УДК 519.176

О ПОРОГОВЫХ ГРАФАХ И РЕАЛИЗАЦИЯХ ГРАФИЧЕСКИХ РАЗБИЕНИЙ

В. А. Баранский, Т. А. Сеньчонок

Тройка вершин (x, v, y) в графе G = (V, E) такая, что $xv \in E$ и $vy \notin E$, называется повышающей, если $\deg(x) \leq \deg(y)$ и — понижающей, если $\deg(x) \geq 2 + \deg(y)$. Понижающим вращением ребра в графе G, отвечающим понижающей тройке (x, v, y), называется преобразование графа, при котором ребро xv заменяется на ребро vy. В работе доказано, что граф является пороговым тогда и только тогда, когда он не содержит повышающих троек вершин. Из этого результата вытекают три следствия.

1. Графическое разбиение, отвечающее граф
уG,является максимальным графическим разбиением тогда и только тогда, когда граф
 Gявляется пороговым.

2. Произвольное разбиение λ является максимальным графическим разбиением тогда и только тогда, когда голова разбиения λ равна его хвосту.

3. Для произвольного графического разбиения μ все его реализации H получаются с помощью конечных последовательностей понижающих вращений ребер из пороговых реализаций G подходящих максимальных графических разбиений λ таких, что $\lambda \geq \mu$.

Ключевые слова: граф, пороговый граф, решетка, разбиение натурального числа, графическое разбиение, диаграмма Ферре.

V. A. Baransky, T. A. Senchonok. On threshold graphs and realizations of graphical partitions.

A triple of vertices (x, v, y) in a graph G = (V, E) such that $xv \in E$ and $vy \notin E$ is called lifting if $\deg(x) \leq \deg(y)$ and lowering if $\deg(x) \geq 2 + \deg(y)$. A lowering rotation of an edge in a graph G corresponding to a lowering triple (x, v, y) is a transformation of this graph that replaces the edge xv by the edge vy. We prove that G is a threshold graph if and only if it has no lifting triples of vertices. This result has three corollaries:

1. The graphical partition corresponding to G is a maximal graphical partition if and only if G is a threshold graph.

2. An arbitrary partition λ is a maximal graphical partition if and only if the head of λ is equal to its tail.

3. Each realization of an arbitrary graphical partition μ can be obtained by a finite sequence of lowering rotations of edges from a threshold realization of an appropriate maximal graphical partition λ such that $\lambda \geq \mu$.

Keywords: graph, threshold graph, lattice, integer partition, graphical partition, Ferrers diagram.

MSC: 05C07

DOI: 10.21538/0134-4889-2017-23-2-22-31

1. Введение

В данной работе под графами мы понимаем обыкновенные графы, т. е. графы без петель и кратных ребер. Мы будем придерживаться для графов терминологии и обозначений, принятых в [1].

Разбиением [2] называется последовательность $\lambda = (\lambda_1, \lambda_2, ...)$ целых неотрицательных чисел такая, что $\lambda_1 \geq \lambda_2 \geq ..., \lambda$ содержит лишь конечное число ненулевых компонент и $\sum_{i=1}^{\infty} \lambda_i = m$, где m — натуральное число. Говорят также, что λ является разбиением натурального числа m, а m — *весом* разбиения λ , и пишут $m = \text{sum}(\lambda)$. Натуральное число $l = l(\lambda)$ такое, что $\lambda_l > 0$ и $\lambda_{l+1} = \lambda_{l+2} = \cdots = 0$, называют *длиной* разбиения λ . Для удобства разбиение λ иногда будем записывать в виде конечной последовательности в любом из следующих видов: $\lambda = (\lambda_1, \ldots, \lambda_l) = (\lambda_1, \ldots, \lambda_{l+1}) = (\lambda_1, \ldots, \lambda_{l+2}) = \ldots$, т. е. будем опускать нули, начиная с некоторой компоненты, помня при этом, что имеем дело с разбиением. Через NPL обозначим множество всех разбиений всех натуральных чисел, а через NPL(m), где $m \in \mathbb{N}$, — множество всех разбиений натурального числа m. На множествах NPL и NPL(m) рассмотрим отношение доминирования $\geq [3]$, полагая $\lambda \geq \mu$, если

$$\lambda_1 \geq \mu_1,$$

$$\lambda_1 + \lambda_2 \geq \mu_1 + \mu_2,$$

$$\dots$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_i \geq \mu_1 + \mu_2 + \dots + \mu_i,$$

$$\dots,$$

где $\lambda = (\lambda_1, \lambda_2, \dots)$ и $\lambda = (\mu_1, \mu_2, \dots)$.

Разбиение удобно изображать его *диаграммой Ферре*, которую можно представлять себе в виде конечного набора квадратных блоков одинакового размера, составляющих "ступенчатую" фигуру (пример такой диаграммы см. [4, рис. 1]).

Определим элементарные преобразования разбиения $\lambda = (\lambda_1, \lambda_2, ...)$ числа $m = sum(\lambda)$ (см. [5–7]).

