Tom 22 № 4 2016

УДК 519.62

ДВИЖУЩИЙСЯ В \mathbb{R}^2 ОБЪЕКТ И ГРУППА НАБЛЮДАТЕЛЕЙ

В. И. Бердышев

В работе поставлена экстремальная задача построения траектории движущегося объекта, наиболее удаленной от набора наблюдателей с фиксированными конусами обзора. При некоторых ограничениях на расположение наблюдателей даны характеризация и способ построения оптимальной траектории.

Ключевые слова: движущийся объект, наблюдатель, оптимальная траектория.

V. I. Berdyshev. Moving object in \mathbb{R}^2 and a group of observers.

We formulate an extremal problem of constructing a trajectory of a moving object that is farthest from a group of observers with fixed visibility cones. Under some constraints on the arrangement of the observers we give a characterization and a method of construction of an optimal trajectory.

Keywords: moving object, observer, optimal trajectory.

MSC: 00A05

DOI: 10.21538/0134-4889-2016-22-4-87-93

Пусть M — фиксированное множество в \mathbb{R}^2 , являющееся замыканием открытого множества, t — движущийся объект, M препятствует движению и видимости. В \mathbb{R}^2 задана непрерывная траектория \mathcal{T}_0 , $\mathcal{T}_0 \cap M = \emptyset$, без самопересечений, соединяющая точки $t_* \neq t^*$ из \mathbb{R}^2 . Объект t движется внутри коридора

$$Y = \bigcup_{t \in \mathcal{T}_0} V_r(t),$$

где $r = r(t) = \min\{\|t - m\|: m \in M\}, V_r(t)$ — замкнутый шар радиуса r с центром t. Мы предполагаем, что $V_r(t_*) \cap V_r(t^*) = \emptyset$. Множество непрерывных траекторий

$$\mathcal{T} = \{ t(\tau) : 0 < \tau < 1, \ t(0) = t_*, \ t(1) = t^* \} \subset Y$$
 (1)

обозначим через \mathbb{T} .

Пусть bdY — граница коридора Y и $\Gamma = (bdY) \setminus (V_r(t_*) \cup V_r(t^*))$. Множество Γ разбивается на две части: левую часть Γ^l и правую Γ_r по отношению к объекту, движущемуся от t_* к t^* по \mathcal{T}_0 . Предполагается, что задан конечный набор наблюдателей $\mathbb{S} = \{S\}, \ S \not\in Y$. Ради простоты будем считать, что $\mathbb{S} \subset \Gamma$. Каждый наблюдатель S имеет фиксированный конус обзора K(S) — объединение с S выпуклого открытого конуса при вершине S. Пересечение K(S) с Y может состоять из нескольких связных компонент. В дальнейшем через $K_Y(S)$ обозначается компонента, содержащая S. Для любого S конус K(S) таков, что каждая траектория $\mathcal{T} \in \mathbb{T}$ пересекается с $K_Y(S)$. Множество наблюдателей, принадлежащих Γ^l или Γ_r , будем обозначать через \mathbb{S}^l , \mathbb{S}_r , соответственно.

Определим "расстояние" от точки $t \in Y$ до S следующим образом:

$$\rho(t,S) = \begin{cases} ||t - S|| & \text{при } t \in K_Y(S), \\ +\infty & \text{при } t \notin K_Y(S). \end{cases}$$

Задача состоит в поиске траектории $\mathcal{T}^* = \mathcal{T}(\mathbb{S})$ (1), реализующей максимум

$$\mathbb{M} = \mathbb{M}(\mathbb{S}) \stackrel{\text{def}}{=} \max_{\mathcal{T} \in \mathbb{T}} \min\{\rho(t, S) : t \in \mathcal{T}, S \in \mathbb{S}\} = \min\{\rho(t, S) : t \in \mathcal{T}^*, S \in \mathbb{S}\}.$$
 (2)

В данной работе устанавливаются характеристические свойства оптимальных (наилучших) траекторий и указывается способ построения траекторий. Легко видеть, что таких траекторий много. Указывается способ построения оптимальных траекторий, состоящих из прямолинейных отрезков, дуг окружностей, отрезков границы коридора Y, которые определяются расположением наблюдателей и конусов $K(S), S \in \mathbb{S}$.

