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THE DIRECT THEOREM OF THE THEORY OF APPROXIMATION

OF PERIODIC FUNCTIONS WITH MONOTONE FOURIER COEFFICIENTS

IN DIFFERENT METRICS

N.A. Il’yasov

We study the problem of order optimality of an upper bound for the best approximation in Lq(T) in terms
of the lth-order modulus of smoothness (the modulus of continuity for l = 1) in

Lp(T) : En−1(f)q ≤ C(l, p, q)
(

∞
∑

ν=n+1
νqσ−1ωq

l (f ; π/ν)p
)1/q

, n ∈ N,

on the class Mp(T) of all functions f ∈ Lp(T) whose Fourier coefficients satisfy the conditions

a0(f) = 0, an(f) ↓ 0, and bn(f) ↓ 0 (n ↑ ∞), where l ∈ N, 1 < p < q < ∞, l > σ = 1/p−1/q, and T = (−π, π].

For l = 1 and p ≥ 1, the bound was first established by P. L.Ul’yanov in the proof of the inequality of different
metrics for moduli of continuity; for l > 1 and p ≥ 1, the proof of the bound remains valid in view of the
Lp-analog of the Jackson–Stechkin inequality. Below we formulate the main results of the paper. A function
f ∈ Mp(T) belongs to Lq(T), where 1 < p < q < ∞, if and only if

∑

∞

n=1 n
qσ−1ωq

l (f ; π/n)p < ∞, and the
following order inequalities hold:

(a) En−1(f)q + nσωl(f ; π/n)p ≍
(

∞
∑

ν=n+1
νqσ−1ωq

l (f ; π/ν)p
)1/q

, n ∈ N;

(b) n−(l−σ)
(
∑n

ν=1 ν
p(l−σ)−1Ep

ν−1(f)q
)1/p

≍
(

∞
∑

ν=n+1
νqσ−1ωq

l (f ; π/ν)p
)1/q

, n ∈ N.

In the lower bound in inequality (a), the second term nσωl(f ; π/n)p generally cannot be omitted. However,

if the sequence {ωl(f ; π/n)p}
∞

n=1 or the sequence {En−1(f)p}∞n=1 satisfies Bari’s (B
(p)
l )-condition, which is

equivalent to Stechkin’s (Sl)-condition, then

En−1(f)q ≍

( ∞
∑

ν=n+1

νqσ−1ωq
l (f ; π/ν)p

)1/q

, n ∈ N.

The upper bound in inequality (b), which holds for any function f ∈ Lp(T) if the series converges, is a
strengthened version of the direct theorem. The order inequality (b) shows that the strengthened version is
order-exact on the whole class Mp(T).
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