Пусть существуют натуральные числа $i, j \in \{1, ..., n\}$ такие, что $i < j \leq l(\lambda) + 1 = n$, и выполняется: 1) $\lambda_i - 1 \geq \lambda_{i+1}$ и $\lambda_{j-1} \geq \lambda_j + 1$; 2) $\lambda_i \geq 2 + \lambda_j$. Будем говорить, что разбиение $\mu = (\lambda_1, ..., \lambda_i - 1, ..., \lambda_j + 1, ..., \lambda_n)$ получено из разбиения $\lambda = (\lambda_1, ..., \lambda_i, ..., \lambda_j, ..., \lambda_n)$ элементарным преобразованием первого типа (или перекидыванием блока). Отметим, что μ отличается от λ точно на двух компонентах с номерами i и j. Для диаграммы Ферре такое преобразование означает перемещение верхнего блока i-го столбца вправо на верх j-го столбца. Условия 1) и 2) гарантируют, что после такого перемещения снова получится разбиение. Отметим, что элементарное преобразование первого типа сохраняет вес разбиения.

Определим еще один тип преобразований разбиений из NPL. Пусть $\lambda = (\lambda_1, \lambda_2, ...) \in NPL$ и $\lambda_i - 1 \geq \lambda_{i+1}$, где $1 \leq i \leq l(\lambda)$. Преобразование, заменяющее λ на $\mu = (\lambda_1, ..., \lambda_{i-1}, \lambda_i - 1, \lambda_{i+1}, ...)$, будем называть элементарным преобразованием второго типа (или удалением блока). Отметим, что удаление блока уменьшает вес разбиения на 1. Преобразование, обратное к элементарному преобразованию второго типа, будем называть всставкой блока.

В случае, когда разбиение μ получено из разбиения λ с помощью элементарного преобразования первого или второго типа, будем кратко писать $\lambda \to \mu$.

На множестве NPL и множествах NPL(m), где $m \in \mathbb{N}$, определим отношение \geq , полагая $\lambda \geq \mu$, если μ можно получить из λ с помощью последовательного применения конечного числа (возможно, нулевого) элементарных преобразований указанных типов. Ясно, что для NPL(m) мы можем использовать только элементарные преобразования первого типа, которые не меняют вес разбиений. В [6;7] показано, что отношение \geq на каждом из рассматриваемых множеств совпадает с отношением доминирования \succeq . Важно отметить, что использование элементарных преобразований порой бывает удобнее рассмотрения неравенств из определения отношения \succeq .

Отметим также, что NPL и NPL(m), где $m \in \mathbb{N}$, являются решетками относительно отношения \geq (см. [6;7]), причем решетка NPL представляет из себя дизъюнктное объединение решеток NPL(m), где m пробегает \mathbb{N} , отвечающее некоторой естественной транзитивной системе вложений [7].

Зафиксируем натуральное число n. Конечную последовательность целых неотрицательных чисел $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ такую, что $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, будем называть nпоследовательностью; n-последовательность $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ называется графической, если существует (обыкновенный) граф G = (V, E) на n вершинах, для которого $V = \{v_1, v_2, \ldots, v_n\}$ и deg $(v_1) = \lambda_1$, deg $(v_2) = \lambda_2, \ldots$, deg $(v_n) = \lambda_n$. Такой граф G называют реализацией nпоследовательности λ и говорят, что λ реализуется графом G. Разбиение $\lambda = (\lambda_1, \lambda_2, \ldots)$ называется графическим, если графической является l-последовательность $(\lambda_1, \ldots, \lambda_l)$, где $l = l(\lambda)$. Очевидно, разбиение $\lambda = (\lambda_1, \lambda_2, \dots)$ является графическим тогда и только тогда, когда графической является любая из *n*-последовательностей $(\lambda_1, \dots, \lambda_n)$ при $n \ge l(\lambda)$.

Отметим, что в [8] нами указан алгоритм порождения всех графических *n*-последовательностей для заданного n, который при своей работе не использует неграфических *n*-последовательностей. Этот алгоритм последовательно порождает все графические *n*-последовательности с помощью специальных элементарных преобразований второго типа, начиная с *n*-последовательности $(n-1, n-1, \ldots, n-1)$.

Пусть G = (V, E) — произвольный ненулевой граф, $V = \{v_1, v_2, \ldots, v_n\}$ и $\deg(v_1) = \lambda_1 \ge \deg(v_2) = \lambda_2 \ge \cdots \ge \deg(v_n) = \lambda_n$. Разбиение $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n, 0, 0, \ldots)$ будем называть графическим разбиением, отвечающим графу G, будем обозначать его через gpt(G) и будем говорить, что G является реализацией для λ . Ясно, что добавление к графу G или удаление из него изолированных вершин не меняет отвечающего ему графического разбиения. Графическое разбиение называется униграфическим, если оно обладает единственной реализацией с точностью до изоморфизма и изолированных вершин.

Пусть $\lambda = (\lambda_1, \lambda_2, ...)$ — разбиение. Определим *ранг Дёрфи* $r(\lambda)$ разбиения λ , полагая $r(\lambda) = \max\{i | \lambda_i \geq i\}$. Иногда ранг Дёрфи будем называть просто рангом разбиения. Очевидно, ранг Дёрфи $r = r(\lambda)$ разбиения λ равен числу блоков на главной диагонали диаграммы Ферре этого разбиения. Максимальный квадрат, составленный из блоков и симметричный относительно главной диагонали, называют *квадратом Дёрфи* разбиения λ (см. [4, рис. 1]).

