Tom 23 № 3

УДК 517.518

РАЗРЕЖЕННОЕ ТРИГОНОМЕТРИЧЕСКОЕ ПРИБЛИЖЕНИЕ КЛАССОВ БЕСОВА ФУНКЦИЙ С МАЛОЙ СМЕШАННОЙ ГЛАДКОСТЬЮ

С. А. Стасюк

В работе рассматриваются задачи, которые касаются нахождения точных по порядку оценок такого разреженного тригонометрического приближения, как наилучшее m-членное тригонометрическое приближение $\sigma_m(F)_q$, где в качестве классов F рассматриваются как классы Никольского — Бесова $\mathbf{MB}^r_{p,\theta}$ функций смешанной гладкости, так и близкие к ним функциональные классы. Уделяется внимание соотношениям между параметрами p и q, когда 1 2. А.С. Романюком (2003) были найдены точные по порядку оценки величины $\sigma_m(\mathbf{MB}^r_{p,\theta})_q, 1 \le \theta \le \infty$ (оценки сверху при этом являлись неконструктивными), когда 1 , <math>r > 1/p - 1/q или 2 , <math>r > 1/2. В дополнение к исследованиям А. С. Романюка недавно В. Н. Темляков получил конструктивные оценки сверху (которые обеспечиваются конструктивным методом, основанным на жадном алгоритме) величины $\sigma_m(\mathbf{MB}^r_{p,\theta})_q \asymp \sigma_m(\mathbf{MH}^r_{p,\theta})_q, \ 1 \le \theta \le \infty$ в случае большой гладкости, т.е. при 1 $q>2,\ r>\max\{1/p;1/2\},$ рассмотрев при этом более широкие классы $\mathbf{MH}^r_{p,\theta}$ ($\mathbf{MB}^r_{p,\theta}\subset\mathbf{MH}^r_{p,\theta}\subset\mathbf{MH}^r_p$, $1 \le \theta < \infty$). Меньше внимания было уделено конструктивным оценкам сверху величин $\sigma_m(\mathbf{MB}_{n,\theta}^r)_q$ и $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$ в случае малой гладкости, т.е. при 1 Для $1 В. Н. Темляковым была найдена конструктивная оценка сверху для <math>\sigma_m(\mathbf{MB}^r_{n,\theta})_q$, если $\theta=\infty,\ 1/p-1/q< r<1/p$ или $\theta=p,\ (1/p-1/q)q'< r<1/p,$ где 1/q+1/q'=1, а автором — конструктивная оценка сверху для $\sigma_m(\mathbf{M}\mathbf{H}^r_{p,\theta})_q,$ если $r=1/p,\ p\leq\theta\leq\infty,$ при этом оказалось, что $\sigma_m(\mathbf{M}\mathbf{H}^r_{p,\theta})_q \asymp \sigma_m(\mathbf{M}\mathbf{B}^r_{p,\theta})_q(\log m)^{1/\theta}, \ r=1/p, \ p\leq \theta < \infty.$ В данной работе устанавливается конструктивная оценка сверху для $\sigma_m(\mathbf{MB}^r_{p,\theta})_q$ (или $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$), 1 , <math>(1/p - 1/q)q' < r < 1/p, когда $p < \theta < \infty$ (или $p \leq \theta < \infty$), а также точные по порядку (хотя и неконструктивные сверху) оценки величин $\sigma_m(\mathbf{MB}^r_{p,\theta})_q, \ 2$ r=1/p, которые дополняют соответственно результаты А.С. Романюка и недавние исследования автора.

Ключевые слова: нелинейное приближение, разреженное тригонометрическое приближение, смешанная гладкость, классы Бесова, точные порядковые оценки.

S. A. Stasyuk. Sparse trigonometric approximation of Besov classes of functions with small mixed smoothness.

We consider problems concerned with finding order-exact estimates for a sparse trigonometric approximation, more exactly, for the best m-term trigonometric approximation $\sigma_m(F)_q$, where F are the Nikol'skii–Besov classes $\mathbf{MB}_{n,\theta}^{r}$ of functions with mixed smoothness and classes of functions close to them. Attention is paid to relations between the parameters p and q for 1 and <math>q > 2. In 2003 Romanyuk found order-exact estimates of $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ for $1 \leq \theta \leq \infty$ (the upper estimates are nonconstructive) in the cases 1 ,r > 1/p - 1/q and 2 , <math>r > 1/2. Complementing Romanyuk's studies, Temlyakov has recently found constructive upper estimates (provided by a constructive method based on a greedy algorithm) for $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q \approx \sigma_m(\mathbf{MH}_{p,\theta}^r)_q, \ 1 \leq \theta \leq \infty$, in the case of great smoothness, i.e., for 1 2, and $r > \max\{1/p; 1/2\}$; he considered wider classes $\mathbf{MH}^r_{p,\theta}$ ($\mathbf{MB}^r_{p,\theta} \subset \mathbf{MH}^r_{p,\theta} \subset \mathbf{MH}^r_p$, $1 \le \theta < \infty$). Less attention was paid to constructive upper estimates of the values $\sigma_m(\mathbf{MB}^r_{p,\theta})_q$ and $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$ in the case of small smothness, i.e., for $1 and <math>1/p - 1/q < r \le 1/p$. For 1Temlyakov found a constructive upper estimate for $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ in the cases $\theta = \infty$, 1/p - 1/q < r < 1/p and $\theta = p$, (1/p - 1/q)q' < r < 1/p, where 1/q + 1/q' = 1, while the author found a constructive upper estimate for $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$ if r = 1/p and $p \leq \theta \leq \infty$; it turned out that $\sigma_m(\mathbf{MH}^r_{p,\theta})_q \asymp \sigma_m(\mathbf{MB}^r_{p,\theta})_q (\log m)^{1/\theta}$ for r=1/p and $p\leq \theta<\infty$. In the present paper, we derive a constructive upper estimate for $\sigma_m(\mathbf{MB}^r_{p,\,\theta})_q$ (or $\sigma_m(\mathbf{MH}_{n,\theta}^r)_q)$ for 1 and <math>(1/p - 1/q)q' < r < 1/p when $p < \theta < \infty$ (or $p \le \theta < \infty$) as well as order-exact (though nonconstructive upper) estimates for the values $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$, $2 , <math>\theta = 1$, r = 1/2, and $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$, $1 , <math>1 \le \theta < p$, r = 1/p, which complement Romanyuk's results and the author's recent results, respectively.

