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INTEGRABILITY AND INVARIANT ALGEBRAIC CURVES
FOR A CLASS OF KOLMOGOROV SYSTEMS

Rachid Boukoucha

There are many natural phenomena which can be modeled by Kolmogorov systems such as mathematical
ecology, population dynamics, etc..

One of the more classical problems in the qualitative theory of planar differential systems is to characterize
the existence or not of first integrals. For a two dimensional system the existence of a first integral completely
determines its phase portrait. The question to determine the invariant algebraic curves of a given planar vector
field, or to decide that no such curves exist, is part of a problem set forth by Poincaré. There are strong
relationships between the integrability of a system, and its number of invariant algebraic curves. It is shown
that the existence of a certain number of algebraic curves for a system implies its Darboux integrability, that is
the first integral is the product of the algebraic solutions with complex exponents. The study of the number and
location of limit cycles is one of the most important topics which is related to the second part of the unsolved
Hilbert 16th problem. In this paper we introduce an explicit expression of invariant algebraic curves, then we
prove that these systems are Darboux integrable and introduce an explicit expression of a Liouvillian first
integral. Then we discuss the possibility of existence and non-existence of limit cycles of the two dimensional

Kolmogorov systems of the form
N
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where P (z,y),Q (z,vy), R(z,y),S (z,y),N (z,y) and M (z,y) are homogeneous polynomials of degree n, m,n,
m,a and a, respectively. The elementary method used in this paper seems to be fruitful to investigate more
general planar differential Kolmogorov systems of ODEs in order to obtain explicit expression of invariant
algebraic curves and for first integrals in order to characterize their trajectories. Finally, we discuss the possibility
of existence and non-existence of limit cycles.
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Pamng Bykyma. UHTerpupyemMocTs 1 MHBaApUMAHTHBIE ajirebpandeckue KpUBbIe JIsl KJjacca
cucrem Koamoroposa.

