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STABILIZATION OF DISCRETE TIME SYSTEMS
BY REFLECTION COEFFICIENTS

T. Biiylikkoroglu, G. Celebi, V. Dzhafarov

For single-input single-output discrete-time systems, we consider a stabilization problem by a fixed order
controller. A number of examples show that such controller may not exist. It is assumed that the controller
depends linearly on a stabilizing parameter. In this case, the stabilizing controller defines an affine subset in
the parameter space. We use the well-known property of the Schur stability region in the parameter space.
According to this property the closed convex hull of this region is a polytope with known vertices. Every stable
vector has a preimage in the open cube (—1,1)", and this preimage is called the reflection coefficient of this
stable polynomial. By using reflection coefficients and polytopic properties of the stability region we obtain
the stabilizability condition. This condition is expressed in terms of vertices of the stability region which is a
multilinear image of the cube of reflection coefficients.
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T. Brorokképoruy, I'. Hesebu, B. Txadapos. Crabunuzaus JUCKPETHBIX CUCTEM C UCIOJIb30BaHUEM DedJIIeK-
TUBHBIX KO3 DUIIMEHTOB.

PaccmarpuBaercs 3a7ada cTabHIIM3AIMN JUCKPETHBIX CHCTEM C OJHHUM BXOJOM W OJHUM BBIXOZOM PErYJIsTO-
POM 3aJaHHOTO MOPA/IKA. P/ IPUMEPOB OKA3BIBAET, UYTO TAKOM PEryJIsaTOP MOYXKET He CyIIeCTBOBATh. [Ipeamnosna-
raeTcsi, YTO PEryJIsiTOP JUHEHHO 3aBICUT OT CTabMIN3UPYIOIINX MapaMeTpoB. B arom ciay4uae crabuinsupyromnimit
perynaTop onpeeisieT addUHHOE TOAMHOKECTBO B IIPOCTPAHCTBE MAPAMETPOB. B 9TOM NMPOCTPAHCTBE 3aMKHY-
Tasl BBIIyKJast obosouka obsactu ycroiunsocty o IIlypy siBiisteTcsi MHOTOIDaHHHUKOM C M3BECTHBIMH BEPIIU-
namu. Kaxkapiil crabuiIbHbI BEKTOP UMeeT poobpas B OTKPLITOM KyGe (—1,1)™, u 37oT npoobpa3 Ha3bIBaEeTCA
pedIeKTHBHBIM KO3(DMUIEHTOM COOTBETCTBYIONIErO CTA0MIN3UPYyIOnero mosunHoMa. Ha ocHoBe pediieKTUBHBIX
K03 (DUINEHTOB U CBOMCTB MHOIOIPAHHON 06JIACTH YCTOWYHUBOCTH IIOJIYYIEHO YCIOBHE CTAOMIM3UPYEMOCTH. DTO
YCJIOBHE BBIPAXKEHO B TEPMHUHAX BEPIIUH O0JIACTH YCTORNIUBOCTH, KOTOPAs SBJSICTCA MYyJIbTUIUHEHHBIM 00pa3oM
Ky6a pedIEKTUBHBIX KO3(DMDUIIMEHTOB.
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1. Introduction

Consider n-th degree polynomial p(s) = a3 + ags + -+ + ans" 1+ Ant18" with a1 # 0. This
polynomial is called Hurwitz stable when all its roots lie in the open left half plane and Schur stable
when all its roots lie in the open unit disc. Division by a,11 does not affect the stability property,
therefore, we will assume that a,4+1 = 1, that is

p(s) =ay +ags + -+ a,s" L+ 5™ (1.1)

The polynomial (1.1) can be expressed as n-dimensional vector p = (aq, ag, ..., an)T € R"™. Define
the following subsets of R™:

H, = {p € R": The polynomial (1.1) is Hurwitz stable},

S, = {p € R" : The polynomial (1.1) is Schur stable}.

