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VARIATIONAL PROBLEMS WITH UNILATERAL POINTWISE FUNCTIONAL

CONSTRAINTS IN VARIABLE DOMAINS

A.A. Kovalevsky

We consider a sequence of convex integral functionals Fs : W
1,p(Ωs) → R and a sequence of

weakly lower semicontinuous and, in general, non-integral functionals Gs : W
1,p(Ωs) → R, where

{Ωs} is a sequence of domains of R
n contained in a bounded domain Ω ⊂ R

n (n > 2) and
p > 1. Along with this, we consider a sequence of closed convex sets Vs = {v ∈ W 1,p(Ωs) : v >

Ks(v) a.e. in Ωs}, where Ks is a mapping of the space W 1,p(Ωs) into the set of all functions defined
on Ωs. We establish conditions under which minimizers and minimum values of the functionals
Fs+Gs on the sets Vs converge, respectively, to a minimizer and the minimum value of a functional
on the set V = {v ∈ W 1,p(Ω): v > K(v) a.e. in Ω}, where K is a mapping of the space W 1,p(Ω) into
the set of all functions defined on Ω. These conditions include, in particular, the strong connectedness
of the spaces W 1,p(Ωs) with the space W 1,p(Ω), the exhaustion condition of the domain Ω by the
domains Ωs, the Γ-convergence of the sequence {Fs} to a functional F : W 1,p(Ω) → R, and a
certain convergence of the sequence {Gs} to a functional G : W 1,p(Ω) → R. We also assume certain
conditions that characterize both the internal properties of the mappings Ks and their relation to the
mapping K. In particular, these conditions admit the study of variational problems with unilateral
varying irregular obstacles and with varying constraints combining the pointwise dependence and
the functional dependence of the integral form.
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