Keywords: nonlinear approximation, sparse trigonometric approximation, mixed smoothness, Besov classes, exact order bounds.

MSC: 41A60, 41A65, 42A10, 46E30, 46E35 **DOI:** 10.21538/0134-4889-2017-23-3-244-252

Введение

Настоящая работа посвящена вопросам, связанным с получением точных по порядку оценок наилучшего m-членного тригонометрического приближения $\sigma_m(F)$ (один из видов разреженных тригонометрических приближений), где в качестве классов F рассматриваются классы Бесова $\mathbf{MB}^r_{p,\theta}$ (периодических функций с малой смешанной гладкостью) или близкие к ним функциональные классы.

Внимание будет уделено тем соотношениям между параметрами p и q, когда 1 .

Опишем вкратце историю исследуемых здесь вопросов.

А. С. Романюком [1] были найдены точные по порядку оценки величины $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$, когда 1 1/p - 1/q или 2 1/2.

При этом полученные оценки сверху являлись неконструктивными, поскольку построение приближающего m-членного тригонометрического полинома базировалось на использовании леммы Белинского (см. [2] или [1, лемма 2.1]), которая имеет неконструктивный характер.

В. Н. Темляковым [3] для введенных им более широких классов $\mathbf{M}\mathbf{H}^r_{p,\theta}$, чем классы Бесова $\mathbf{M}\mathbf{B}^r_{p,\theta}$, были найдены точные по порядку оценки $\sigma_m(\mathbf{M}\mathbf{H}^r_{p,\theta})_q \asymp \sigma_m(\mathbf{M}\mathbf{B}^r_{p,\theta})_q$, когда $1 2, \ 1 \le \theta \le \infty, \ r > \max\{1/p; 1/2\}$, т.е. в случае большой гладкости. Упомянутые оценки сверху для $\sigma_m(\mathbf{M}\mathbf{H}^r_{p,\theta})_q$ являлись конструктивными и обеспечивались конструктивным методом, основанным на жадном алгоритме, разработанном В. Н. Темляковым [3].

В случае 1 1/p - 1/q точные по порядку (к тому же конструктивные) оценки величин $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ и $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$ установлены, соответственно, А. С. Романюком [1] и Д. Б. Базархановым [4], при этом $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q \asymp \sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ за исключением случая $1 \le \theta < q$, $r = 1/p - 2/q + 1/\theta$, когда $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q \asymp \sigma_m(\mathbf{MB}_{p,\theta}^r)_q (\log\log m)^{1/\theta}$.

Меньше внимания было уделено конструктивным оценкам сверху величин $\sigma_m(\mathbf{MB}^r_{p,\theta})_q$ и $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$ в случае малой гладкости, в частности, когда $1 . Для <math>1 В. Н. Темляковым [5] была установлена конструктивная оценка сверху для <math>\sigma_m(\mathbf{MB}^r_{p,\theta})_q$, если $\theta = \infty, 1/p - 1/q < r < 1/p$ или $\theta = p, (1/p - 1/q)q' < r < 1/p$, где 1/q + 1/q' = 1, а автором [6] — конструктивная оценка сверху для $\sigma_m(\mathbf{MH}^r_{p,\theta})_q$, если r = 1/p, $p \le \theta \le \infty$, при этом оказалось, что $\sigma_m(\mathbf{MH}^r_{p,\theta})_q \asymp \sigma_m(\mathbf{MB}^r_{p,\theta})_q (\log m)^{1/\theta}$, r = 1/p, $p \le \theta < \infty$.

Автором [7] также были найдены точные по порядку оценки (при этом оценки сверху не являлись конструктивными и базировались на использовании упомянутой леммы Белинского) для $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$, когда $1 , которые совпадают с установленными А. С. Романюком [1] оценками для <math>\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ при тех же ограничениях на параметры p, q, r и θ .

В данной работе устанавливается конструктивная оценка сверху для $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ (или $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$), 1 , <math>(1/p - 1/q)q' < r < 1/p, когда $p < \theta < \infty$ (или $p \le \theta < \infty$), а также точные по порядку (хотя и неконструктивные сверху) оценки величин $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$, $2 , <math>\theta = 1$, r = 1/2.