The set H,, (n > 3) is open, nonconvex, unbounded, and the set S,, (n > 3) is open, nonconvex
and bounded [1-3]. In the case of n = 2, the set Ha equals {(a1,a2): a1 > 0, ag > 0}, and Sy is the
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open triangle with vertices (—1,0), (1,2), (1,—2). In [3], it is shown that the closed convex hull of
Sy, is a polytope in R™ with known vertices, i.e.

S, = cofvl,v?, ... ", (1.2)

where v' corresponds to the unstable polynomial (s + 1)""!(s — 1)"7**! (1 <4 < n + 1). In other
words,
vl(s) = (s —1)", 3(s)=(s— )" (s +1),...,0" T (s) = (s +1)".

For example, in the case of n =3
Ul = (_1737 _3)T7 U2 = (17 _17 _1)T7 U?’ = (_17 _17 1)T7 U4 = (17373)T‘

Construction of S,, recursively starts from &; and Ss. It is given in [3].
Consider the transfer function

n(s)
G(s) = —=
(s) a0s)
and the stabilizer C'(s) = Z((s’c)), where ¢ = (c1,¢2,...,¢)7 € Rl is a stabilizing parameter and
ENG

n(s), d(s), a(s,c), b(s,c) are polynomials. It is assumed that | < n and a(s,c), b(s,c) depend on
vector ¢ in the affine linear way.
The closed loop characteristic polynomial is

p(s,¢) = n(s)a(s,c) + d(s)b(s,c) = p°(s) + c1p'(s) + - - + cpl(s). (1.3)

Additionally, we assume that degree(p’(s)) = n, degree(pi(s)) < n (i = 1,2,...,,1). From these
conditions it follows that p(s,c) is an unitary polynomial. The vector ¢ € R! is called stabilizing if
the corresponding p(s,c) is Schur stable. In this paper, we consider the case where the number of
stabilizing parameters [ equals n — 1, where n is the degree of the characteristic polynomial.

Many works have been devoted to the problems of stabilization of continuous and discrete time
systems (see [4-9| and references therein).

In [4], a large number of Schur stable polynomials are generated using the known methods.
These polynomials are projected on the set of characteristic polynomials and, as a result, stabilizing
controller parameters are determined. The same idea is developed in [5] where random generations
of stable segments of polynomials are used for determination of the stabilizing parameter.

In [6], stabilization algorithms are given for continuous time systems, both deterministic and
stochastic. In [7], stabilization algorithms based on linear programming are given for discrete time
systems.

In [8], stabilization conditions are obtained by estimating the distance between the affine controller
set and the Schur stability region &,.

Remark 1. The characteristic polynomial of the type (1.3) with | = n — 1 appears in the
stabilization problem for linear time-invariant discrete system

x(t+1) = Az(t) + Bu(t), y(t) =Cx(t)

(A, B and C are real matrices of suitable dimension) with output feedback of the form u(t) = Ky(t)
and rank(K) =1 (see [3, Introduction]).

2. Main result

In this section, we give the definition of reflection coefficients for Schur stability and necessary
and sufficient conditions for stabilization in the case of | =n — 1.
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Reflection coefficients or Schur-Szego parameters [10;11] for polynomials have been widely used
in the stability problems of discrete systems. For k; € R (i = 1,2,...,n) and n > 3 reflection map
f:R™ — R"™ is defined by

(F1s Foseves fu) (Rrs e on) = R () { Rn_lo(:;n_l) ] [ R?(Zn } [ ! }

where R;(k;) = Ij41+ k;jE;q1, I is the j x j identity matrix, j X j matrix E; is the following one:
0 --- 1
Eyp=|:1
1 .- 0
The map f is multilinear ([11]), that is affine linear with respect to each component k;. The
explicit formulas for f are given in the special cases of n = 3 and n = 4:

fi(ki, ko, k3) = —ks, fa(ki, ko, k3) = —kikaks + kiks — ko, fa(k1, ko, k3) = kika + koks — ki,

J1(k1, ko, k3, k) = —ky,

fo(k1, ko, k3, ky) = —kikaka — kaksky + kiky — ks,

f3(k1, ko, k3, ky) = kikoksky — k1koks — kiksks + k1k3 + kaka — k2,
Ja(ki, ko, k3, ky) = kiko + koks + ksky — k1.