Подобная задача рассматривалась в [1] без исследования способов построения оптимальной траектории.

В дальнейшем через L(x,y) обозначается прямая, содержащая точки $x\neq y$, а через \overline{Q} — замыкание множества Q.

Рассмотрим частные случаи задачи (2).

І. Для $S \in \mathbb{S}^l$ (для $S \in \mathbb{S}_r$) через p = p(S) обозначим ближайшую к S точку из Γ_r (из Γ^l) и положим

$$M(S) = \rho(p(S), S). \tag{3}$$

Отметим очевидное

Предложение 1. Пусть набор $\mathbb S$ наблюдателей таков, что $K_Y(S^l)\cap K_Y(S_r)\cap Y=\varnothing$ для любых $S^l\in \mathbb S^l$ и $S_r\in \mathbb S_r$. Оптимальная траектория $\mathcal T^*\in \mathbb T$ характеризуется свойствами: $p(S)\in \mathcal T^*$ для всех S, реализующих минимум $M=\min_{S\in \mathbb S} M(S)$,

 $\rho(S, \mathcal{T}^*) \geq M$ для всех $S \in \mathbb{S}$.

Любая траектория \mathcal{T} , содержащая все отрезки границ $K_Y(S^l) \cap \Gamma_r$, $K_Y(S_r) \cap \Gamma^l$ и удовлетворяющая условию $\rho(S,\mathcal{T}) \geq M$, является оптимальной.

II. Пусть $\mathbb{S}=\{S^l,S_r\}$ — пара наблюдателей такая, что $(K_Y(S^l)\cap K_Y(S_r))\neq\varnothing$. Обозначим

$$Q = \{ x \in \overline{K}_Y(S_l) \cap \overline{K}_Y(S_r) \colon ||x - S^l|| = ||x - S_r|| \}.$$

Возможны два подслучая: II_1) $Q \neq \emptyset$, II_2) $Q = \emptyset$.

Любая траектория пересекается с $K_Y(S)$, $S \in \mathbb{S}$. Наилучшая траектория \mathcal{T}^* должна их пересекать возможно дальше от вершин, а вне множества $\overline{K}_Y(S_l) \cup \overline{K}_Y(S_r)$ ввиду определения расстояния $\rho(t,S)$ она может быть произвольной.

В случае II_1) траектория \mathcal{T}^* , очевидно, пересекает множество $\overline{K}_Y(S_l) \cap \overline{K}_Y(S_r)$, точнее, она содержит точку $p = p(S^l, S_r) \in Q$, реализующую минимум

$$M(S^{l}, S_{r}) \stackrel{\text{def}}{=} \min_{p \in \overline{K}_{Y}(S^{l}) \cap \overline{K}_{Y}(S_{r})} \max \left\{ \|S^{l} - p\|, \|S_{r} - p\| \right\}$$

$$= \max \{ \|S^l - p(S^l, S_r)\|, \|S_r - p(S^l, S_r)\| \}, \tag{4}$$

при этом

$$M(S^{l}, S_{r}) = ||S^{l} - p|| = ||S_{r} - p||.$$
(5)

Пусть точка p принадлежит границе одного из конусов $K(S^l)$, $K(S_r)$, например, $p \in bdK(S^l)$. Тогда для точек t из этого конуса, которые расположены между дугами $C'(S^l)$, $C'(S_r)$ с концевой точкой p и пересекающихся с $K(S^l) \cap K(S_r)$, радиуса $M(S^l, S_r)$ с центрами S^l , S_r , соответственно, выполняется неравенство

$$\min\{\rho(t, S^l), \rho(t, S_r)\} \ge M(S^l, S_r). \tag{6}$$

Это неравенство выполняется и для точек, расположенных внутри конуса $K(S_r)$ между дугой $C'(S_r)$, $C'(S_r) \cap K(S^l) = \emptyset$, и отрезком $[p, S^l]$. При построении траектории \mathcal{T}^* будем использовать

-N') дуги $C'(S^l)$, $C'(S_r)$ и отрезок $[p,S^l]$. Они содержат точки t, удовлетворяющие неравенству (6).