Используя неконструктивный (с точки зрения получения верхних оценок) подход А.С. Романюка [1], мы также получили точные по порядку оценки величины $\sigma_m(\mathbf{M}\mathbf{H}_{p,\theta}^r)_q$, 1 , <math>r = 1/p в недостающем случае $1 \le \theta < p$, хотя на самом деле полученные оценки имеют место для всех конечных значений параметра θ , т.е. для $1 \le \theta < \infty$.

Работа состоит из трех разделов. В первом разделе приводятся обозначения, определения и вспомогательные утверждения. Второй раздел состоит из формулировок основных результатов и комментариев к ним. В завершающем третьем разделе содержатся доказательства результатов, приведенных в разд. 2 работы.

246 С. А. Стасюк

1. Обозначения, определения и вспомогательные утверждения

Пусть \mathbb{R}^d — евклидово пространство с элементами $\mathbf{x} = (x_1, \dots, x_d)$ и $(\mathbf{x}, \mathbf{y}) := x_1 y_1 + \dots + x_d y_d;$ $L_p := L_p(\mathbb{T}^d),$ $1 \le p \le \infty,$ $\mathbb{T}^d := \prod_{j=1}^d [0, 2\pi),$ — пространство функций $f(\mathbf{x}) = f(x_1, \dots, x_d),$ 2π -периодических по каждой переменной, с конечной нормой

$$||f||_p := ||f||_{L_p(\mathbb{T}^d)} := \left((2\pi)^{-d} \int_{\mathbb{T}^d} |f(\mathbf{x})|^p d\mathbf{x} \right)^{1/p}.$$

Для $f \in L_q(\mathbb{T}^d)$ определим наилучшее m-членное тригонометрическое приближение (наилучшее m-членное приближение по многомерной тригонометрической системе) функции f в метрике пространства $L_q(\mathbb{T}^d)$:

$$\sigma_m(f)_q := \inf_{\{c_j\}, \{\mathbf{k}_j\}} \left\| f - \sum_{j=1}^m c_j e^{i(\mathbf{k}_j, \mathbf{x})} \right\|_q.$$
 (1.1)

Заметим, что величина (1.1) является одним из видов разреженного тригонометрического приближения. Тогда для функционального класса $F \subset L_q(\mathbb{T}^d)$ полагаем

$$\sigma_m(F)_q := \sup_{f \in F} \sigma_m(f)_q. \tag{1.2}$$

Более детально история исследования величин (1.1) и (1.2) описана, например, в монографии [8, гл. 3], обзоре [9, Ch. 7] и статье [5].

Перейдем теперь к определению функциональных классов.

Положим

$$\delta_{\mathbf{s}}(f) := \delta_{\mathbf{s}}(f, \mathbf{x}) := (f * \mathcal{D}_{\rho(\mathbf{s})})(\mathbf{x}), \quad \mathcal{D}_{\rho(\mathbf{s})} := \sum_{\mathbf{k} \in \rho(\mathbf{s})} e^{i(\mathbf{k}, \mathbf{x})},$$

$$\rho(\mathbf{s}) := \left\{ \mathbf{k} = (k_1, \dots, k_d) \colon [2^{s_j - 1}] \le |k_j| < 2^{s_j}, s_j \in \mathbb{Z}_+, k_j \in \mathbb{Z}, j = 1, \dots, d \right\},\,$$

где символом "*" обозначена операция свертки двух функций, т.е.

$$(\varphi * g)(\mathbf{x}) := (2\pi)^{-d} \int_{\mathbb{T}^d} \varphi(\mathbf{y}) g(\mathbf{x} - \mathbf{y}) d\mathbf{y}$$
 для $\varphi, g \in L_1(\mathbb{T}^d)$.

Для $r>0,\ 1< p<\infty,\ 1\leq\theta\leq\infty$ пространство $MB^r_{p,\theta}$ определяется следующим образом (см. [10] $(\theta=\infty)$ и [11] $(1\leq\theta<\infty)$):

$$MB_{p,\theta}^r := \left\{ f \in L_p(\mathbb{T}^d) : \|f\|_{MB_{p,\theta}^r} < \infty \right\},$$
 (1.3)

где

$$||f||_{MB_{p,\theta}^r} := \left(\sum_{\mathbf{s}} \left(2^{r||\mathbf{s}||_1} ||\delta_{\mathbf{s}}(f)||_p\right)^{\theta}\right)^{1/\theta}, \quad 1 \le \theta < \infty,$$
 (1.4)

$$||f||_{MB_{p,\infty}^r} := ||f||_{MH_p^r} := \sup_{\mathbf{s}} \frac{||\delta_{\mathbf{s}}(f)||_p}{2^{-r||\mathbf{s}||_1}},$$
(1.5)

a $\|\mathbf{s}\|_1 := (\mathbf{s}, \mathbf{1}) = s_1 + \dots + s_d$.

Для r > 0, $1 , <math>1 \le \theta < \infty$ наряду с пространствами $MB_{p,\theta}^r$ рассмотрим близкие к ним пространства $MH_{p,\theta}^r$, которые определяются таким образом [3]:

$$MH_{p,\theta}^r := \left\{ f \in L_p(\mathbb{T}^d) \colon \|f\|_{MH_{p,\theta}^r} < \infty \right\},\tag{1.6}$$

где

$$||f||_{MH_{p,\theta}^r} := \sup_{j} \left(\sum_{\|\mathbf{s}\|_1 = j} \left(2^{r\|\mathbf{s}\|_1} ||\delta_{\mathbf{s}}(f)||_p \right)^{\theta} \right)^{1/\theta}.$$
 (1.7)

Заметим, что при конечном значении параметра θ , т.е. при $1 \leq \theta < \infty, MB^r_{p,\theta}$ — пространства О. В. Бесова смешанной гладкости, а при предельном значении параметра θ , т. е. при $\theta = \infty$, $MB_{p,\infty}^r \equiv MH_{p,\infty}^r \equiv MH_p^r$ — пространства С. М. Никольского смешанной гладкости.