Mmuorue npuposHbIe ABJICHUS, HAIIPUMED, SABJICHUS, U3y IAEMbIE B MATEMATUICCKON SKOJOTUN U TOILYJIAIMOH-
HOU JIMHAMUKE, MOT'YT MOJIeJINpOBaThcsi cucremamu Kosmmoroposa. OgHOM U3 KJIACCUYECKUX 3329 Ka4eCTBEHHON
TEOPUH JBYMEPHBIX AU dEPEHINAIBHBIX CHCTEM SIBJISIETCS BOIPOC CYLIECTBOBAHUS IIEPBOIO MHTErPaja CHCTe-
wmbl. st aByMepHO cucrembl ee (ha30BbIil MOPTPET MOJHOCTHIO ONPEIETISIETCs CyIeCTBOBAHUEM IEPBOTO MHTE-
rpasia. Bonpoc cymecrBoBaHuS M HAaXOXKIEHMS WHBAPUAHTHBIX AJIreOpamvdecKuX KPHUBBIX 3aJaHHOIO IIJIOCKOIO
BEKTOPHOT'O TIOJIsI ABJISIETCH YaCThI0 Habopa 3amad, mocraBieHHbIX A. [lyankape. Mexay MHTErpupyeMOCTbIO
CHCTEMBI W KOJINYECTBOM €€ WHBAPHUAHTHBIX ajrebpanmdecKuX KPUBBIX €CThb TeCHasl CBa3b. JloKasaHO, 9TO U3
CyIIECTBOBAHUS y CUCTEMbI HEKOTOPOI'O KOJIMYECTBA aIre0panvdecKuX KPUBBIX CJIEIYeT €€ WHTErPUPYEMOCTH II0
HapOy, T. €. MepBbI HWHTErPAJl sABJIAETCI MPOU3BEICHUEM AJIreOPAnIeCKUX PEIIeHU ¢ KOMILIEKCHBIMU ITOKa3aTe-
ssavu. OJHIM U3 BaXKHEHIINX BOIIPOCOB, CBSI3aHHBIX CO BTOPOR YacThIO HepeleHHOo# 16-i npobiems! ['uinbepra,
SABJIAETCHA U3YUECHUE KOJIMIECTBA U PACIIOJIOXKEHHS MPEJIEIbHBIX UKJIOB. B annoil pabore JaHO sIBHOE BbIPparXKe-
HYe JJIs1 HTHBAPUAHTHBIX aJrebpanmvdecKux KPUBBIX. JJ0Ka3aHO, 9TO 9TH CHCTEMBI SIBJISIOTCSI HHTETPUPYEMBIMH 110
Hapby, n IpUBeIEHO sIBHOE BbIPaXKeHHe [JIsd IepBoro uHTerpaia Jlnysuis. 3aremM 0oO6CyKIaeTCsi BO3MOXHOCTD
CyIeCTBOBAHUS MIPEJEIbHBIX IUKJIOB ABYX cucreM Kosimoroposa ciemyromiero Buga:
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rue P (z,y), Q(z,y), R(z,y), S(z,y), N (z,y) u M (z,y) — HEOJHOPOJHbIE MHOIOYIEHBI CTEHEHU T, M, T, M,
a b a, coorBercTBenHo. IIpescTaBiiseTcss BOSMOXKHBIM HCIOJIb30BaTh IIPOCTON METOJ, IPEJJIOXKEHHBIN B CTaThe,
JJIs BccyefloBaHusa 6ojiee OBIIUX IByMEPHBIX cucTeM AnuddepeHnuanbHBIX ypaBHeHH KOJIMOTOPOBCKOTO TUTIAH
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[IOJIyY€HUsI SIBHBIX BBIPDAKEHUI JJIsI MHBAPUAHTHBIX AJIre0pamdecKux KPHUBBIX, a TaKKe IE€PBBIX HHTErPaJIOB,
OIMCBIBAIONINX TPAEKTOPUH CUCTEMBI. B pabore Tak»kKe 06CY?K1a€TCsI BOSMOYKHOCTD CYIIIECTBOBAHUS [IPEIEIHLHBIX
IIUKJIOB.

Korouessle cioBa: cucrema KosmmMoroposa, nepBblii mHTErpas, HHBApHAHTHBIE ajrebpaniecKue KpUBbIE, IIpe-
NeNnbHBIA UK, 16-s1 npobiiema ['minbepra.
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1. Introduction

Many mathematical models in biology science and population dynamics, frequently involve the
systems of ordinary differential equations having the form

’—d—x:x x
x —% () F(z(t),y (1), (L1)
=Ly ey ),

where F', G are two functions in the variables = and y, x (¢) and y (¢) represent the population
density of two species at time ¢, and F'(x,y), G (z,y) are the capita growth rate of each specie,
usually, such systems are called Kolmogorov systems. Kolmogorov models are widely used in ecology
to describe the interaction between two populations, and a limit cycle corresponds to an equilibrium
state of the system. There are many natural phenomena which can be modeled by the Kolmogorov
systems such as mathematical ecology and population dynamics [14;18;20;21] chemical reactions,
plasma physics [15], hydrodynamics [5], economics, etc..

In the classical Lotka—Volterra—Gause model, F' and G are linear and it is well known that
there are no limit cycles [11;16]. There can, of course, only be one critical point in the interior
of the realistic quadrant (z > 0,y > 0) in this case, but this can be a center, however, there are
no isolated periodic solutions. We remind that in the phase plane, a limit cycle of system (1.1) is
an isolated periodic orbit in the set of all periodic orbits of system (1.1). There exist three main
open problems in the qualitative theory of real planar differential systems [1;2;4;10;17;19], the
distinction between a centre and a focus, the determination of the number of limit cycles and their
distribution, and the determination of its integrability. The determination of the number of limit
cycles most important topics is related to the second part of the unsolved Hilbert 16th problem [13].
The importance for searching first integrals of a given system was already noted by Poincaré in his
discussion on a method to obtain polynomial or rational first integrals [23].