Если точка p принадлежит внутренности множества $K_Y(S^l) \cap K_Y(S_r)$, то для точек t из этого пересечения, лежащих между окружностями $C'(S^l)$, $C'(S_r)$ также выполняется (6).

Далее точку $p=(\cdot,\cdot)$ будем обозначать через $p'(S^l,S_r)$, помещая на первую позицию в качестве аргумента вершину, граница конуса которой содержит точку p. Если $p\in (bdK(S^l))\cap (bdK(S_r))$ или p содержится во внутренности множества $K_Y(S^l)\cap K_Y(S_r)$, то порядок аргументов-вершин в $p'(\cdot,\cdot)$ не устанавливается.

В случае Π_2) наилучшая траектория также содержит точку $p(S^l, S_r)$, являющуюся решением задачи (4). Для определенности предположим, что

$$||S^{l} - p|| < ||S_{r} - p|| \ \forall \ p \in K(S^{l}) \cap K(S_{r}), \tag{7}$$

тогда

$$M(S^{l}, S_{r}) = ||S_{r} - p||.$$
(8)

Для точек t, расположенных в $K(S_r)$ между отрезком $[p,S^l]$ и дугой $C''(S_r)$ радиуса $||S_r-p||$ с центром S_r , выполняется неравенство (6). При построении траектории \mathcal{T}^* будет использоваться

— N'') отрезок $L(p, S^l) \cap Y$ и дуга C''.

Для точки p будем применять обозначение $p=p''(S^l,S_r)$, где на позиции первой переменной помещается вершина, для которой достигается $\min\{\|S^l-p\|,\|S_r-p\|\}$.

Пусть q^l — конец дуги $C'(S^l) \cap \overline{K}(S^l)$, а q_r — конец дуги $C'(S_r) \cap \overline{K}(S_r)$. Другим концом этих дуг является точка p.

Справедливо (см. (2)–(8)) следующее утверждение.

Предложение 2. В случае II имеет место равенство

$$\mathbb{M}(\mathbb{S}) = \min\{M(S^l, S_r), \ M(S^l), \ M(S_r)\}.$$

Искомая оптимальная траектория в случае Π_1 составлена из отрезка $[p', S^l] \cap Y$, дуги $C'(S^l) \cap \overline{K}(S^l)$ (или дуги $C'(S_r) \cap \overline{K}(S^l)$), отрезка $(L(S^l, q^l) \setminus [S^l, q^l]) \cap Y$ (или отрезка $(L(S^l, q_r) \setminus [S^l, q_r]) \cap Y$) и дополнена частью границ Γ^l , Γ_r . В случае Π_2 оптимальная траектория составлена из отрезка $L(S^l, p'') \cap Y$ и дополнена частью границ Γ^l , Γ_r .

III. Пусть задана тройка наблюдателей $\mathbb{S}=\{S_1^l,S_2^l,S_r\}$ такая, что $S_1^l,\,S_2^l\in\Gamma^l,\,\,S_r\in\Gamma_r$ и

$$\left(K_Y(S_1^l) \cap K_Y(S_r)\right) \cap \left(K_Y(S_2^l) \cap K_Y(S_r)\right) = \varnothing. \tag{9}$$

Предложение 3. Имеет место равенство

$$\mathbb{M}(\mathbb{S}) = \min\{M(S_1^l, S_r), \ M(S_2^l, S_r), \ M(S_1^l), \ M(S_2^l), \ M(S_r)\}$$
(10)

и существует оптимальная траектория, содержащая точки $p(S_1^l, S_r)$, $p(S_2^l, S_r)$. Она составлена из дуг и отрезков, перечисленных в $n.\ N', N''$ и частей границ Γ^l , Γ_r .