Для определенных выше функциональних пространств, исходя из определений (1.3)–(1.7), выполняются вложения:

$$MB_{p,\theta}^r \subset MH_{p,\theta}^r \subset MH_p^r \equiv MB_{p,\infty}^r \equiv MH_{p,\infty}^r, \quad 1 \le \theta < \infty,$$
 (1.8)

 $MB^r_{p,\theta_1} \subset MB^r_{p,\theta_2}, \ MH^r_{p,\theta_1} \subset MH^r_{p,\theta_2}, \ \ 1 \leq \theta_1 < \theta_2 < \infty.$ Для $r > 0, \ 1 определим функциональное пространство [5]$

$$MW_p^{r,b} := \{ f \in L_p(\mathbb{T}^d) \colon ||f||_{MW_p^{r,b}} < \infty \},$$

где

$$||f||_{MW_p^{r,b}} := \sup_j ||f_j||_p \cdot 2^{rj} (\bar{j})^{-(d-1)b}, \quad \bar{j} := \max\{1; j\}, \quad f_j := \sum_{||\mathbf{s}||_1 = j} \delta_{\mathbf{s}}(f), \quad j \in \mathbb{Z}_+.$$

В [6] установлено, что для r > 0, 1 имеет место вложение

$$MH_{p,\theta}^r \subset MW_p^{r,1/p-1/\theta}.$$
 (1.9)

Единичные шары пространств $MB_{p,\theta}^r, MH_{p,\theta}^r, MW_p^{r,b}$ будем обозначать через $\mathbf{MB}_{p,\theta}^r, \mathbf{MH}_{p,\theta}^r$ $\mathbf{MW}_{n}^{r,b}$ соответственно и называть их классами. С историей исследования классов $\mathbf{MB}_{n\,\theta}^{r}$ (с аппроксимативной точки зрения) можно ознакомиться, например, в монографии [8] и обзо-

Классы $\mathbf{M}\mathbf{H}_{p,\theta}^r$ введены В.Н. Темляковым [3] при решении им задачи, связанной с получением конструктивных верхних оценок для $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ и $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$. Вопросы, связанные с нахождением порядковых оценок нелинейного приближения классов $\mathbf{MH}_{p,\theta}^r$, изучались в [3;4;6;7;9] (для наилучшего m-членного приближения по многомерной тригонометрической системе) и в [12] (для наилучшего т-членного приближения по тензорной системе Хаара).

В. Н. Темляков для классов $\mathbf{MW}_{a}^{r,b}$ установил справедливость утверждения Theorem 3.2:

Пусть
$$1 и $(1/p - 1/q)q' < r < 1/p$. Тогда
$$\sigma_m(\mathbf{MW}_p^{r,b})_q \asymp m^{-(r-1/p+1/q)q/2} (\log m)^{(d-1)(b+(q-1)(r-(1/p-1/q)q')}, \tag{1.10}$$$$

 $ede \ 1/q + 1/q' = 1$. Оценка сверху обеспечивается конструктивным методом, основанным на жадном алгоритме.

А. С. Романюк для классов $\mathbf{MB}_{p,\theta}^r$ доказал следующее утверждение (см. [1, теорема 2.1]): Пусть $1 и <math>1 \le \theta \le \infty$. Тогда

$$\sigma_m(\mathbf{MB}_{p,\theta}^r)_q \simeq m^{-1/2} (\log m)^{d(1-1/\theta)},$$
 (1.11)

 $ec \Lambda u \ r = 1/p, \ u$

$$\sigma_m(\mathbf{MB}_{n\,\theta}^r)_q \approx m^{-(r-1/p+1/q)q/2} (\log m)^{(d-1)(q-1)(r-1/p+q'/(q\theta'))_+},\tag{1.12}$$

 $ecnu \ 1/p - 1/q < r < 1/p, \ r\partial e \ a_+ := \{a; 0\}, \ 1/\theta + 1/\theta' = 1.$

Заметим, что для двух положительных величин A и B запись $A \asymp B$ означает, что существует положительная величина C такая, что $C^{-1}A \leq B \leq CA$. В случае $B \geq C^{-1}A$ или $B \leq CA$ будем писать $B \gg A$ или $B \ll A$ соответственно. Для величин $C_i, j \in \mathbb{N}$, которые будут встречаться в работе явным или неявным образом, существенным является то, что они не зависят от одного обозначенного контекстом параметра.

248 С. А. Стасюк

2. Основные результаты и комментарии к ним

Имеют место следующие утверждения.