Для каждого разбиения λ мы будем рассматривать *сопряженное* разбиение λ^* , компоненты которого равны числу блоков в соответствующих строках диаграммы Ферре этого разбиения. Ясно, что диаграмму Ферре разбиения λ^* можно получить из диаграммы Ферре разбиения λ с помощью зеркальной симметрии относительно главной диагонали. Конечно, всегда справедливо равенство $r(\lambda^*) = r(\lambda)$.

Заметим (см. [6]), что для любого $m \in \mathbb{N}$ отображение $\lambda \to \lambda^*$ является антиавтоморфизмом решетки NPL(m) таким, что $(\lambda^*)^* = \lambda$, и условие $\lambda \ge \mu$ эквивалентно условию $\lambda^* \le \mu^*$.

Определим теперь голову и хвост разбиения $\lambda = (\lambda_1, \lambda_2 \dots)$, ранг которого равен r.

В качестве головы $hd(\lambda)$ возьмем разбиение, которое получается из разбиения λ уменьшением всех первых r компонент на одно и то же число r-1 и обнулением всех компонент с номерами $r+1, r+2, \ldots$ (для примера см. [4, рис. 2]).

В качестве *хвоста* $tl(\lambda)$ возьмем разбиение, для которого диаграмма Ферре сопряженного разбиения получается из диаграммы Ферре разбиения λ удалением первых r столбцов, т.е. диаграмма Ферре разбиения $tl^*(\lambda)$ расположена справа от квадрата Дёрфи (см. [4, рис. 2]).

Ясно, что верхняя строка квадрата Дёрфи всегда входит в диаграмму Ферре разбиения $hd(\lambda)$ и является в ней первой строкой, разбиение $hd(\lambda)$ "считывается" по столбцам слева направо, а длина разбиения $hd(\lambda)$ равна r. Разбиение $tl(\lambda)$ "считывается" по строкам снизу вверх, и длина разбиения $tl^*(\lambda)$ равна $l(\lambda) - r(\lambda)$.

Тройка вершин (x, v, y) в графе G = (V, E) такая, что $xv \in E$ и $vy \notin E$, называется повышающей, если $\deg(x) \leq \deg(y)$, и понижающей, если $\deg(x) \geq 2 + \deg(y)$. Пусть x, v, y -три различные вершины графа G = (V, E) такие, что $xv \in E$ и $vy \notin E$ (см. рис. 1):

Рассмотрим преобразование φ графа G такое, что $\varphi(G) = G - xv + vy$, т. е. из графа G удаляется ребро xv, а затем добавляется ребро vy. Преобразование φ будем называть *вращением ребра* (в графе G вокруг вершины v), отвечающим тройке (x, v, y) (см. рис. 1). Вращение ребра в графе $\varphi(G)$, отвечающее тройке (y, v, x), будем называть *обратным вращением ребра* к φ . Вращение ребра в графе G, отвечающее тройке (x, v, y), называется 1) повышающим, если $\deg_G(x) \leq \deg_G(y)$; 2) понижающим, если $\deg_G(x) \geq 2 + \deg_G(y)$; 3) сохраняющим, если $\deg_G(x) = 1 + \deg_G(y)$. Отметим, что случай $\deg_G(x) = 1$ и случай $\deg_G(y) = 0$ будем считать допустимыми.

Очевидно, вращение ребра в графе *G* является понижающим тогда и только тогда, когда обратное к нему вращение ребра является повышающим.

Пусть gpt(G) — графическое разбиение, отвечающее графу G, и φ — вращение ребра в графе G, отвечающее тройке (x, v, y), где $xv \in E$ и $vy \notin E$. Тогда справедливы следующие утверждения.

- 1. Если φ повышающее вращение ребра, то $gpt(G) < gpt(\varphi(G))$, причем gpt(G) получается из $gpt(\varphi(G))$ с помощью одного элементарного преобразования первого типа, а G получается из $\varphi(G)$ с помощью обратного (понижающего) вращения ребра.
- 2. Если φ понижающее вращение ребра, то $gpt(G) > gpt(\varphi(G))$, причем $gpt(\varphi(G))$ получается из gpt(G) с помощью одного элементарного преобразования первого типа, а Gполучается из $\varphi(G)$ с помощью обратного (повышающего) вращения ребра.
- 3. Если φ сохраняющее вращение ребра, то $gpt(G) = gpt(\varphi(G))$, причем G получается из $\varphi(G)$ с помощью обратного (сохраняющего) вращения ребра.

Отметим, что любое графическое разбиение имеет четный вес 2m для некоторого $m \in \mathbb{N}$. Множество всех графических разбиений фиксированного веса 2m является порядковым идеалом и нижней подполурешеткой решетки NPL(2m) (см., например, лемму 1 [4]), т. е. оно замкнуто относительно взятия меньших разбиений. Графическое разбиение λ веса 2m будем называть максимальным графическим разбиением, если оно максимально в множестве всех графических разбиений из NPL(2m).

Напомним (см., например, [9]), что граф G = (V, E) называется пороговым, если его множество вершин V представимо в виде дизъюнктного объединения клики V_1 и антиклики V_2 , причем множество всех окрестностей вершин из V_2 образует цепь относительно теоретикомножественного включения \subseteq . Допускаются случаи, когда $V_1 = \emptyset$ или $V_2 = \emptyset$, т. е. полные и нулевые графы являются пороговыми. Ясно, что добавление или удаление изолированных вершин не меняет свойство графа быть пороговым. В монографии [9] представлено много других эквивалентных определений пороговых графов.