Доказательство. Если точки $p(S_1^l,S_r)$, $p(S_2^l,S_r)$ имеют вид $p''(S_r,S_1^l)$, $p''(S_r,S_2^l)$, то они лежат на одной стороне конуса $\overline{K}(S_r)$. Часть этой стороны, принадлежащая Y, дополненная участками границ Γ^l , Γ_r , образует траекторию \mathcal{T}^* . Если эти точки имеют вид $p''(S_1^l,S_r)$, $p''(S_2^l,S_r)$ и

$$||S_r - p''(S_2^l, S_r)|| < ||S_r - p''(S_1^l, S_r)||,$$

то в состав \mathcal{T}^* включаются часть стороны конуса $\overline{K}(S_2^l)$, попавшая в Y, и часть стороны конуса $K(S_1^l)$ от точки $p''(S_1^l, S_r)$ до ее пересечения с Γ_r . Остальная часть траектории принадлежит bdY.

Пусть точки $p(S_r, S_1^l), \ p(S_r, S_2^l)$ имеют вид $p''(S_1^l, S_r), \ p''(S_r, S_2^l),$ тогда включим в \mathcal{T}^* часть стороны конуса $K(S_r)$, попавшую в Y и содержащую точку $p''(S_r, S_2^l),$ а также часть стороны

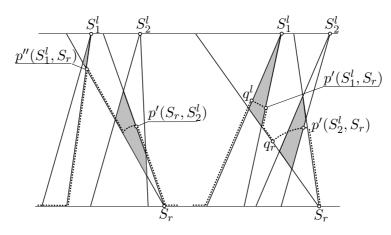


Рис. 1.

конуса $K(S_1^l)$, содержащую точку $p''(S_1^l,S_r)$. Пусть (см. рис. 1) упомянутые выше точки имеют вид $p''(S_1^l,S_r)$, $p'(S_r,S_2^l)$, тогда в \mathcal{T}^* включим дугу $C'(S_r)$ и три отрезка: один на стороне конуса $K(S_r)$ от точки $p''(S_1^l,S_r)$ до этой дуги, другой на стороне конуса $K(S_1^l)$ от точки $p''(S_1^l,S_r)$ до Γ_r и отрезок на стороне конуса $\overline{K}(S_r)$ от точки $p'(S_r,S_2^l)$ до L_r . Рассмотрим, наконец, случай точек $p'(S_1^l,S_r)$, $p'(S_r,S_2^l)$. Ввиду соотношения (9) имеем

$$||S_r - p(S_r, S_2^l)|| < ||S_r - p'(S_2^l, S_r)||.$$

Включим в \mathcal{T}^* дуги $C'(S_r) \cap K(S_r)$, $C'(S_1^l) \cap K(S_1^l)$, отрезок на стороне конуса $\overline{K}(S_1^l)$ от q^l до Γ_r , отрезок на стороне конуса $K(S_r)$, не содержащей точку q_r от $C'(S_r)$ до границы L_r , отрезок на стороне конуса $\overline{K}(S_r)$ от q_r до $K(S_1^l)$, если $q_r \notin K(S_1^l)$. Построенная кривая (на рисунке она отмечена точками) дополняется участками границы L_r . Предложение 3 доказано.

IV. Рассмотрим случай произвольного (конечного) числа наблюдателей. Естественно требование расположить их экономно в определенном смысле, в частности, ограничить сверху кратность покрытия коридора Y множествами $K_Y(S), S \in \mathbb{S}$. Ясно, что группа наблюдателей, расположенных на одном "берегу", например, на Γ^l , обеспечивает более полное покрытие в зоне Γ_r , чем вблизи Γ^l . На обоих "берегах" должно быть (с учетом раствора конусов $K_Y(S)$) примерно одинаковое число наблюдателей. Будем нумеровать их в порядке от t_* к t^* посредством верхних индексов для левой границы и нижних индексов для правой. Итак, имеем набор конусов $\{K(S^i), S^i \in \mathbb{S}_l\}$, $\{K(S_i), S_i \in \mathbb{S}_r\}$. Будем считать, что выполняется условие

$$K_Y(S^i) \cap K_Y(S^n) = \varnothing, \quad K_Y(S_j) \cap K_Y(S_m) = \varnothing \text{ при } i \neq n, j \neq m,$$
 (11)

поэтому имеет место соотношение

$$\left(K_Y(S^i) \cap K_Y(S_j)\right) \cap \left(K_Y(S^k) \cap K_Y(S_m)\right) = \emptyset \quad \text{при} \quad (i,j) \neq (k,m), \tag{12}$$

обеспечивающее кратность покрытия коридора Y конусами K(S) не более двух.