Теорема 1. Пусть 1 . Тогда

$$\sigma_m(\mathbf{MB}_{p,\theta}^r)_q \simeq \sigma_m(\mathbf{MH}_{p,\theta}^r)_q \simeq m^{-(r-1/p+1/q)q/2} (\log m)^{(d-1)(q-1)(r-1/p+q'/(q\theta'))}.$$
 (2.1)

Оценка сверху обеспечивается конструктивным методом, основанным на жадном алгорит-

Теорема 2. Пусть 2 , тогда

$$\sigma_m(\mathbf{MB}_{p,1}^{1/2})_q \simeq m^{-1/2}.$$
 (2.2)

Теорема 3. Пусть 1 . Тогда

$$\sigma_m(\mathbf{M}\mathbf{H}_{p,\theta}^r)_q \simeq m^{-1/2} (\log m)^{d(1-1/\theta)+1/\theta}.$$
 (2.3)

В завершение сформулированного результата приведем некоторые комментарии.

Замечание 1. Вопрос о конструктивных оценках сверху для $\sigma_m(\mathbf{MB}_{p,\theta}^r)_q$ и $\sigma_m(\mathbf{MH}_{p,\theta}^r)_q$ в случае, когда $1 , а <math>p \le \theta < \infty$, $1/p - 1/q < r \le (1/p - 1/q)q'$, или $1 \le \theta < p$, 1/p - 1/q < r < 1/p, остается, по-видимому, открытым.

3 а м е ч а н и е 2. 3 случае d=1 теорема 2 доказана в [13].

Замечание З. При условиях теоремы 3 имеет место оценка (см. также (1.11))

$$\sigma_m(\mathbf{M}\mathbf{H}_{p,\theta}^r)_q \simeq (\log m)^{1/\theta} \sigma_m(\mathbf{M}\mathbf{B}_{p,\theta}^r)_q.$$

3. Доказательства результатов

3.1. Доказательство теоремы 1

Оценка сверху базируется на использовании вложений (1.8), (1.9), а также (1.10) (для $b=1/p-1/\theta)$, согласно которым имеем

$$\sigma_m(\mathbf{MB}_{p,\theta}^r)_q \le \sigma_m(\mathbf{MH}_{p,\theta}^r)_q \le \sigma_m(\mathbf{MW}_p^{r,1/p-1/\theta})_q$$

$$\approx m^{-(r-1/p+1/q)q/2} (\log m)^{(d-1)(1/p-1/\theta+(q-1)(r-(1/p-1/q)q')}$$

$$= m^{-(r-1/p+1/q)q/2} (\log m)^{(d-1)(q-1)(r-1/p+q'/(q\theta'))}.$$

Нижняя оценка в (2.1) вытекает из вложения (1.8) и соотношения (1.12).

3.2. Доказательство теоремы 2

Оценка сверху в (2.2) вытекает из соотношения (1.11) за счет вложения $MB_{p,1}^{1/2}\subset MB_{2,1}^{1/2},$ p>2.

При нахождении оценки снизу в (2.2) будем пользоваться известным результатом Рудина — Шапиро (см., например, [14, с. 155]): для каждого $l \in \mathbb{N}$ найдется полином

$$R_l(x) := \sum_{j=2^{l-1}}^{2^l-1} \varepsilon_j e^{ijx}, \quad \varepsilon_j = \pm 1,$$

такой что

$$||R_l||_{\infty} \ll 2^{l/2}.$$
 (3.1)

Итак, выберем по заданному $m \in \mathbb{N}$ число $n \in \mathbb{N}$ такое, чтобы выполнялись соотношения

$$m \approx 2^n n^{d-1},\tag{3.2}$$

$$\#\{\rho(\mathbf{s}): \|\mathbf{s}\|_1 = n\} \ge 2m,$$
 (3.3)

и рассмотрим функцию

$$g(\mathbf{x}) := C_1 2^{-n} n^{-d+1} \sum_{\|\mathbf{s}\|_1 = n} \prod_{j=1}^d R_{s_j}(x_j).$$
 (3.4)

Заметим, что согласно (3.1) имеем

$$\left\| \prod_{j=1}^{d} R_{s_j}(x_j) \right\|_p = \prod_{j=1}^{d} \|R_{s_j}(x_j)\|_p \le \prod_{j=1}^{d} \|R_{s_j}(x_j)\|_{\infty} \ll 2^{\|\mathbf{s}\|_1/2}.$$
 (3.5)

Убедимся, что $g \in \mathbf{MB}_{p,1}^{1/2}$ при соответствующем значении $C_1 > 0$. Действительно, принимая во внимание (1.4), (3.4), (3.5) и

$$\sum_{\|\mathbf{s}\|_1 = j} 1 \asymp j^{d-1},\tag{3.6}$$

получаем

$$||g||_{MB_{p,1}^{1/2}} = \sum_{\|\mathbf{s}\|_{1}=n} 2^{\|\mathbf{s}\|_{1}/2} ||\delta_{\mathbf{s}}(g)||_{p} = C_{1} 2^{-n} n^{-d+1} \sum_{\|\mathbf{s}\|_{1}=n} 2^{\|\mathbf{s}\|_{1}/2} ||\prod_{j=1}^{d} R_{s_{j}}(x_{j})||_{p}$$

$$\ll 2^{-n} n^{-d+1} \sum_{\|\mathbf{s}\|_{1}=n} 2^{\|\mathbf{s}\|_{1}} = n^{-d+1} \sum_{\|\mathbf{s}\|_{1}=n} 1 \times 1.$$

Далее, возьмем произвольное множество K_m , состоящее из m гармоник ${\bf k}$. Рассмотрим дополнительную функцию h=v-u, где

$$v = \sum_{\|\mathbf{s}\|_1 = n} \prod_{j=1}^d R_{s_j}(x_j), \quad u = \sum_{\|\mathbf{s}\|_1 = n}^* \prod_{j=1}^d R_{s_j}(x_j),$$

