Vol. 23 No. 3

MSC: 42A10, 41A17, 41A25, 42A32 DOI: 10.21538/0134-4889-2017-23-3-144-158

THE DIRECT THEOREM OF THE THEORY OF APPROXIMATION OF PERIODIC FUNCTIONS WITH MONOTONE FOURIER COEFFICIENTS IN DIFFERENT METRICS

N.A.Il'yasov

We study the problem of order optimality of an upper bound for the best approximation in $L_q(\mathbb{T})$ in terms of the *l*th-order modulus of smoothness (the modulus of continuity for l = 1) in

$$L_p(\mathbb{T}): E_{n-1}(f)_q \le C(l, p, q) \Big(\sum_{\nu=n+1}^{\infty} \nu^{q\sigma-1} \omega_l^q(f; \pi/\nu)_p \Big)^{1/q}, \ n \in \mathbb{N},$$

on the class $M_p(\mathbb{T})$ of all functions $f \in L_p(\mathbb{T})$ whose Fourier coefficients satisfy the conditions

 $a_0(f) = 0, \ a_n(f) \downarrow 0, \ \text{and} \ b_n(f) \downarrow 0 \ (n \uparrow \infty), \ \text{where} \ l \in \mathbb{N}, \ 1 \sigma = 1/p - 1/q, \ \text{and} \ \mathbb{T} = (-\pi, \pi].$

For l = 1 and $p \ge 1$, the bound was first established by P. L. Ul'yanov in the proof of the inequality of different metrics for moduli of continuity; for l > 1 and $p \ge 1$, the proof of the bound remains valid in view of the L_p -analog of the Jackson–Stechkin inequality. Below we formulate the main results of the paper. A function $f \in M_p(\mathbb{T})$ belongs to $L_q(\mathbb{T})$, where $1 , if and only if <math>\sum_{n=1}^{\infty} n^{q\sigma-1} \omega_l^q(f; \pi/n)_p < \infty$, and the following order inequalities hold:

(a)
$$E_{n-1}(f)_q + n^{\sigma}\omega_l(f;\pi/n)_p \asymp \left(\sum_{\nu=n+1}^{\infty} \nu^{q\sigma-1}\omega_l^q(f;\pi/\nu)_p\right)^{1/q}, n \in \mathbb{N};$$

(b) $n^{-(l-\sigma)} \left(\sum_{\nu=1}^n \nu^{p(l-\sigma)-1} E_{\nu-1}^p(f)_q\right)^{1/p} \asymp \left(\sum_{\nu=n+1}^\infty \nu^{q\sigma-1}\omega_l^q(f;\pi/\nu)_p\right)^{1/q}, n \in \mathbb{N}.$

In the lower bound in inequality (a), the second term $n^{\sigma}\omega_l(f;\pi/n)_p$ generally cannot be omitted. However, if the sequence $\{\omega_l(f;\pi/n)_p\}_{n=1}^{\infty}$ or the sequence $\{E_{n-1}(f)_p\}_{n=1}^{\infty}$ satisfies Bari's $(B_l^{(p)})$ -condition, which is equivalent to Stechkin's (S_l) -condition, then

$$E_{n-1}(f)_q \asymp \left(\sum_{\nu=n+1}^{\infty} \nu^{q\sigma-1} \omega_l^q(f; \pi/\nu)_p\right)^{1/q}, \ n \in \mathbb{N}.$$

The upper bound in inequality (b), which holds for any function $f \in L_p(\mathbb{T})$ if the series converges, is a strengthened version of the direct theorem. The order inequality (b) shows that the strengthened version is order-exact on the whole class $M_p(\mathbb{T})$.

Keywords: best approximation, modulus of smoothness, direct theorem in different metrics, trigonometric Fourier series with monotone coefficients, order-exact inequality on a class.

REFERENCES

- Il'yasov N.A. On the direct theorem of approximation theory of periodic functions in different metrics. Proc. Steklov Inst. Math., 1997, vol. 219, pp. 215–230.
- Stechkin S.B. On the order of the best approximations of continuous functions. *Izv. Akad. Nauk SSSR.* Ser. Mat., 1951, vol. 15, no. 3, pp. 219–242 (in Russian).
- 3. Timan A.F. Theory of approximation of functions of real variables. Oxford, London, New York, Pergamon Press, 1963, 655 p. This translation has been made from A.F. Timan's book entitled *Teoriya* priblizheniya funktsii deystvitel'nogo peremennogo, Moscow, Fizmatgiz Publ., 1960, 624 p.
- Konyushkov A.A. Best approximations by trigonometric polynomials and Fourier coefficients. Mat. Sb. (N.S.), 1958, vol. 44(86), no. 1, pp. 53–84 (in Russian).