Кроме требований (11)–(12) на набор $\{K(S): S \in \mathbb{S}\}$ наложим условие регулярности, без которого общая картина может оказаться хаотичной при большом числе наблюдателей. Пусть пара вершин (S^l, S_r) такова, что

$$K_r^l \stackrel{\text{def}}{=} K_Y(S^l) \cap K_Y(S_r) \neq \varnothing.$$

Отрезок $[S^l, S_r]$ разбивает коридор Y на две части. Условимся называть часть, содержащую точку t_* , левой, а часть, содержащую точку t^* , правой. В этой связи пару (S^l, S_r) будем называть:

— левой, если $\overline{K}^l_r \cap [S^l,S_r] = \varnothing$ и множество K^l_r лежит в левой части коридора;

- правой, если $\overline{K}_r^l \cap [S^l, S_r] = \emptyset$ и множество K_r^l лежит в правой части коридора;
- средней, если $\overline{K}_r^l \cap [S^l, S_r] \neq \varnothing$.

Требование регулярности состоит в следующем: множество вершин можно разбить на группы вида

$$(S^i, S^{i+1}, \dots, S^{i+n}; S_j, S_{j+1}, \dots, S_{j+m}) \quad (n \ge 0, m \ge 0)$$

такие, что любая пара $(S^{i+n_1}, S_{j+m_1}), 0 \le n_1 \le n, 0 \le m_1 \le m$, является левой или любая такая пара является правой. Если таких групп более одной, то они чередуются и между соседними группами левых и правых пар может присутствовать группа средних пар $(S^i, S_j), (S^{i+1}, S_{j+1}) \dots (S^{i+k}, S_{j+k}).$

Имеет место

Теорема. Справедливо равенство

$$\mathbb{M}(\mathbb{S}) = \min \left\{ M(S^i, S_j), M(S^i), M(S_j) \colon K(S^i) \cap K(S_j) \neq 0, \ S^i \in \mathbb{S}_l, \ S_j \in \mathbb{S}_r \right\}. \tag{13}$$

Наилучшая траектория $\mathcal{T}^* \in \mathbb{T}$ характеризуется свойствами:

- \mathcal{T}^* содержит точки $p(S^i), p(S_j)$ для всех одиночных наблюдателей S^i, S_j и точки $p(S^i, S_j)$ для всех пар (S^i, S_j) наблюдателей из каждой группы, реализующих минимум (13), $S^j \in \mathbb{S}^l, \ S_i \in \mathbb{S}_r;$
 - $-\rho(S,\mathcal{T}^*) \geq \mathbb{M}$ для всех $S \in \mathbb{S}$.

Существует наилучшая траектория, содержащая все точки $p(S^i, S_j)$ для $S^i \in \mathbb{S}^l$, $S_j \in \mathbb{S}_r$ таких, что $K_Y(S^i) \cap K_Y(S_j) \neq \emptyset$.

Д о к а з а т е л ь с т в о. Обозначим через D^i (через D_j) замкнутую область в Y, расположенную между конусами $K(S^i)$, $K(S^{i+1})$ (между конусами $K(S_j)$, $K(S_{j+1})$ соответственно), и рассмотрим множества точек:

- $-K_j^i = K_Y(S^i) \cap K_Y(S_j)$ (см. (13)) открытое множество с кратностью покрытия, равной двум;
- $-K_Y(S^i)\cap \mathcal{D}_j,\ K_Y(S^j)\cap \mathcal{D}^i$ открыто-замкнутые множества с кратностью покрытия, равной единице;
- $-\mathcal{D}_{j}^{i}=\mathcal{D}^{i}\cap\mathcal{D}_{j}$ замкнутое множество точек с нулевой кратностью покрытия.

Отметим, что

$$\rho(t,S) = +\infty \quad \forall \ t \in \mathcal{D}_i^i, \quad \forall \ S \in \mathbb{S},$$

поэтому ограничений на положение траекторий \mathcal{T}^* в множестве \mathcal{D}^i_j нет.