а символ "*" в верхнем индексе суммы в u означает, что полином u содержит только те гармоники функции v, которые имеют номера из множества K_m . Поэтому, учитывая (3.2) и (3.3), имеем

$$||h||_{q}' \le ||v - u||_{2} \le ||v||_{2} + ||u||_{2} \le (\#\{\rho(\mathbf{s}): ||\mathbf{s}||_{1} = n\})^{1/2} + m^{1/2} \ll m^{1/2}.$$
(3.7)

Для произвольного тригонометрического полинома t с гармониками из K_m , с одной стороны, имеем

$$\langle g - t, h \rangle \le \|g - t\|_q \cdot \|h\|_{q'}.$$
 (3.8)

С другой стороны, принимая во внимание (3.2)–(3.4), получаем

$$\langle g - t, h \rangle = \langle g, h \rangle = \sum_{\mathbf{k} \in \{\rho(\mathbf{s}): \|\mathbf{s}\|_1 = n\} \setminus K_m} \hat{g}(\mathbf{k}) \gg 2^{-n} n^{-d+1} (\#\{\rho(\mathbf{s}): \|\mathbf{s}\|_1 = n\} - m)$$

$$\geq 2^{-n} n^{-d+1} (2^n n^{d-1} - m) \approx 1. \tag{3.9}$$

Таким образом, исходя из (3.7)–(3.9), имеем

$$\sigma_m(\mathbf{MB}_{p,1}^{1/2})_q \ge \sigma_m(g)_q \gg m^{-1/2}.$$

Нижняя оценка в (2.2) установлена.

250 С. А. Стасюк

3.3. Доказательство теоремы 3

Установим сначала оценку сверху.

По заданному $m \in \mathbb{N}$ выберем $n \in \mathbb{N}$ таким образом, чтобы выполнялись условия $m > \#Q_n$ и (3.2), где $Q_n := \{ \rho(\mathbf{s}) \colon \|\mathbf{s}\|_1 < n \}$, а $\#Q_n \times 2^n n^{d-1}$.

Ввиду вложений (1.8) построим полином, который будет реализовать для $f \in \mathbf{MH}_{p,\theta}^r$ требуемую оценку приближения, в виде

$$P(\Theta_m) = \sum_{\|\mathbf{s}\|_1 < n} \delta_{\mathbf{s}}(f) + \sum_{n \le \|\mathbf{s}\|_1 < n_1} P(\Theta_{N_{\mathbf{s}}}), \tag{3.10}$$

где $P(\Theta_{N_{\mathbf{s}}})$ — полиномы, приближающие "блоки" $\delta_{\mathbf{s}}(f)$ согласно лемме Белинского, а

$$n_1 = \frac{(n + (d-1)\log n)q}{2},\tag{3.11}$$

$$N_{\mathbf{s}} = \left[2^{n} n^{(d-1)/\theta - 1} 2^{\|\mathbf{s}\|_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p}\right] + 1. \tag{3.12}$$

Покажем сначала, что

$$\sum_{n \le \|\mathbf{s}\|_1 < n_1} 2^{\|\mathbf{s}\|_1/p} \|\delta_{\mathbf{s}}(f)\|_p \ll n^{(d-1)/\theta' + 1}.$$
(3.13)

Действительно, используя неравенство Гельдера, а также учитывая (1.7), (3.6), (3.11), имеем

$$\sum_{n \le |\mathbf{s}||_{1} < n_{1}} 2^{|\mathbf{s}||_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p} = \sum_{n \le j < n_{1}} \sum_{\|\mathbf{s}\|_{1} = j} 2^{\|\mathbf{s}\|_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p}$$

$$\le \sum_{n \le j < n_{1}} \left(\sum_{\|\mathbf{s}\|_{1} = j} (2^{\|\mathbf{s}\|_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p})^{\theta} \right)^{1/\theta} \left(\sum_{\|\mathbf{s}\|_{1} = j} 1 \right)^{1/\theta'} \ll \|f\|_{MH_{p,\theta}^{1/p}} \sum_{n \le j < n_{1}} j^{(d-1)/\theta'}$$

$$\le n_{1}^{(d-1)/\theta'} \sum_{n \le j < n_{1}} 1 \times n^{(d-1)/\theta'+1}.$$

Убедимся теперь, что полином $P(\Theta_m)$ содержит по порядку не больше чем m гармоник. Поскольку $\#Q_n \asymp 2^n n^{d-1}$, то вследствие (3.12), (3.13) и (3.2) убеждаемся, что

$$\#\Theta_m = \#Q_n + \sum_{n \le \|\mathbf{s}\|_1 < n_1} N_{\mathbf{s}} \ll 2^n n^{d-1} + n^d + 2^n n^{(d-1)/\theta - 1} \sum_{n \le \|\mathbf{s}\|_1 < n_1} 2^{\|\mathbf{s}\|_1/p} \|\delta_{\mathbf{s}}(f)\|_p \ll 2^n n^{d-1} \times m.$$

Принимая во внимание (3.10), имеем

$$||f - P(\Theta_m)||_q \le \left\| \sum_{n \le ||\mathbf{s}||_1 < n_1} (\delta_{\mathbf{s}}(f) - P(\Theta_{N_{\mathbf{s}}})) \right\|_q + \left\| \sum_{||\mathbf{s}||_1 \ge n_1} \delta_{\mathbf{s}}(f) \right\|_q =: J_1 + J_2.$$
 (3.14)

