMHTErpaja IVIOCKON muddepeHInagbHOl CUCTEMBI OonpefessieT ee (a3oBblil moprper. Takumm obGpa-
30M, IS TIOJIMHOMHUAJIbHBIX JIuddepeHIuaIbHbIX CUCTEM BO3HUKAET €CTECTBEHHBIN BOIIPOC: KaK OIPEIEIUTh,
UMeeT JIM JaHHas CUCTeMa IIepBbIA mHTerpas! VHBapuaHTHBIE ajrebpanvdecKre KPUBBIE TECHO CBSI3aHBI C TEO-
pueil mHTErpupyeMocT. B JaHHOI cTaTbe BBEIEHBI SIBHbIE BBIPAXKEHUS JJIsi WHBAPHUAHTHBIX ajrebpandecKux
KPUBBIX U JJIsl IEPBOT'O MHTerpaJjia, a TaKrKe HaiJeHbl JTIOCTATOYHbIE YCJIOBHs, IIPU KOTOPBIX KJIACC ITOJTUHOMU-
anbHBIX AuddepeHnnaIbHbIX CICTEM UMEET sIBHO 33 JaHHbIe TUIIEPOOIMYeCKre IpeieIbHble IUKIILL. [IpuBeeHn!
KOHKPETHBIE [IPUMEPHI, JIEMOHCTPUPYIOIIFE IPUMEHUMOCTh Pe3ysIbTaToB. lIpencraBisiercs, 9To dj1eMeHTapHbIN
METOJ, UCIIOJIb30BaHHBIM B JaHHON CTaTbe, MOXKET ObITh IIPUMEHEH JJIs HUCCJIEIOBaHHUs 6ojee OOIMX IJIOCKUX
JUHAMUAYECKAX CHCTEM JJId IIOJIy'UeHHUsl B sIBHOM BHJI€ HEKOTODBIX WJIM BCEX IPEIEJIbHBIX IIUKJIOB, IO KpaiiHen
Mepe B CIydae rurnepboImdIecKux IUKIIOB. B ayxe oGpaTHOro moaxona K JMHAMUYECKHIM CHCTEMaM MBI HIEM X
B BUJIe OBAJIOB IIOJXOAIINX MHBAPUAHTHBIX aJIredpanvdeCcKuX KPUBBIX.

KumoueBbie ciioBa: miiockas MoJitHOMHuaIbHasA quddepeHimaibaas CUCTeMa, MHBapUaHTHasl ajredbpandecKast
KpUBasi, IEPBBIil HHTErpaJl, IPEee/IbHBIA UK.
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Introduction

By definition, an autonomous planar polynomial system of differential equations is a system of
the form

v =2 P(z,y),

dt (0.1)
y = W _ Q(z,y)

dt ) M

where P and @) are real polynomials in the variables z and y, we denote by m = max {deg P, deg Q}
and we say that m is the degree of system (0.1). A limit cycle of system (0.1) is an isolated periodic
solution in the set of all periodic solution of system (0.1). In the qualitative theory of autonomous
differential systems on the plane see [8;12], the study of limit cycles is very attractive because of their
relation with the applications to other areas of sciences. This is the most important topics is related
to the second part of the unsolved Hilbert 16th problem see [11]. There is a huge literature about
limit cycles, most of them deal essentially with their detection, their number and their stability
and rare are papers concerned by giving them explicitly see [1-5;10]. Another main open problems
in the qualitative theory of real planar differential systems the determination of its first integrals,
the importance for searching first integrals of a given system was already noted by Poincaré in his
discussion on a method to obtain polynomial or rational first integrals see [13]. One of the classical
tools in the classification of all trajectories of a dynamical system is to find first integrals, for or
more details about first integral see for instance [6;9] . It is well known that for differential systems
defined on the plane R? the existence of a first integral determines their phase portrait see [7].

1. Some useful notions

Let us recall some useful notions.