Основная цель данной работы состоит в доказательстве следующей теоремы и трех ее следствий.

Теорема 1. Граф является пороговым тогда и только тогда, когда он не содержит повышающих троек вершин.

Следствие 1. Графическое разбиение, отвечающее графу G, является максимальным графическим разбиением тогда и только тогда, когда граф G пороговый.

Следствие 2. Произвольное разбиение λ является максимальным графическим разбиением тогда и только тогда, когда hd(λ) = tl(λ).

Следствие 3. Для произвольного графического разбиения μ все его реализации H, и только они, получаются из пороговых реализаций G подходящих максимальных графических разбиений λ таких, что $\lambda \geq \mu$ и sum $(\lambda) = sum(\mu)$, с помощью конечных последовательностей понижающих вращений ребер, отвечающих последовательности элементарных преобразований первого типа от λ до μ ; в частности, любой граф с помощью конечной последовательности повышающих вращений ребер сводится к пороговому графу и получается из него с помощью обратных понижающих вращений ребер, производимых в обратном порядке.

2. Доказательство основной теоремы и ее следствий

Пусть G = (V, E) — произвольный пороговый граф, не являющийся полным или нулевым графом. Будем считать, что в G нет изолированных вершин. Пусть $V = V_1 \dot{\cup} V_2$, где V_1 клика, т. е. множество вершин, порождающих полный граф, V_2 — антиклика, т. е. множество вершин, порождающих нулевой граф, и множество окрестностей N(v) ($v \in V_2$) образует цепь относительно \subseteq . Если в V_2 найдется вершина, смежная со всеми вершинами из V_1 , то перенесем ее из V_2 в V_1 . Ясно, что мы получим полный граф на новом множестве V_1 , и условие на окрестности вершин для нового множества V_2 сохранится. Поэтому будем считать, что степень любой вершины из V_2 строго меньше числа $|V_1|$.

Упорядочим множество V таким образом, что $V_1 = \{v_1, v_2, \ldots, v_{t+1}\}, V_2 = \{v_n, v_{n-1}, \ldots, v_{t+2}\}$ и $N(v_n) \subseteq N(v_{n-1}) \subseteq \cdots \subseteq N(v_{t+2}) \subset V_1$ для некоторого натурального числа t такого, что $t \ge 1$. Отметим, что последнее включение является строгим. Здесь через $N(v_i)$ мы обозначаем окрестность вершины v_i .

Последовательно продвигаясь по окрестностям вершин $v_n, v_{n-1}, \ldots, v_{r+2}$, на множестве V_1 выберем такой порядок вершин $v_1, v_2, \ldots, v_{t+1}$, что

$$N(v_n) = \{v_1, \dots, v_{\lambda_n}\},\$$

$$N(v_{n-1}) = \{v_1, \dots, v_{\lambda_{n-1}}\},\$$

$$\dots$$

$$N(v_{t+2}) = \{v_1, \dots, v_{\lambda_{t+2}}\},\$$

где $\lambda_n = |N(v_n)|, \lambda_{n-1} = |N(v_{n-1})|, \dots, \lambda_{t+2} = |N(v_{t+2})|.$

Пусть $\lambda = (\lambda_1, \ldots, \lambda_{t+1}, \lambda_{t+2}, \ldots, \lambda_n)$ — графическое разбиение, отвечающее графу G, т. е. $\lambda = \operatorname{gpt}(G)$. Можно считать, $\lambda_1 = \operatorname{deg}(v_1) \ge \lambda_2 = \operatorname{deg}(v_2) \ge \cdots \ge \lambda_{t+1} = \operatorname{deg}(v_{t+1}) \ge \lambda_{t+2} = \operatorname{deg}(v_{t+2}) \ge \cdots \ge \lambda_n = \operatorname{deg}(v_n)$.

Поскольку $N(v_{t+2}) \subseteq \{v_1, \ldots, v_t\}$, вершина v_{t+1} не смежна вершинам из V_2 . С другой стороны, v_{t+1} смежна всем вершинам v_1, \ldots, v_t . Поэтому $\lambda_{t+1} = t$, и выполняются неравенства

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_t \ge t = \lambda_{t+1},$$
$$\lambda_n \le \lambda_{n-1} \le \dots \le \lambda_{t+2} \le t = \lambda_{t+1}.$$

Отсюда следует, что число t является рангом Дёрфи разбиения λ .

Ранг t, как обычно, будем обозначать через r, т. е. полагаем t = r.

Таким образом, выполняются следующие условия.

- П1. $V_1 = \{v_1, \ldots, v_{r+1}\}$ клика.
- П2. $V_2 = \{v_n, v_{n-1}, \dots, v_{r+2}\}$ антиклика.
- $\Pi 3. \ N(v_n) \subseteq N(v_{n-1}) \subseteq \cdots \subseteq N(v_{r+2}) \subseteq \{v_1, \dots, v_r\},\$

где $N(v_i) = \{v_1, \dots, v_{\lambda_i}\}$ для любого $i = n, n - 1, \dots, r + 2$.

Ясно, что $tl^*(\lambda) = (\lambda_{r+1} = r, \lambda_{r+2}, \dots, \lambda_n).$

Заметим, что пороговый граф без изолированных вершин определяется с точностью до изоморфизма его рангом Дёрфи r, порядком n и последовательностью чисел $1 \le \lambda_n \le \lambda_{n-1} \le \cdots \le \lambda_{r+2} \le r$ при r < n-1.