Воспользовавшись следствием к теореме Литтлвуда — Пэли, леммой Белинского, неравенством разных метрик Никольского, а также учитывая (3.12), (3.13) и (3.2), получаем

$$J_{1} \ll \left(\sum_{n \leq \|\mathbf{s}\|_{1} < n_{1}} \|\delta_{\mathbf{s}}(f) - P(\Theta_{N_{\mathbf{s}}})\|_{q}^{2}\right)^{1/2} \ll \left(\sum_{n \leq \|\mathbf{s}\|_{1} < n_{1}} N_{\mathbf{s}}^{-1} 2^{\|\mathbf{s}\|_{1}} \|\delta_{\mathbf{s}}(f)\|_{2}^{2}\right)^{1/2}$$

$$\ll \left(\sum_{n \leq \|\mathbf{s}\|_{1} < n_{1}} N_{\mathbf{s}}^{-1} 2^{2\|\mathbf{s}\|_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p}^{2}\right)^{1/2}$$

$$\leq \left(2^{-n} n^{1 - (d-1)/\theta} \sum_{n \leq \|\mathbf{s}\|_{1} < n_{1}} 2^{\|\mathbf{s}\|_{1}/p} \|\delta_{\mathbf{s}}(f)\|_{p}\right)^{1/2} \ll \left(2^{-n} n^{2 - (d-1)/\theta + (d-1)/\theta'}\right)^{1/2}$$

$$= \left((2^n n^{d-1})^{-1} n^{2d(1-1/\theta)+2/\theta} \right)^{1/2} \times m^{-1/2} (\log m)^{d(1-1/\theta)+1/\theta}. \tag{3.15}$$

Учитывая (3.11) и (3.2), выводим

$$J_2 \leq \mathcal{E}_{Q_{n_1}}(\mathbf{M}\mathbf{H}^r_{p,\theta})_q \ll 2^{-(r-1/p+1/q)n_1} n_1^{(d-1)(1/q-1/\theta)_+} = 2^{-(n+(d-1)\log n)/2} n_1^{(d-1)(1/q-1/\theta)_+}$$

$$\approx m^{-1/2} (\log m)^{(d-1)(1/q-1/\theta)_+} \ll m^{-1/2} (\log m)^{d(1-1/\theta)+1/\theta}.$$
 (3.16)

Подставляя (3.15), (3.16) в (3.14), получаем в (2.3) требуемую оценку сверху.

В случае $1 , <math>1 \le \theta < \infty$, r = 1/p оценка снизу в (2.3) содержится в [6, теорема 1] и имеет место для всех конечных значений θ , т. е. для $1 \le \theta < \infty$.

Таким образом, теорема 3 доказана.

В завершение автор выражает искреннюю признательность рецензенту за сделанные им замечания, способствовавшие улучшению изложения материала. Идея написать данную работу возникла в 2016 г. во время пребывания в Centre de Recerca Matemàtica (г. Барселона, Испания) (где и была завершена год спустя) в рамках научно-исследовательской программы по конструктивной теории приближений и гармоническому анализу. Также автор выражает огромную благодарность проф. В. Н. Темлякову за обсуждение изложенных здесь результатов во время пребывания в Centre de Recerca Matemàtica в 2016 и 2017 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Романюк А.С.** Наилучшие *М*-членные тригонометрические приближения классов Бесова периодических функций многих переменных // Изв. РАН. Сер. мататематическая. 2003. Т. 67, № 2. С. 61–100.
- 2. **Белинский Э.С.** Приближение плавающей системой экспонент на класах периодических функций с ограниченной смешанной производной // Исследования по теории функций многих вещественных переменных. Ярославль: Изд-во Яросл. ун-та, 1988. С. 16–33.
- 3. Темляков В.Н. Конструктивные разреженные тригонометрические приближения и другие задачи для функций смешанной гладкости // Мат. сб. 2015. Т. 206, № 11. С. 131–160.
- 4. **Базарханов** Д.Б. Нелинейные тригонометрические приближения классов функций многих переменных // Тр. МИАН. 2016. Т. 293. С. 8–42.
- 5. **Temlyakov V.N.** Constructive sparse trigonometric approximation for functions with small mixed smoothness // Constr. Approx. 2017. Vol. 45, № 3. P. 467–495. doi: 10.1007/s00365-016-9345-3.
- 6. **Стасюк С.А.** Конструктивные разреженные тригонометрические приближения для классов функций с небольшой смешанной гладкостью // Тр. Ин-та математики и механики УрО РАН. 2016. Т. 22, № 4. С. 247–253.
- 7. **Стасюк С.А.** Найкраще *m*-членне тригонометричне наближення періодичних функцій малої мішаної гладкості з класів типу Нікольського Бєсова // Укр. мат. журн. 2016. Т. 68, № 7. С. 983–1003.
- 8. **Романюк А.С.** Аппроксимативные характеристики классов периодических функций многих переменных. Київ: Інститут математики НАН України, 2012. Т. 92. 353 с. (Праці Інституту математики НАН України.)
- 9. **Dũng D., Temlyakov V.N., Ullrich T.** Hyperbolic cross approximation. arXiv: math.1601.03978v2 [math.NA] 2 Dec 2016. P. 1–182. URL: https://arxiv.org/abs/1601.03978v2.
- 10. **Темляков В.Н.** Приближение функций с ограниченной смешанной производной // Тр. МИАН СССР. 1986. Т. 178. С. 1–112.
- 11. **Лизоркин П.И., Никольский С.М.** Пространства функций смешанной гладкости с декомпозиционной точки зрения // Тр. МИАН СССР. 1989. Т. 187. С. 143–161.
- 12. **Стасюк С.А.** Приближение некоторых гладкостных классов периодических функций многих переменных полиномами по тензорной системе Хаара // Тр. Ин-та математики и механики УрО РАН. 2015. Т. 21, № 4. С. 251–260.