According to [11], for arbitrary polynomial fi + fos+---+ f,s" !+ s™ there exist k1, ka, ..., kn
such that fy = f1(k1, -, kn)y oo fu = Fulkrsoo o ).

The numbers k1, ko, ..., ky, are called the reflection coefficients of the polynomial f;+ fos+---—+
fns" 1 4 s™. The following fact is important:

Proposition 1 [11]. The unitary polynomial p(s) = f1+ fas+- -+ fns" L+ 5" is Schur stable
if and only if its reflection coefficients satisfy the conditions |k;| <1 (i =1,2,...,n).

According to the fact mentioned above, there exists a multilinear one to one map f from the
open cube (—1,1)" onto S,,.

Define vectors V¢ € R™ (i = 0,1,...,n), where V? corresponds to p°(s) and V* to p'(s) (i =
1,2,...,n). We add zero components for p’(s) (i > 1) in order to complete n-dimension (see [8]).

For example, assume that n =4, [ = 3 and p°(s) = 1+ 2s — 52 + &3 + 5%, pl(s) = 1 — 25 + 52,
p?(s) = 1+2s, p3(s) =252+ 5> Then V° = (1,2, -1, )7, V! = (1,-2,1,0)T, V2 = (1,2,0,0)7,
V3 =(2,0,—1,1)T. Consider n x [ matrix

A= Vl,VQ,...,Vl] .
From now, we assume that V1, V2 ... V! are linearly independent and [ = n — 1. In this case, the

family (1.3) corresponds TO (n — 1)-dimensional affine subset A = {Ac+V?: ¢ € R*"'} c R", and
there exists stabilizing vector c¢ if and only if

ANS, # 2. (2.4)

Since rank(A) = n — 1 and V0 # 0, the subset A is (n — 1)-dimensional hyperplane which does not
pass through the origin. Normal vector of A satisfies the following homogenous system

(N,V1) =0, (N,V*)=0,...,(N,V"1) =0,
where the symbol (-,-) stands for the scalar product. The hyperplane has the equation
(N,z —=V% =0or (N,z) = a,
where o = (N, V0).
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Theorem 1. Assume that| = n—1, and the vectors V', V2, ... . V"1 are linearly independent.
There exists a stabilizing vector if and only if there exist vertices v', v? of the polytope @ S,, =
co{v!,v?,... v"} such that v' and v} lie in the opposite sides of the hyperplane A. In other
words, there exist v', v/ such that (N,v') > a, (N,v7) < a.

Proof.<=). By the known property of a multilinear function defined on a box (|2, p. 247]), there
exist vertices k' and k7 of the cube [—1,1]" such that f(k') = v%, f(k?) = v7. Consider a curve
L connecting k* and k/ which is contained in (—1,1)" with the exception of the points k% and k7.
The image f(L£) intersects the hyperplane A, since their end points v* and v/ lie in the opposite
sides of A. Indeed, assume that f(£) has equation z = z(t) (0 <t < 1). Consider scalar function
b(t) = (N,z(t)). Then b(0) = (N,z(0)) = (N,v") > a, b(1) = (N,2(1)) = (N,v’) < a and by
continuity there exists t, € (0,1) such that b(t,) = o, i.e. (N, x(ts)) = a or z(t,) € A.