Построение оптимальной траектории в окрестности множеств K_j^i осуществлялось в пп. І–ІІІ. Оно основано на решении $p(S^i, S_j)$ задачи (4), которое в двух возможных случаях ІІ₁ и ІІ₂ обозначалось как $p'(\cdot, \cdot)$, $p''(\cdot, \cdot)$, и порядок аргументов S^i , S_j определялся в зависимости от взаимного расположения конусов $K(S^i)$, $K(S_i)$.

Рассмотрим группу левых пар (см. рис. 2). Зафиксируем номер i и рассмотрим положение точек $p(S^i,S_j)$ на конусе $K(S^i)$. Если ближайшая к вершине S^i точка имеет вид $p''(S^i,S_j)$, то может быть еще несколько точек того же вида, расположенных подряд с номерами j, монотонно убывающими по мере возрастания их расстояния до вершины S^i от номера j до некоторого номера j(i)+1. При этом все они лежат на стороне конуса $K(S^i)$, обращенной к отрезку $[S^i,S_{j(i)}]$. Следующая по расстоянию от S^i точка $p(S^i,S_{j(i)})$ принадлежит границе множества $K^i_{j(i)}$ и является а) либо $p'(S_{j(i)},S^i)$ -точкой, либо $p'(S^i,S_{j(i)})$ -точкой, б) либо точкой вида $p''(S_{j(i)},S^i)$, которая лежит уже на стороне конуса $K(S_{j(i)})$, обращенной к отрезку $[S^i,S_{j(i)}]$. В этих случаях в силу пп. І, ІІ полуинтервал прямой $L(S^i,p''(S^i,S_j))$ от S^i до встречи с множеством $\overline{K}^i_{j(i)}$, обозначим его через Δ^i ($S^i \not\in \Delta^i$), может быть включен в оптимальную траекторию. Пусть $p''(S_{j(i)},S^m)$ — ближайшая к $S_{j(i)}$ точка $p''(S_{j(i)},S^m)$. Повторяя приведенные выше рассуждения, убеждаемся, что полуинтервал прямой $L(S_{j(i)},p''(S_{j(i)},S^m)$

от точки $S_{j(i)}$ до встречи с множеством $\overline{K}^i_{j(i)}$, обозначим его через $\Delta_{j(i)}$ ($S_{j(i)} \notin \Delta_{j(i)}$), может быть включен в оптимальную траекторию. Ясно, что отрезки Δ^i , $\Delta_{j(i)}$ имеют общий конец, обозначим его через v_i , при этом для него выполняется включение

$$v_i \in (bd\overline{K}^i_{j(i)}) \cap \mathcal{D}^i_{j(i)}. \tag{14}$$

Итак, двузвенную ломаную $\Delta^i \cup \Delta_{j(i)}$ (на рис. 2 она помечена точками) можно включить в оптимальную траекторию, оставляя величину $\rho(t,\mathbb{S}),\ t\in\mathcal{T}$, не меньше минимума (13).

В случае а) отрезок $[p(S^i,S_{j(i)}),v_i]$ (см. $\mathrm{II}_1,\,\mathrm{N}'$) может быть включен в траекторию \mathcal{T}^* . В случае б) весь отрезок $[p''(S_{j(i)},S^i),S_{j(i)}]$ согласно п. $\mathrm{II}_2,\,\mathrm{N}''$ включается в \mathcal{T}^* .

Теперь предположим, что при заданном i ближайшая к S^i точка имеет вид $p'(S_j, S^i)$ или $p'(S^i, S_j)$ при некотором j. По аналогии с уже исследованным случаем следует рассматривать положение точек $p(S_j, S^i)$ на конусе $K(S_j)$ для разных i при фиксированном j.