Лемма 1. Пусть λ – графическое разбиение, отвечающее некоторому пороговому графу G. Torda hd(λ) = tl(λ).

Доказательство. Пусть G — пороговый граф такой, что $\lambda = gpt(G)$, и для графа G выполняются условия П1–П3.

Рис. 2

Рис. 3

Очевидно, степень λ_i любой вершины v_i такой, что $1 \leq i \leq r$, равна сумме числа r и числа вершин из V_2 , смежных с v_i , т. е. сумме числа r и числа верных неравенств среди неравенств $i \leq \lambda_{r+2}, i \leq \lambda_{r+3}, \ldots, i \leq \lambda_n$. Поэтому любое такое λ_i равно сумме числа r-1 и числа блоков, содержащихся в *i*-й строке диаграммы Ферре для $tl^*(\lambda)$, поскольку для *i* верно неравенство $i \leq \lambda_{r+1} = r$. Отсюда следует, что столбцы с номером *i* диаграммы Ферре для $hd(\lambda)$ и диаграммы Ферре для $tl(\lambda)$ совпадают для любого *i* такого, что $1 \leq i \leq r$, т.е. выполняется $hd(\lambda) = tl(\lambda)$.

Осталось отметить, что для графического разбиения λ , отвечающего полному *n*-графу, где $n \geq 2$, выполняется $\operatorname{hd}(\lambda) = \operatorname{tl}(\lambda) = (\underbrace{1, \ldots, 1}, 0, \ldots)$.

Пример 1. Пусть пороговый граф *G* задан, как указано на рис. 2.

Для этого графа имеем n = 9, $\lambda = (8, 7, 6, 4, 4, 3, 3, 2, 1)$ и r = 4. Рассмотрим матрицу смежности графа G, причем столбцы матрицы будем нумеровать слева направо, а строки — снизу вверх. Будем представлять себе матрицу в виде аналога шахматной доски (без раскраски) размера $n \times n$, т. е. будем считать, что матрица покрыта равномерной прямоугольной сеткой, содержащей $n \times n$ квадратных ячеек (полей) одинакового размера. Будем заполнять матрицу смежности как обычно, только вместо единиц в соответствующих ячейках будем размещать квадратные блоки такого же размера, как ячейки, а ячейки, содержащие нули, оставим пустыми. В результате для графа G мы получим матрицу, представленную на рис. 3.

В силу симметричности матрицы смежности сначала можно заполнить ячейки, лежащие ниже главной диагонали, а затем симметричным образом заполнить ячейки, лежащие выше главной диагонали. Если теперь совершить сдвиг на одну ячейку вниз всех ячеек, лежащих выше главной диагонали, то мы получим диаграмму Ферре для разбиения λ . Очевидно, выполняется $hd(\lambda) = tl(\lambda)$. Рассуждая аналогичным образом для произвольного порогового графа G, мы достаточно очевидным образом получим $hd(\lambda) = tl(\lambda)$.

Лемма 2. Пусть μ — произвольное разбиение такое, что $hd(\mu) = tl(\mu)$. Тогда существует пороговый граф G, для которого $\mu = gpt(G)$.

Доказательство. Пусть $\mu = (\mu_1, \ldots, \mu_{r+1}, \mu_{r+2}, \ldots, \mu_n)$, где r — ранг разбиения μ и $n = l(\mu)$. Нетрудно заметить, что из условия $hd(\mu) = tl(\mu)$ следует $\mu_1 = n - 1$, $\mu_{r+1} = r$ и $tl^*(\mu) = (\mu_{r+1} = r, \mu_{r+2}, \ldots, \mu_n)$. Рассмотрим пороговый n-граф G, ранг Дёрфи которого равен r и для которого выполняется $tl^*(\lambda) = (r, \mu_{r+2}, \ldots, \mu_n)$, где $\lambda = (\lambda_1, \ldots, \lambda_n)$ — графическое разбиение gpt(G). Тогда $\lambda_{r+1} = \mu_{r+1}, \lambda_{r+2} = \mu_{r+2}, \ldots, \lambda_n = \mu_n$ и $tl^*(\lambda) = tl^*(\mu)$, поэтому $tl(\lambda) = tl(\mu)$. Поскольку для порогового графа выполняется $hd(\lambda) = tl(\lambda)$, разбиения λ и μ имеют одинаковые длины, ранги, головы и хвосты, поэтому они равны, т.е. $\lambda = \mu$ и $\mu =$ gpt(G).

Лемма 3. Произвольный граф G, не содержащий повышающих троек вершин, является пороговым графом.

Д о к а з а т е л ь с т в о. Добавление или удаление изолированных вершин к графу, очевидно, не меняет свойство графа быть пороговым и свойство графа не содержать повышающих

Рис. 4

Рис. 5

троек вершин. Поэтому будем считать, что граф G не имеет изолированных вершин и не является нулевым графом.

Пусть $gpt(G) = \lambda = (\lambda_1, \dots, \lambda_n)$, где $n = l(\lambda)$. Тогда $n - 1 \ge \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 1$. Положим $r = r(\lambda)$. Ясно, что $r \le n - 1$.