System (1.1) is integrable on an open set Q of R? if there exists a non constant C' function
H :Q — R, called a first integral of the system on €2 , which is constant on the trajectories of the
system (1.1) contained in €, i.e. if

dH (z,y) O0H (z,y)

= F

OH (z,y)
Oy

Moreover, H = h is the general solution of this equation, where h is an arbitrary constant.
One of the classical tools in the classification of all trajectories of a dynamical system is to find
first integrals, for a two dimensional system the existence of a first integral completely determines
its phase portrait. Of course, the easiest planar integrable systems are the Hamiltonian ones. The
planar integrable systems which are not Hamiltonian can be in general very difficult to detect, for or
more details about first integral see for instance [3; 12] . It is well known that for differential systems
defined on the plane R? the existence of a first integral determines their phase portrait [6].

A real or complex polynomial U (z,y) is called algebraic solution of the polynomial differential
system (1.1) if

yG (xz,y) =0 in the points of Q.

oU (2,y) (2,y) + oU (z,y)

e By yG (z,y) = K (z,y) U (z,y),
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for some polynomial K (z,y), called the cofactor of U (z,y). The corresponding cofactor of U (z,y)
is always polynomial whether U (x, y) is algebraic or non algebraic. If U is real, the curve U (z,y) = 0
is an invariant under the flow of differential system (1.1) and the set {(z,y) € R?, U (z,y) =0}
is formed by orbits of system (1.1). There are strong relationships between the integrability of
system (1.1) and its number of invariant algebraic solutions. It is shown [9] that the existence of a
certain number of algebraic solutions for a system implies the Darboux integrability of the system,
that is the first integral is the product of the algebraic solutions with complex exponents [7;8].
In [22], it is proved that, if a polynomial system (1.1) has a Liouvillian first integral, then it can be
computed by using the invariant algebraic solutions and the exponential factors of the systems (1.1).

In this paper we introduce an explicit expression of invariant algebraic curves, then we proved
that these systems are Darboux integrable and introduced an explicit expression of a Liouvillian
first integral of the two dimensional Kolmogorov systems of the form

Py, |N(&)
v =2(Ghy T ey ) )
v =o(G | o),

where P (z,y),Q (x,y),R(z,y),S (z,y),N (z,y) and M (z,y) are homogeneous polynomials of
degree n, m, n, m, a and a, respectively.
We define the trigonometric functions

P (cosB,sin0) R (cos 0,sin ) N (cos ,sin6)

0) = cos?———""""~ 4 sin?—— "~ 0) = 1n | ——2 727
f1(8) = cos Q (cos f,sin0) e S (cosf,sinf)’ f2(0)=1n M (cosf,sinf) !’
B . R(cosf,sinf) . P(cosf,sinf)
f3(0) = cos@sm@m cos@sm@Q (cos0,5m0)

2. Main result

Our main result on the expression of invariant algebraic curves and the existence of a Darboux
first integral and the periodic orbits of the Kolmogorov system (1.2) is the following.

Theorem. Consider a Kolmogorov system (1.2), then the following statements hold.
(h1) If Q(z,y)S (z,y)#0 and N (z,y) M (x,y) > 0 then the curve

_ By Play)
Vi) =gy ey "

is an invariant algebraic curve of system (1.2).

(h2) If f3(0) # 0, Q(cosf,sinf) S (cos,sinf) # 0, N (cosf,sind) M (cosf,sinf) > 0 and
n —m # 1, then the system (1.2) has the first integral

arctan £
x

Ha) = (o +7) T ewp (m -0 [ A )
0

arctan £
x

—(n—m) /exp ((m - n)/s A(w) dw> B (s) ds, (2.1)
0 0

IACINA()
where A () = (0) d B(0) )
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Moreover, the system (1.2) has no limit cycle.

