
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI UrO RAN

Vol. 23 No. 3 2017

MSC: 34C05, 34C07, 34C25

DOI: 10.21538/0134-4889-2017-23-3-300-307

EXPLICIT EXPRESSION FOR HYPERBOLIC LIMIT CYCLES

OF A CLASS OF POLYNOMIAL DIFFERENTIAL SYSTEMS

Rachid Boukoucha

We consider systems of differential equations in the plane,

x′ =
dx

dt
= P (x, y), y′ =

dy

dt
= Q(x, y),

where the dependent variables x and y and the independent one (the time) t are real, and P (x, y), Q(x, y) are
polynomials in the variables x and y with real coefficients. These differential systems are mathematical models
and arise in many fields of application like biology, economics, physics and engineering, etc. The existence of limit
cycles is one of the more difficult objects to study in the qualitative theory of differential systems in the plane.
There is a huge literature dedicated to this topic. It is known that for differential systems defined on the plane the
existence of a first integral determines their phase portrait. Thus for polynomial differential systems a natural
question arises: given a polynomial differential system in the plane, how to recognize if it has a first integral?
There is a strong relation between the invariant algebraic curves and the theory of integrability. In this paper
we introduce explicit expressions for invariant algebraic curves and for the first integral. Finally, we determine
sufficient conditions for a class of polynomial differential systems to possess an explicitly given hyperbolic limit
cycle. Concrete examples exhibiting the applicability of our results are introduced. The elementary method
used in this paper seems to be fruitful to investigate more general planar dynamical systems in order to obtain
explicitly some or all of their limit cycles at least in the case of hyperbolic cycles. In the spirit of the inverse
approach to dynamical systems, we look for them as the ovals of suitably chosen invariant algebraic curves.
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