=). Let ¢ be a stabilizing parameter. Then the hyperplane (N,z) = « intersects the set S, :
ANS, # 0. By the contrary, assume that (N,v?) > « for all i = 1,2,...,n + 1. Then the closed
convex hull €@ S,, = co{v!,v?,...,v" 1} is contained in the half space {x : (N,z) > a}. From this
and the openness property of S, it follows that

ANS, =2

which is a contradiction. This contradiction proves the necessity.
Since the hyperplane A does not pass through the origin then the following corollary is true

Corollary 1. Let all conditions of Theorem 1 be satisfied. Then there exists a stabilizing vector ¢
if and only if there exists vertex v' such that v and the origin lie in opposite sides of A.

3. Evaluation of stabilizing parameter

Theorem 1 indicates a way for evaluation of a stabilizing parameter. Assume that all conditions
of Theorem 1 are satisfied. As noted above, the hyperplane A does not contain the origin, therefore,
there exists vertex v’ such that v* and the origin lie in the opposite sides of A (Corollary 1). Consider
line segment C which connects the vertex k and the origin, where k’ is the preimage of v*, that is
f(k") = v*. The segment C is defined by

. t ifk;’:l Ly
i(t) = . i =1,2,...,n).
]() 4 ifk‘;:—l (] )

The image f(C) is contained in S,, except the point f(v?). The curvef(C) C R" depends on the
parameter ¢ € [0, 1] and has the equation x = ¢(t). After inserting x = ¢(t) into equation of A, we
have the scalar equation with respect to ¢

<N7 @(t» =, (35)

from which the values t, € (0,1) and z, = ¢(t,) can be calculated. Finally, the value of ¢ can be
defined from the following system of linear equations

Ac+ V0 =z, (3.6)
Example 1. Consider the transfer function and the stabilizer

s—1 6182—1—628—|—C3

C(s) =

Gls) = ——
(5) §3 425245’ s

The closed loop system has the following characteristic polynomial

p(s,c) = st +25% + 52+ 1 (s — s2) + ca(s? — 5) +e3(s — 1).
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Here V° = (0,0,1,2)”, V! = (0,0, —-1,1)", V2 = (0,-1,1,0)", V3 = (—1,1,0,0)T. The vectors
V1 V2 V3 are linearly independent and N = (1,1,1, 1)T is a normal vector. The hyperplane A
has equation x1 + 29 + 23 + x4 — 3 = 0. The stability set S, has five vertices: v! = (1,4,6,4)T, v? =
(—1,-2,0,2)7 o3 = (1,0, -2,0)T, v* = (—1,2,0,—2)T, v® = (1, —4,6, —4)". The vertex v' and the
origin lie in the opposite sides of A. Vertex v! is the image of the vertex k! = (—1,—1,—1,-1)T
of the cube [—1,1]%. The line segment C connecting k' and (0,0,0,0)7 has equation k;(t) = —t
(j =1,2,3,4). The image of C under f is the following curve in R*:

wi(t)=t, x(t) =23 +t2+t, a3(t) =t +23 124+t x4(t) =32+t (0<t<1).

For the point of intersection of f(C) and A we have the following equation (t + 1)* = 4 which gives
ty =2 —1, and

Te = 2(ty) = (V2 —-1,9v2 - 12,8 — 5v/2,8 — 5v2)T.

Finally, the equation (3.6) gives the stabilizing value ¢ = (c1, c2,c3)T = (6—5v/2,13—10v/2,1—v/2)7.

Example 2. Consider

s—3 C(s)_cls2+023+03‘

G(s) = ——° =
(s) s2—4s—5’ 52

The hyperplane A has the equation x1 + 3z2 + 923 + 2724 + 153 = 0 and (N, v?) + 153 > 0 for all
vertices v* (i = 1,...,5). By Corollary 1, there is no a stabilizing parameter c.

Remark 2. In some control problems it is required that the stabilizing vector varies in some
boz, not in the whole space R'. In this case, the set A is not a hyperplane. In this case, the above
result (Theorem 1) is not applicable and the problem remains open.
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