(h3) If f3(0) # 0, Q (cosf,sinf) S (cosh,sinf) # 0, N (cosf,sinf) M (cosf,sinf) > 0 and
n —m = 1, then the system (1.2) has the first integral

arctan £ arctan ¥

H(z,y) = \/mexp<—/A(w) dw) —/ exp(—/sA(w) dw>B(s) ds. (2.2)
0 0 0

Moreover, the system (1.2) has no limit cycle.
(ha) If f3(0) =0 for all 6 € R, then the system (1.2) has the first integral

Moreover, the system (1.2) has no limit cycle.

Proof.

Proof of statement (hy). Suppose that Q (x,y)S (z,y) # 0 and N (z,y) M (x,y) > 0.

R P
We prove that U (z,y) = xyS((i,zi B ny(;E:’Z@//;

= 0 is an invariant algebraic curve of the

differential system (1.2).
Indeed, we have

?)Z (m ‘M‘—I_ )+gZ (m ‘M‘ ):g_len‘M‘Jr yln ‘M‘ i g+ggy§‘

Then, taking into account that if P (x,y),Q (x,y), R (z,y) and S (x,y) are homogeneous poly-
nomials of degree n, m, n, m respectively, we have

oP orP Q 0Q 8R oR oS oS
wax+yay—nP, wax—i—yay—mQ, o +ya =nR and waw—i—yay m.S.
Then, we have
R R
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_wy@s 07" Q2 + 52 )MM‘
R P mP—-nP nR—-—mR N
—a(g gt )y
R
= (n—m+2)zy <§_§) ‘M(_ (n—m+2) Uln‘M‘
On the other hand, substituting
a—P—nP—aca—P oQ mQ—xa—Q wa—R—n _ 08 and xa—s—mS— o5
Yoy ~ ox’ Yoy ox’ Tox " Yoy ox Yoy’
in what follows, we get
R P R P
ou P aU R a<wy§_“y§>x£+a<“y§_wy§) R
9°qQ " BE Q dy s

— R_z_P_2+xM£_wQ_PE_PQw£+ SRy—RSyE_ QPy—PQyE
- S2 Qz 92 Q Qz Q Yy S2 S Yy Qz S



Integrability and invariant algebraic curves for a class of Kolmogorov systems 315
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In short, we have o
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Hence, statement (h;) is proved. O

)

Therefore, U (z,y) = zy = (0 is an invariant algebraic curve of the polynomial

K(z,y)=(n—m+2)In

Proof of statement (hs), (hs) and (hg). In order to prove our results (hy), (hg) and (hy) we
write the polynomial differential system (1.2) in polar coordinates (r,6), defined by x = r cos § and
y = rsin 6, then the system (1.2) becomes

{ = f1(0)r" T 4 £ (0)

= f3(0)r"m, 23

where the trigonometric functions f; (0), f2(0), f3(#) are given in introduction,

dr do
/ _ d / ——
T o and 6 7

Suppose that

f3(0) #0, Q(cosh,sinf)S (cosh,sinf) #0, N (cosf, sinf) M (cosf,sinf) >0 and n—m # 1.



316 Rachid Boukoucha

Taking as independent variable the coordinate 6, this differential system (2.3) writes

dr

i A0)r+ B () ri—tm, (2.4)

where A () = ;1 EZ; and B (0) = ;2 Ez;, which is a Bernoulli equation. By introducing the standard
3 3

change of variables p = r"~"™ we obtain the linear equation
dp
0 (n—m)(A@)p+ B(0)). (2.5)
The general solution of linear equation (2.5) is
0 0 s
p(9)—exp< /A )[,u—k n—m /exp( —n)/A(w)dw)B(s)ds],
0 0 0

where £ € R, which has the first integral (2.1).

Since this first integral is a function that can be expressed by quadratures of elementary
functions, it is a Liouvillian function, and consequently system (1.2) is Darboux integrable.

Let I be a periodic orbit surrounding an equilibrium located in one of the open quadrants, and
let hr = H (I').