1-й случай. Пусть r = n - 1. Тогда $n - 1 \ge \lambda_1 \ge \cdots \ge \lambda_{n-1} \ge n - 1$, откуда вытекает $\lambda_1 = \cdots = \lambda_{n-1} = n - 1$ и $\lambda_n = n - 1$. Следовательно, G — полный n-граф, т.е. G — пороговый граф.

2-й случай. Пусть r < n - 1. Тогда $r + 2 \le n$. Пусть v_1, v_2, \ldots, v_n — множество всех вершин графа G и $\lambda_1 = \deg(v_1), \ldots, \lambda_n = \deg(v_n)$.

По определению ранга r разбиения λ выполняется $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq r$ и $\lambda_{r+1} < r+1$. Поэтому мы имеем $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_{r+2} \leq \lambda_{r+1} \leq r$.

Предположим, что имеется ребро $v_i v_j$ такое, что $n \ge i > j \ge r+1$. Тогда в силу отсутствия повышающих троек вершин вершина v_i смежна всем вершинам $v_1, \ldots v_{r+1}$, поэтому $\lambda_i \ge r+1$, что невозможно. Следовательно, вершины v_n, \ldots, v_{r+1} образуют антиклику в G.

Если вершина v_i , где $n \ge i \ge r+2$, смежна некоторой вершине v_j , то $j \in \{1, \ldots, r\}$ и в силу отсутствия повышающих троек вершин вершина v_i смежна всем вершинам v_1, \ldots, v_j . Следовательно, любая вершина v_i такая, что $n \ge i \ge r+2$, имеет окрестность $N(v_i)$ такую, что $N(v_i) = \{v_1, \ldots, v_{\lambda_i}\}$ (см. рис. 4). Поэтому выполняется $N(v_n) \subseteq N(v_{n-1}) \subseteq \cdots \subseteq N(v_{r+2}) \subseteq \{v_1, \ldots, v_r\}$.

Рассмотрим произвольную вершину v_j такую, что $1 \le j \le r$.

2.1. Пусть $1 \le j \le \lambda_{r+2}$ (см. рис. 5).

Тогда существует ребро $v_{r+2}v_j$ в графе G, поэтому в силу отсутствия повышающих троек вершин вершина v_j смежна любой из вершин $v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{r+1}$.

2.2. Пусть $\lambda_{r+2} + 1 \leq j \leq r$ (такого индекса *j* может и не существовать, если $\lambda_{r+2} = r$). Вершина v_j имеет степень $\geq r$, поскольку $j \leq r$. Кроме того, вершина v_j может быть смежна только вершинам из множества $v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{r+1}$. Следовательно, $\lambda_j = r$ и вершина v_j смежна всем вершинам $v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{r+1}$.

Таким образом, вершины v_1, \ldots, v_{r+1} порождают в графе G полный (r+1)-подграф.

Поскольку подграф в G, порожденный вершинами v_n, \ldots, v_{r+2} , является нулевым графом и окрестности вершин v_n, \ldots, v_{r+2} образуют цепь по включению \subseteq , граф G является пороговым.

Лемма 4. Любой пороговый граф G не содержит повышающих троек вершин.

Д о к а з а т е л ь с т в о. Мы можем считать, что граф G не является полным графом, не является нулевым графом и не содержит изолированных вершин. Пусть, от противного, граф G имеет повышающую тройку вершин (x, v, y), где $xv \in E$, $vy \notin E$ и $\deg(x) \leq \deg(y)$. Пусть в графе G выполняются условия П1–П3.

1-й случай. Пусть $x \in V_1$ и $v \in V_2$.

1.1. Пусть $y \in V_1$. В силу устройства окрестности N(v) вершины v вершина y расположена правее вершины x в последовательности $v_1, v_2, \ldots, v_r, v_{r+1}$. Поэтому $\deg(x) \ge \deg(y)$, откуда получаем $\deg(x) = \deg(y)$. Отсюда следует, что x и y смежны одним и тем же вершинам из V_2 , т. е. в G имеется ребро vy, что противоречиво.

1.2. Пусть $y \in V_2$. Так как существует ребро xv в G, выполняется $\deg(x) > r$. Поскольку $\deg(y) \leq r$, получаем $\deg(x) > \deg(y)$, что противоречиво.

2-й случай. Пусть $v \in V_1$ и $x \in V_2$. Поскольку все вершины из V_1 попарно смежны, вершина y лежит в V_2 . Если y лежит правее x в последовательности $v_n, v_{n-1}, \ldots, v_{r+2}$, то из $v \in N(x)$ в силу $N(x) \subseteq N(y)$ следует $v \in N(y)$, что невозможно. Поэтому y лежит левее x в этой последовательности, откуда вытекает $\deg(y) \leq \deg(x)$, что в свою очередь влечет $\deg(x) = \deg(y)$. Тогда N(x) = N(y) и, следовательно, $v \in N(y)$, что противоречиво.

3-й случай. Пусть $x \in V_1$ и $v \in V_1$. Ясно, что $y \in V_2$. Поэтому $\deg(x) \ge \deg(y)$, откуда получаем $\deg(x) = \deg(y)$. Поскольку $\deg(x) \ge r \ge \deg(y)$, выполняется $\deg(x) = \deg(y) = r$. Следовательно, $N(y) = \{v_1, \ldots, v_r\}$. Отсюда вытекает $v = v_{r+1}$ и $x \in N(y)$. В силу условия $x \in N(y)$ выполняется $\deg(x) \ge r + 1$, что противоречиво.

