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ON MULTIPLY MONOTONE FUNCTIONS

R.M. Trigub

The subject and the method of this paper belong to classical analysis. The Wiener Banach algebra (the
normed ring) A(Rd), d ∈ N, is the space of Fourier transforms of functions from L1(Rd) (with pointwise
product). The membership in this algebra is essential for Fourier multipliers from L1 to L1 and principal for the
convergence on the space L1 of summation methods for Fourier series and integrals given by one factor function.
A function f is called m-multiply monotone on R+ = (0,+∞) if (−1)νf(ν)(t) ≥ 0 for t ∈ R+ and 0 ≤ ν ≤ m+1.
For such functions, Shoenberg’s integral presentation has long been known, which becomes Bernstein’s formula
for monotone functions as m → ∞. Denote by V0(R+) the set of functions of bounded variation on R+, i.e.,
the set of functions representable as the difference of two bounded monotone functions. Denote by Vm(R+),
m ∈ N, the space of functions f from V0,loc(R+) such that ‖f‖Vm

= supt∈R+
|f(t)| +

∫∞

0 tm|df(m)(t)| < ∞.

This is a Banach algebra. A function f belongs to Vm(R+) if and only if f can be represented as the difference
of two bounded functions with convex derivatives of order m− 1 (Theorem 1). We also study conditions under

which functions of the form f0(|x|p,d), where |x|p,d =
(
∑d

j=1 |xj |p
)1/p

, x = (x1, . . . , xd), for p ∈ (0,∞) and

|x|∞ = max
1≤j≤d

|xj |, belong to A(Rd). The case p = 2 (radial functions) is well studied, including the Pólya–Askey

criterion of the positive definiteness of functions on Rd. We prove Theorem 2, which has the following corollaries.

(1) If f0 ∈ C0[0,∞) and f0 ∈ Vd(R+), then f0(|x|p,d) ∈ A(Rd) for p ∈ [1,∞].

(2) If f0 ∈ C0[0,∞) and f0 ∈ Vd+1(R+), then f0(|x|p,d) ∈ A(Rd) for p ∈ (0, 1).

We give some examples, including an example with an oscillating function.
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