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AN ANALYTIC METHOD FOR THE EMBEDDING OF THE EUCLIDEAN

AND PSEUDO-EUCLIDEAN GEOMETRIES

V. A.Kyrov, G.G.Mikhailichenko

It is known that an n-dimensional geometry of maximum mobility admits a group of motions
of dimension n(n + 1)/2. Many of these geometries are well-known, for example, the Euclidean
and pseudo-Euclidean geometries. Such geometries are phenomenologically symmetric; i.e., their
metric properties are equivalent to their group properties. In this paper we consider the examples of
the two-dimensional Euclidean and pseudo-Euclidean geometries to develop an analytical method
for their embedding. More exactly, we search for all possible functions of the form f = f((xi −
xj)

2
± (yi − yj)

2, zi, zj), where, for example, xi, yi, zi are the coordinates of a point i. It turns
out that there exist only the following embeddings: f = (xi − xj)

2
± (yi − yj)

2 + (zi − zj)
2 and

f = [(xi − xj)
2
± (yi − yj)

2] exp(2zi + 2zj). Note that we obtain not only the well-known three-
dimensional geometries (Euclidean and pseudo-Euclidean) but also less known geometries (three-
dimensional special extensions of the two-dimensional Euclidean and pseudo-Euclidean geometries).
It is found that all these geometries admit six-dimensional groups of motions. To solve the formulated
problem, according to the condition of local invariance of the metric function, we write the functional
equation

2[(xi − xj)(X1(i)−X1(j)) + ǫ(yi − yj)(X2(i)−X2(j))]
∂f

∂θ
+X3(i)

∂f

∂zi
+X3(j)

∂f

∂zj
= 0,

where all the components are analytic functions. This equation is expanded in a Taylor series and
the coefficients of the expansion at identical products of powers of the variables are compared. This
task is greatly simplified by using the Maple 15 computing environment. The obtained results are
used to write differential equations, which are then integrated to find solutions to the embedding
problem formulated earlier.
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