The curves H = h with h € R, which are formed by trajectories of the differential system (1.2),
in Cartesian coordinates are written as

arctan £
x

22 +y? = [hexp <(n —m) / A(w) dw)
0
arctan £ arctan £ s 2
+(n— )exp< /A dw) / eXp((m—n)/A(w)dw)B(s)ds]n_m,
0 0
where h € R.
Therefore the periodic orbit I' is contained in the curve
arctan ¥
ey |:hr‘ exp < / A(w dw>
0
arctan ¥ arctan ¥ 2

+(n— )exp< /A dw)o/ exp< —n/A dw) )d]_m.

But this curve cannot contain the periodic orbit I' and consequently no limit cycle contained in
the realistic quadrant (z > 0,y > 0), because this curve in realistic quadrant has at most a unique
point on every straight line y = na for all € |0, +o00].

To be convinced by this fact, one has to compute the abscissa points of intersection of this curve
with straight line y = na for all € |0, +o0], the abscissa is given by

arctann

1
x = 7[hexp <(n—m) /A(w)dw>
V147?
0
arctann arctann s 1

to-men (@-m [a@a) [oo(m-n [aew)pews)
0 0 J
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at most a unique value of z on every half straight OX™, consequently at most a unique point in
realistic quadrant (z > 0,y > 0). So this curve cannot contain the periodic orbit, consequently no
limit cycle.

Hence statement (hg) is proved. O

Suppose now that
f3(0) #0, Q(cosf,sinf)S (cosh,sinf) #0, N (cosf, sinf) M (cosf,sinf) >0 and n—m = 1.

Taking as independent variable the coordinate 6, this differential system (2.3) writes

%:A(e)HB(Q). (2.6)
The general solution of linear equation (2.6) is
0 0 s
r(0) = exp </A(w)dw> [,u—l—/exp <—/A(w)dw>B(s)ds},
0 0 0

where £ € R, which has the first integral (2.2).

Let I' be a periodic orbit surrounding an equilibrium located in one of the realistic quadrant
(x >0,y >0), and let hp = H (I").

The curves H = h with h € R, which are formed by trajectories of the differential system (1.2),
in Cartesian coordinates are written as

arctan ¥ arctan ¥ arctan ¥

\/m:hexp< /A(w)dw>+exp< /A(w)dw) /exp(—jA(w)dw)B(s)ds,
0 0 0 0

where h € R.
Therefore the periodic orbit I' is contained in the curve

arctan £ arctan £ arctan

\/W:hpexp< //:(w)dw>+exp< /2@)@) /;xp<—/sA(w)dw>B(s)ds,
0 0 0 0

But this curve cannot contain the periodic orbit I', and consequently no limit cycle contained in
the realistic quadrant (z > 0,y > 0), because this curve in realistic quadrant has at most a unique
point on every straight line y = na for all € |0, +o00].

To be convinced by this fact, one has to compute the abscissa points of intersection of this curve
with straight line y = na for all € |0, +o0], the abscissa is given by

arctann arctann
- |:
T = — hpexp< /A(w)dw>+exp< /A(w)dw)
2 2
\VIe+y 5 9

at most a unique value of z on every half straight OX™, consequently at most a unique point in
realistic quadrant (z > 0,y > 0). So this curve cannot contain the periodic orbit, consequently no

arc

[ (- faras)ara]

0

limit cycle.
Hence statement (hs) is proved. O

Assume now that f5(0) = 0 for all # € R, then from system (2.3) it follows that ' = 0. So
the straight lines through the origin of coordinates of the differential system (1.2) are invariant by
the flow of this system. Hence, £ is a first integral of the system, then curves which are formed by
the trajectories of the differential system (1.2), in Cartesian coordinates are written as y — hx = 0,
where h € R, since all straight lines through the origin are formed by trajectories, clearly the system
has no periodic orbits, consequently no limit cycle.

This completes the proof of statement (h4) and Theorem 1. 0
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