Доказательство теоремы 1. Данная теорема вытекает излемм 3 и 4.

Перейдем теперь к доказательству следствий 1–3.

Пусть четыре различные вершины v_1 , x, v_2 , y порогового графа образуют 4-псевдоцикл, т. е. $v_1x \in E$, $xv_2 \notin E$, $v_2y \in E$ и $yv_1 \notin E$. Тогда одна из троек (x, v_1, y) , (y, v_2, x) является повышающей, что противоречиво. Как хорошо известно (см. [9]), последовательность степеней графа, не содержащего 4-псевдоциклов, униграфична. Поэтому графическое разбиение, отвечающее пороговому графу, униграфично.

Доказательство следствия 1. Пусть $\lambda = \operatorname{gpt}(G)$ для некоторого графа G.

Предположим, что λ является максимальным графическим разбиением. Если граф G не является пороговым, то в нем имеется повышающая тройка вершин (x, v, y). Пусть φ — повышающее вращение ребра, отвечающее этой тройке. Тогда G можно получить из $\varphi(G)$ с помощью понижающего вращения ребра, отвечающего тройке (y, v, x). Следовательно, разбиение λ можно получить из разбиения $\mu = \operatorname{gpt}(\varphi(G))$ с помощью элементарного преобразования первого типа, что противоречит максимальности λ .

Обратно, пусть G — пороговый граф. Если разбиение λ не является максимальным графическим разбиением, то существует графическое разбиение μ такое, что $\mu \to \lambda$, т. е. λ получается из μ с помощью элементарного преобразования первого типа. Пусть H — реализация разбиения μ , т. е. $\mu = \operatorname{gpt}(H)$. Тогда существует реализация G' разбиения λ , которую можно получить из H с помощью понижающего вращения ребра. Поэтому в G' существует повышающая тройка вершин, т. е. граф G' не является пороговым. Отсюда следует, что λ — неуниграфическое разбиение, что противоречит сделанному выше замечанию.

Доказательство следствия 2. Данное следствие очевидно вытекает из леммы 1 и леммы 2 в силу следствия 1.

Пример 2. На рис. 6 в решетке NPL(10) выделены все максимальные графические разбиения веса 10 (их три — $(5,1\times5)$, (4,2,2,1,1), (3,3,2,2)).

Доказательство следствия 3. Пусть λ и μ — два графических разбиения одного веса таких, что $\lambda > \mu$. Рассмотрим реализацию G разбиения λ . Укажем метод построения реализации H разбиения μ .

Поскольку $\lambda > \mu$, существует последовательность элементарных преобразований первого типа такая, что $\lambda = \lambda_0 \rightarrow \lambda_1 \rightarrow \cdots \rightarrow \lambda_t = \mu$. Существует понижающее вращение ребра в графе $G_0 = G$, переводящее граф G_0 в граф G_1 такой, что $\lambda_1 = \operatorname{gpt}(G_1)$. Отметим, что для выбора понижающего вращения ребра здесь могут иметься несколько возможностей. В силу этого граф G_1 выбирается, вообще говоря, неоднозначно по G_0 . Далее последовательно для каждого элементарного преобразования $\lambda_i \rightarrow \lambda_{i+1}$ $(i = 1, \ldots, t - 1)$ выбираем понижающее

Рис. 6

вращение ребра в графе G_i , переводящее граф G_i в граф G_{i+1} такой, что $\lambda_{i+1} = \operatorname{gpt}(G_{i+1})$. В результате будет построена последовательность графов $G = G_0, G_1, \ldots, G_t = H$ такая, что H является реализацией разбиения μ . Таким образом, граф H получается из графа G с помощью последовательности понижающих вращений ребер, отвечающей последовательности элементарных преобразований первого типа $\lambda = \lambda_0 \rightarrow \lambda_1 \rightarrow \cdots \rightarrow \lambda_t = \mu$ от λ до μ . Очевидно, граф G получается из графа H с помощью обратных повышающих вращений ребер, производимых в обратном порядке.

Теперь ясно, что следствие 3 вытекает из теоремы 1.

В заключение сформулируем открытые вопросы.

Зафиксируем натуральное число $m \in \mathbb{N}$ и будем рассматривать разбиения веса 2m. Пусть $\lambda \in NPL(2m)$ и G — произвольный n-граф, являющийся реализацией разбиения λ . Очевидно, $l(\lambda) \leq 2m$, поэтому с точностью до изолированных вершин можно считать, что $2 \leq n \leq 2m$. Зафиксируем некоторое множество $V = \{v_1, v_2, \ldots, v_{2m}\}$ (в качестве V можно взять множество $\{1, 2, \ldots, 2m\}$). Все реализации разбиений из NPL(2m) будем рассматривать только на множестве V. Пусть $G_1 = (V, E_1)$ и $G_2 = (V, E_2)$ — два графа таких, что $|E_1| = |E_2| = m$, и $\lambda_1 = \operatorname{gpt}(G_1), \lambda_2 = \operatorname{gpt}(G_2)$. Ясно, что $\lambda_1, \lambda_2 \geq (\underbrace{1, \ldots, 1}_{2m}, 0, \ldots)$. Используя эти неравенства,

нетрудно показать, что существует конечная последовательность вращений ребер, переводящая G_1 в G_2 . Наименьшую из длин таких последовательностей назовем *ротационным расстоянием* rtdist (G_1, G_2) от графа G_1 до графа G_2 .