System (0.1) is integrable on an open set Q of R? if there exists a non constant C' function
H : Q — R, called a first integral of the system on €2 , which is constant on the trajectories of the
system (0.1) contained in 2, i.e. if

dH (z,y) _ OH (z,y)

OH (z,y)
Jy

Q (z,y) =0 in the points of Q.

Moreover, H = h is the general solution of this equation, where h is an arbitrary constant.

Since for such vector fields the notion of integrability is based on the existence of a first integral,
the following question arises: Given the polynomial differential systems (0.1), how to recognize if
this polynomial differential systems has a first Integral? and how to compute it when it exists?

A curve U (z,y) = 0, where U (x,y) is a polynomial with real coefficients, is an invariant
algebraic curve of system (0.1) if and only if there exists a polynomial K = K (x,y) of degree at
most m — 1 satisfying

U (z,y) oU (x,y)

P (z,y) + Q(z,y) = K (z,y) U (z,y). (1.1)

The polynomial K (x,y) is called the cofactor of U (z,y) = 0, if the cofactor is identically zero,
then U (z,y) is a polynomial first integral for system (0.1) . The corresponding cofactor of U (z,y) is
always polynomial whether U (x,y) is algebraic or non algebraic. If U is real, the curve U (z,y) = 0
is an invariant under the flow of differential system (0.1) and the set {(z,y) € R?, U (z,y) =0}
is formed by orbits of system (0.1). There are strong relationships between the integrability of
system (0.1) and its number of invariant algebraic solutions.
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2. Main result

As a main result, we shall prove the following theorem.

Theorem. Consider a multi-parameter planar polynomial differential system of the form

2 = PB,(x,y),
/ (2, y) (2.1)
Yy = Qn(z,y),
where
Py(z,y) = x4 (y—2)(2*—2y+y?) (az® + bay + ay?)"
and
Qn(zy) = y—(y+a)(2? —ay+y?) (az® + bay + ay®)",

in which a, b are real constants and n € N, then the following statements hold.
1) The curve

U(z,y) = —(2®2—zy+y?) (2 +9?) (az® + bay + ay?)"
is an invariant algebraic curve of system (2.1)with cofactor

K (z,y) = 2n+ 4+ (=32% + dzy — 5?) (a2® + bay + ay®)" +n( (2az + by) (y — 2) (2? — zy + y?)

— (bz + 2ay) (z* +y*) ) (az® + bzy + ay2)n_1

2) If 2a+bsin20 # 0 for all 0 € R, then system (2.1) has the first integral

arctan ¥
x

H (z,y) = (xz + yz)nJrl exp <— (2n + 2) arctan %) - / F(w)dw,
0

where

(4n + 4) exp (—2nw — 2w)
(—2+sin2w) (a + 1/2bsin 2w)™’ (2:2)

3) If 2a+bsin20 # 0 for all @ € R and 2a+ |b| > 0, then system (2.1) has limit cycle explicitly
given in polar coordinates (r,0), by

0 1/(2n+2)
r(0,7r.) =exp (6) <7‘f"+2 + /F(w)dw> ,
0

where ry a positive constant, such that
(4 47r)
= exp (dnm + 4m) / Fw)dw
1 — exp (4nm + 47)

4) If a=0b=0, then system (2.1) has the first integral H(z,y) = =
Moreover, the system (2.1) has no limit cycle.

Proof.

F(w) =

/(2n+2)

Proof of statement (1).

An computation shows that

Ulz,y) = -— (m2 —xy+ y2) (:172 + y2) (a:z:2 + bxry + ayz)" =0,
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satisfy the linear partial differential equation (1.1)
K (z,y) =2n+4+ (—3:132 + dxy — 5y2) (a:n2 + by + ay2)n

+n((2az +by) (y — 2) (2 — 2y +y?) = (bx + 2ay) (z* + ) (aa® + by + ay?)"
then the curve U (z,y) = 0 is an invariant algebraic curve of system (2.1) with cofactor K (z,y).

This completes the proof of statement (1) of Theorem.

