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We consider the problem of constructing resolving sets for a differential game or an optimal
control problem based on information on the dynamics of the system, control resources, and boundary
conditions. The construction of largest possible sets with such properties (the maximal stable bridge
in a differential game or the controllability set in a control problem) is a nontrivial problem due
to their complicated geometry; in particular, the boundaries may be nonconvex and nonsmooth. In
practical engineering tasks, which permit some tolerance and deviations, it is often admissible to
construct a resolving set that is not maximal. The constructed set may possess certain characteristics
that would make the formation of control actions easier. For example, the set may have convex
sections or a smooth boundary. In this context, we study the property of stability (weak invariance)
for one class of sets in the space of positions of a differential game. Using the notion of stability
defect of a set introduced by V.N. Ushakov, we derive a criterion of weak invariance with respect
to a conflict-controlled dynamic system for cylindrical sets. In a particular case of a linear control
system, we obtain easily verified sufficient conditions of weak invariance for cylindrical sets with
ellipsoidal sections. The proof of the conditions is based on constructions and facts of subdifferential
calculation. An illustrating example is given.
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