П р о б л е м а 1. Исследовать свойства ротационного расстояния, найти для него оценки и алгоритмы вычисления.

В связи с этой задачей полезно заметить, что процедура переключения ребер в 4-псевдоцикле всегда сводится к выполнению двух вращений ребер.

П р о б л е м а 2. Для заданного графа найти ближайший к нему пороговый граф (в смысле ротационного расстояния).

СПИСОК ЛИТЕРАТУРЫ

- 1. Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы, матроиды, алгоритмы. 2-е изд., испр. и доп. СПб.: Лань, 2010. 368 с. ISBN: 978-5-8114-1068-2.
- 2. Andrews G.E. The theory of partitions. Cambridge: Cambridge University Press, 1976. 255 p. ISBN: 0-521-63766-X.
- Brylawsky T. The lattice of integer partitions // Discrete Math. 1973. Vol. 6. P. 201–219. doi: 10.1016/0012-365X(73)90094-0.
- Baransky V.A., Senchonok T.A. On maximal graphical partitions // Sib. Elect. Math. Reports. 2017. Vol. 14. P. 112–124. doi: 10.17377/semi.2017.14.012.
- Baransky V.A., Koroleva T.A. The lattice of partitions of a positive integer // Doklady Math. 2008. Vol. 77, no. 1. P. 72–75. doi: 10.1007/s11472-008-1018-z.
- 6. Баранский В.А., Королёва Т.А., Сеньчонок Т.А. О решетке разбиений натурального числа // Тр. Ин-та математики и механики УрО РАН. 2015. Т. 21, № 3. С. 30–36.
- 7. Baransky V.A., Koroleva T.A., Senchonok T.A. On the partition lattice of all integers // Sib. Elect. Math. Reports. 2016. Vol. 13. P. 744–753. doi: 10.17377/semi.2016.13.060.
- Baransky V.A., Nadymova T.I., Senchonok T.A. A new algorithm generating graphical sequences // Sib. Elect. Math. Reports. 2016. Vol. 13. P. 269–279. doi: 10.17377/semi.2016.13.021.
- Mahadev N.V.R., Peled U.N. Threshold graphs and related topics. Amsterdam: North-Holland Publishing Co., 1995. 542 p. (Annals of Discr. Math.; vol. 56). ISBN: 0-444-89287-7.

Баранский Виталий Анатольевич

Поступила 20.10.2016

д-р физ.-мат. наук, профессор Уральский федеральный университет, г. Екатеринбург

e-mail: vitaly.baransky@urfu.ru

Сеньчонок Татьяна Александровна

канд. физ.-мат. наук, доцент

Уральский федеральный университет, г. Екатеринбург

e-mail: tatiana.senchonok@urfu.ru

REFERENCES

- Asanov M.O., Baransky V.A., Rasin V.V. Diskretnaya matematika: grafy, matroidy, algoritmy [Discrete mathematics: graphs, matroids, algorithms]. St. Petersburg: Lan' Publ, 2010, 368 p. ISBN: 978-5-8114-1068-2.
- 2. Andrews G.E. *The theory of partitions*. Cambridge: Cambridge University Press, 1976, 255 p. ISBN: 0-521-63766-X .
- Brylawsky T. The lattice of integer partitions. Discrete Math., 1973, vol. 6, pp. 201–219. doi: 10.1016/0012-365X(73)90094-0.
- Baransky V.A., Senchonok T.A. On maximal graphical partitions. Sib. Elect. Math. Reports., 2017, vol. 14, pp. 112–124. doi: 10.17377/semi.2017.14.012.
- Baransky V.A., Koroleva T.A. The lattice of partitions of a positive integer. Dokl. Math., 2008, vol. 77, no. 1, pp. 72–75. doi: 10.1007/s11472-008-1018-z.
- Baransky V.A., Koroleva T.A., Senchonok T.A. On the partition lattice of an integer. Trudy Inst. Mat. Mekh. UrO RAN, 2015, vol. 21, no. 3, pp. 30–36 [in Russian].
- Baransky V.A., Koroleva T.A., Senchonok T.A. On the partition lattice of all integers. Sib. Elect. Math. Reports, 2016, vol. 13, pp. 744–753. doi: 10.17377/semi.2016.13.060.
- Baransky V.A., Nadymova T.I., Senchonok T.A. A new algorithm generating graphical sequences. Sib. Elect. Math. Reports, 2016, vol. 13, pp. 269–279. doi: 10.17377/semi.2016.13.021.
- Mahadev N.V.R., Peled U.N. Threshold graphs and related topics. Amsterdam: North-Holland Publishing Co., 1995, Ser. Annals of Discr. Math., vol. 56, 542 p. ISBN: 0-444-89287-7.

The paper was received by the Editorial Office on October 10, 2016.

Vitalii Anatol'evich Baransky, Dr. Phys.-Math. Sci., Prof., Ural Federal University, Yekaterinburg, 620002 Russia, e-mail: vitaly.baransky@urfu.ru.

Tat'yana Aleksandrovna Senchonok, Cand. Sci. (Phys.-Math.), Ural Federal University, Yekaterinburg, 620002 Russia, e-mail: tatiana.senchonok@urfu.ru.