In order to prove our results (2)—(4) we write the polynomial differential system (2.1) in polar
coordinates (r, ), defined by = rcosf and y = rsin 6, then system becomes

r = % = r+ <—1+ %Sin20> <a+ %bsin%)nr%”,
(2.3)
0 = fl—f = ( -1+ %sin 29> (a + %bsin 29>nr2"+2.

Proof of statement (2).

If 2a + bsin26 # 0 for all § € R, we take as new independent variable the variable @, then the
differential system (2.3) becomes

ﬁ o 9 —2n—1 (2 4)
a6~ " T\ (“2+sin20) (a+ 1/2bsin20)" ' '

The equation (2.4) is a Bernoulli equation, by introducing the standard change of variables

p = 22 we obtain the linear equation
dp dn +4
— = (2 2 . 2.5
a6~ 2Pt 0 (a 120 20)” (25)
The general solution of linear equation (2.5) is
0
p (0) = exp (2n6 + 20) <)\ + /F(w)dw) ,
0
where A € (0,00) and F(w) is defined in (2.2).
Then the general solution of Bernoulli equation (2.4) is
0 1/(2n+2)
7 (0) = exp () ()\ + /F(w)dw> , (2.6)
0

where A € (0,00), which has the first integral

arctan ¥
x

H(z,y) = (2 + y2)n+l exp (— (2n + 2) arctan %) — / F(w)dw.
0

Hence statement (2) of Theorem is proved.
Proof of statement (3).
If 2a+4 bsin26 # 0 for all 8 € R, we have

yP, (z,y) — 2Qn (2,y) = (2* —zy +y?) (2 +y?) (az® + bzy + ay?) ",

thus the origin is the unique critical point at finite distance.



304 R. Boukoucha

It is easy to check that the solution 7 (6, () of the differential equation (2.6) such that r (0,7y) =
ro 18

0 1/(2n+2)
r(0,79) = exp (0) < nt2 / F(w dw> . (2.7)
0

A periodic solution of system (2.1) must satisfy the condition r (2w, 79) = r (0,79), which leads to
an unique value rg = 7, , given by

2 1/(2n+2)

Ty = exp (4nr + 4r) /F(w)dw ,
1 — exp (4nm + 4m)

0

where F'(w) is defined in (2.2).

Since 2a + |b| > 0, we have a + 1/2bsin 2w > 0. Hence, r, > 0.
Injecting this value of r, in (2.7), we get the candidate solution

2m 0
B exp (dnm + 4m) / / 1/(@n+2)
r(0,7.) = exp (0) <1 —exp (dnm © ) F(w)dw + | F(w)dw .
0 0

So, if 7 (0,7,) > 0 for all 8 € R, we shall have r (6, r,) would be periodic orbit, and consequently
a limit cycle.
Since 2a + |b| > 0, we have a + 1/2bsin 2w > 0, then —F(w) > 0 and

0

exp (4nm + 4m) 1/@n+2)
r(0,r.) = exp (0) < 0 +e>(<p T+ 47) /F Jdw + /F(w)dw>
2T

2 1/(2n+2)
> exp (6) </—F(w)dw> > 0,
9
for all 8 € (0,27).

Consequently, this is a limit cycle for the differential system (2.1).
In order to prove the hyperbolicity of the limit cycle it is sufficient to that the Poincaré return
map, for more details see [8, section 1.6]. An computation shows that

dr (2m,10)

aro = exp (4nm + 4m) > 1,

rO=Tx

Therefore the limit cycle of the differential equation (2.4) is hyperbolic. Consequently, this is a
hyperbolic limit cycle for the differential system (2.1). This completes the proof of statement (3) of
Theorem.

Proof of statement (4). Assume now that a = b = 0, then from (2.3) it follows that 6’ = 0.
So the straight lines through the origin of coordinates of the differential system (2.1) are invariant
by the flow of this system. Hence, H (z,y) = y/x is a first integral of the system. This completes
the proof of statement (4) of Theorem. O

3. Examples

The following examples is given to illustrate our results.

Example 1. If we take n =0, then system (2.1) reads
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(3.1)

/

o =x+(y—a)(2* —ay+y?),
v =y—(y+2) (2 —zy+y?).