- 13. **Stasyuk S.A.** Best *m*-term trigonometric approximation of periodic functions of several variables from Nikol'skii–Besov classes for small smoothness // J. Approx. Theory. 2014. Vol. 177. P. 1–16. doi: 10.1016/j.jat.2013.09.006.
- 14. Кашин Б.С., Саакян А.А. Ортогональные ряды. М.: Наука, 1984. 496 с.

Стасюк Сергей Андреевич

Поступила 26.07.2017

канд. физ.-мат. наук, старший науч. сотрудник Институт математики НАН Украины, Киев e-mail: stasyuk@imath.kiev.ua

REFERENCES

- Romanyuk A.S. Best M-term trigonometric approximations of Besov classes of periodic functions of several variables. Izv. Math., 2003, vol. 67, no. 2, pp. 265–302. doi: 10.1070/IM2003v067n02ABEH000427.
- 2. Belinskii E.S. Approximation by a "floating" system of exponentials on classes of periodic functions with a bounded mixed derivative. Studies in the theory of functions of several real variables. Matematika. Yaroslavl': Yaroslav. Gos. Univ. Publ., 1988, pp. 16–33 (in Russian).
- 3. Temlyakov V.N. Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness, $Sb.\ Math.$, 2015, vol. 206, no. 11, pp. 1628–1656. doi: $10.1070/\mathrm{SM}2015v206n11ABEH004507$.
- 4. Bazarkhanov D.B. Nonlinear trigonometric approximations of multivariate function classes. *Proc. Steklov Inst. Math.*, 2016, vol. 293, pp. 2–36. doi: 10.1134/S0081543816040027.
- 5. Temlyakov V.N. Constructive sparse trigonometric approximation for functions with small mixed smoothness. *Constr. Approx.*, 2017, vol. 45, no. 3, pp. 467–495. doi: 10.1007/s00365-016-9345-3.
- Stasyuk S.A. Constructive sparse trigonometric approximations of functions with small mixed smoothness. Trudy Inst. Mat. i Mekh. UrO RAN, 2016, vol. 22, no. 4, pp. 247–253 (in Russian). doi: 10.21538/0134-4889-2016-22-4-247-253.
- 7. Stasyuk S.A. Best *m*-term trigonometric approximation for periodic functions with small mixed smoothness from Nikolskii–Besov type classes. *Ukrain. Mat. Zh.*, 2016, vol. 68, no. 7, pp. 983–1003 (in Ukrainian).
- 8. Romanyuk A.S. Approksimativnye kharakteristiki klassov periodichestikh funktsii mnogikh peremennykh [Approximation characteristics of classes of periodic functions of several variables]. Pratsi Instytutu Matematyky Natsional'noï Akademiï Nauk Ukraïny. Matematyka ta ïi Zastosuvannya 93. Kyïv: Instytut Matematyky NAN Ukraïny, 2012, 352 p. ISBN: 978-966-02-6692-6.
- 9. D. Dũng, Temlyakov V.N., Ullrich T. Hyperbolic cross approximation, arXiv: math.1601.03978v2 [math.NA] 2 Dec 2016, pp. 1–182. Available at: https://arxiv.org/abs/1601.03978v2.
- 10. Temlyakov V.N. Approximation of functions with bounded mixed derivative. *Proc. Steklov Inst. Math.*, 1989, vol. 178, no. 1, 121 p.
- 11. Lizorkin P.I., Nikol'skii S.M. Functional spaces of mixed smoothness from decompositional point of view. *Proc. Steklov Inst. Math.*, 1990, vol. 187, pp. 163–184.
- 12. Stasyuk S.A. Approximation of certain smoothness classes of periodic functions of several variables by polynomials with regard to the tensor Haar system. *Trudy Inst. Mat. i Mekh. UrO RAN*, 2015, vol. 21, no. 4, pp. 251–260 (in Russian).
- 13. Stasyuk S.A. Best *m*-term trigonometric approximation of periodic functions of several variables from Nikol'skii–Besov classes for small smoothness. *J. Approx. Theory.*, 2014, vol. 177, pp. 1–16. doi: 10.1016/j.jat.2013.09.006.
- 14. Kashin B.S., Saakyan A.A. *Orthogonal series*. Providence, RI: American Mathematical Society (AMS), 1989, Ser. Trans. Math. Monogr., vol. 75, 451 p. ISBN: 0821845276. Original Russian text published in *Ortogonal'nye ryady*, Moscow, Nauka Publ., 1984, 496 p.

The paper was received by the Editorial Office on July 26, 2017.

Sergej Andreevich Stasyuk, Cand. Sci. (Phys.-Math.), Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, 01601, Ukraine, e-mail: stasyuk@imath.kiev.ua.