- Ul'yanov P.L. Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics. *Math. USSR-Sb.*, 1970, vol. 10, no. 1, pp. 103–126.
- Kolyada V.I. On relations between moduli of continuity in different metrics. Proc. Steklov Inst. Math., 1989, vol. 4, pp. 127–148.
- Goldman M.L. An imbedding criterion for different metrics for isotropic Besov spaces with arbitrary moduli of continuity. Proc. Steklov Inst. Math., 1994, vol. 2, pp. 155–181.
- Bari N.K. A treatise on trigonometric series. Vols. I, II. Oxford, New York: Pergamon Press, 1964, vol. I, 533 p; vol. II, 508 p. Original Russian text published in *Trigonometricheskie ryady*, Moscow, Fiz.-Mat. Giz. Publ., 1961, 936 p.
- Bari N.K., Stechkin S.B. Best approximations and differential properties of two conjugate functions. *Trudy Mosk. Mat. Obsh*, 1956, vol. 5, pp. 483–522 (in Russian).
- Lozinskii S.M. The converse of Jackson's theorems. Dokl. Akad. Nauk SSSR, 1952, vol. 83, no. 5, pp. 645–647 (in Russian).
- Zygmund A. Trigonometric series, vol. I, II. Cambridge: Cambridge Univ. Press, 1959; vol. I, 383 p.; vol. II, 354 p. Translated under the title Trigonometricheskie ryady. M.: Mir Publ., 1965, vol. I, 616 p; vol. II, 538 p.
- 12. Hardy G.H., Littlewood J.E., Polya G. *Inequalities.* London: Cambridge Univ. Press, 1934. 314 p. Translated under the title *Neravenstva*, Moscow, Inostran. Literat. Publ., 1948, 456 c.
- Konyushkov A.A. On best approximations in the conversion of the Fourier coefficients by the method of arithmetic average and on the Fourier series with non-negative coefficients. Sib. Mat. Zhurn., 1962, vol. 3, no. 1, pp. 56–78 (in Russian).
- 14. Kokilashvili V.M. On approximation of periodic functions. *Tr. Tbilis. Mat. Inst.*, 1968, vol. 34, pp. 51–81 (in Russian).
- 15. Aljančić S. On the integral moduli of continuity $\ln L_p$ (1 of Fourier series with monotone coefficients.*Proc. Amer. Math. Soc.*, 1966, vol. 17, no. 2, pp. 287–294.
- 16. Zygmund A. Smooth functions. Duke Math. J., 1945, vol. 12, no. 1, pp. 47-76.
- 17. Timan M.F. Inverse theorems of the constructive theory of functions in L_p spaces $(1 \le p \le \infty)$. Mat. Sb. (N.S.), 1958, vol. 46(88), no. 1, pp. 125–132 (in Russian).
- Timan M.F. On the Jackson theorem in L_p spaces. Ukr. Mat. Zhurn., 1966, vol. 18, no. 1, pp. 134–137 (in Russian).
- Il'yasov N.A. The inverse theorem in different metrics of approximation theory for periodic functions with monotone Fourier coefficients. *Tr. Inst. Mat. Mekh. UrO RAN*, 2016, vol. 22, no. 4, pp. 153–162 (in Russian).
- Ul'yanov P.L. Embedding of certain classes of functions H^ω_p. Math. USSR-Izv., 1968, vol. 2, no. 3, pp. 601–637.
- Storozhenko E.A. Embedding theorems and best approximations. Math. USSR-Sb., 1975, vol. 26, no. 2, pp. 213–224.

The paper was received by the Editorial Office on March 15, 2017.

Niyazi Aladdin ogly Il'yasov, Cand. Sci. (Phys.-Math.), Baku State University, Baku, Azerbaijan, e-mail: niyazi.ilyasov@gmail.com.

Cite this article as:

N. A. Il'yasov, The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics, *Trudy Inst. Mat. Mekh. UrO RAN*, 2017, vol. 23, no. 3, pp. 144–158.