The curve
Uz,y) = —(2?—zy+y?) (2 +1y?) =0,

is an invariant algebraic curve of system (3.1) with cofactor K (x,y) = —3z2 + 4oy — 5y% + 4.
The system (3.1) has the first integral

arctan £
4 —2
H(z,y) = (m2 + y2) exp (—2 arctan g) + / (M)dw.
T 2 — sin 2w
0

Moreover, the system (3.1) has limit cycle whose expression in polar coordinates (r,6) is

0

r(0,r) =exp(0) |r2— 4/ <exp(7—2w)>dw,

2 — sin 2w
0

where 6 € R, and the intersection of the limit cycle with the O X axis is the point having

2w
2exp (4m) / ( 2
L= ; =) )d ~1.1912.
" exp (4m) — 1 2 — sin 2w exp (—2w) )dw
0
Moreover,
d
r(2m,70) _mo
dro o=y,

This limit cycle is hyperbolic limit cycle. It is the results presented by Jaume Llibre and Benterki
Rebiha in [5].
Example 2. If wetaken =1, a =3 and b = 2 then system (2.1) reads

¢ =z+ (y—z)(2? — zy +y?) (32 + 2zy + 3y?),
Y =y—(y+az)(2? — 2y +y?) (327 + 22y + 3y?) .

The curve
U (.Z',y) = = ('Z'2 —xy+ y2) (I‘2 + y2) (3332 + 2I‘y + 3y2) = O7

is an invariant algebraic curve of system (3.2) with cofactor
K (z,y) = —172* + 1023y — 2422y? + 229° — 19y* + 6.
The system (3.2) has the first integral

arctan £
T

H(x,y) = (:132 + y2)2 exp <—4 arctan %) - / < 8 exp (—duw) > dw.
0

(—2 4+ sin 2w) (3 + sin 2w)

Moreover, the system (3.2) has limit cycle whose expression in polar coordinates (r,6) is

0

1/4
- 8 exp (—4w)
r(0,r,) = exp (0) (rf + / ((_2 + sin 2w) (3 + sin 2w)> dw) 5

0
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where 6 € R, and the intersection of the limit cycle with the O X axis is the point having

27 1/4
exp 87 8exp (—4w)
o . g ~ 0.78463.
" <1 — exp 87 / (=2 + sin 2w) (3 + sin 2w) v

0

Moreover,
dr (27, 70)
dT()

=exp (8m) > 1.

TO=Tx
This limit cycle is hyperbolic limit cycle.
Example 3. If wetaken =2, a =10 and b = —2 then system (2.1) reads

¢ =z+ (y—2)(2? — vy + y?) (102% — 22y + 1Oyz)2 ,
Y =y—(y+az)(2? —zy+y?) (102 — 22y + 10y2)2 )
The curve
Uz,y) = — (22 —zy+y?) (2* +y?) (1022 — 2zy + 1Oyz)2 =0,

is an invariant algebraic curve of system (3.3) with cofactor
K (z,y) = (=662 +90z%y — 1762%y* + 102zy> — 94y*) (102* — 2zy + 10y?) + 8.
The system (3.3) has the first integral

arctan ¥
x

12 exp (—6w)
H(z,y) = (2* +9° % ex —6 arctan LA / < ) dw.
(2,9) = (2" +y7)" exp < x) (=2 + sin 2w) (10 — sin 2w)?

Moreover, the system (3.3) has limit cycle whose expression in polar coordinates (r, ) is

, 1/6
= ex 7’6 12exp (_6w) v
r(0,7) =exp(0) ( *+0/<(_2—|—Sin2w) (10—sin2w)2>d ) 7

where 6 € R, and the intersection of the limit cycle with the O X axis is the point having

2T
. < exp (12m) / 12 exp (—6w)
o (

1/6
dw ~ 0.48491.
1 —exp (127) ) —2 + sin 2w) (10 — sin 2w)? )

Moreover,
dr (2m,rp)

aro =exp (127) > 1.

TO=Tx*

This limit cycle is hyperbolic limit cycle.
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