Таким образом, все точки $p''(S^i,S_j)$ расположены на совокупности двузвенных ломаных вида $\Delta^i \cup \Delta_{j(i)}$ для тех i, при которых ближайшая к S^i точка $p(S^i,S_j)$ является $p''(S^i,S_j)$ -точкой, и ломаных вида $\Delta_j \cup \Delta^{i(j)}$ для j, при которых ближайшая к S_j точка $p(S_j,S^i)$ является $p''(S_j,S^i)$ -точкой. Как показано выше, точки $p'(S^i,S_{j(i)}),\ p'(S_{j(i)},S^i)$ лежат на границе множества $\overline{K}^i_{j(i)}$, и аналогично проверяется, что точки $p'(S_j,S^{i(j)}),\ p'(S^{i(j)},S_j)$ лежат на границе множества \overline{K}^i_j . В случае а) с помощью дуг C' (см. N')) можно соединить множество $\mathcal{D}^{i-1}_{j(i)-1}$ и, значит, ввиду (14) и ломаную $\Delta^{i-1} \cup \Delta_{j(i)-1}$ с множеством $\mathcal{D}^i_{j(i)}$ и, значит, с ломаной $\Delta^i \cup \Delta_{j(i)}$. В случае б) отрезки $\Delta^i,\ \Delta^{i-1}$ соединяются посредством отрезка, один конец которого $S_{j(i)}$, а другой — пересечение отрезка Δ^{i-1} с прямой $L(S_{j(i)},p''(S_{j(i)},S^i))$. Точка $p(S^i)$ (точка $p(S_j)$), см. п. І, может быть соединена отрезком границы Γ^l (границы Γ_r) с ближайшим слева отрезком $\Delta^{n(i)}$ (отрезком $\Delta_{m(j)}$).

Таким образом, построена траектория \mathcal{T}^* , составленная из прямолинейных отрезков, фрагментов границы Γ и дуг окружностей с соблюдением неравенства

$$\rho(S, \mathcal{T}^*) \ge \min \left\{ M(S^i, S_j), \ M(S^i), \ M(S_j) \colon S^i \in \mathbb{S}^l, \ S_j \in \mathbb{S}_r \right\} \quad \forall \ S \in \mathbb{S}.$$

Аналогично строится траектория для группы правых пар. Задача построения траектории для двух соседних групп, одна из которых содержит левые пары, а другая правые, или для трех соседних групп, состоящих первая из левых пар, вторая из средних пар, третья из правых пар, сводится к задаче построения траектории для двух соседних пар — левой и правой, левой и средней, средней и правой, которая без труда решается методами, изложенными в п. II. Теорема установлена.

На рис. 2 с целью экономии места используются следующие обозначения:

$$p'(S^{i}, S_{j}) = '(i/j);$$

 $p''(S^{i}, S_{j}) = ''(i/j), \quad p''(S_{j}, S^{i}) = ''(j \setminus i).$

На правой стороне приведен увеличенный фрагмент общего изображения, обведенного окружностью.

Оптимальная траектория не обязана содержать все точки $p(S^i, S_j)$, $p(S^i)$, $p(S_j)$. Приведенная теорема позволяет упростить задачу построения оптимальной траектории из упомянутого выше набора составляющих частей: дуг окружностей, частей границы bdY, отрезков границ конусов K(S) в том случае, когда задача на минимум (13) имеет большое число решений.

З а м е ч а н и е. Построенная траектория содержит участки возвратного движения. Актуальна задача поиска кратчайшей оптимальной траектории.

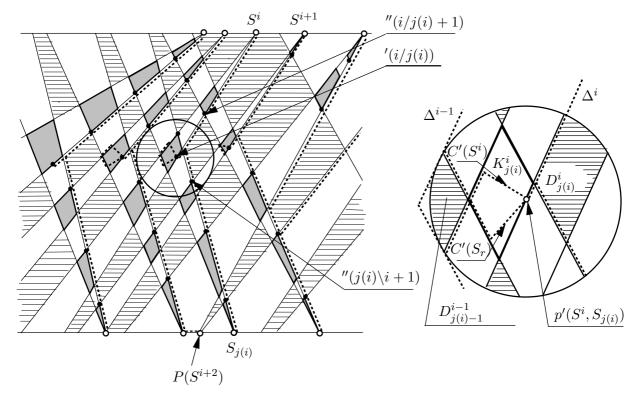


Рис. 2.

СПИСОК ЛИТЕРАТУРЫ

1. **Бердышев В.И., Костоусов В.Б.** Экстремальные задачи планирования маршрута движущегося объекта в условиях наблюдения // Proc. of the 47th Internat. Youth School-Conf. "Modern Problems in Mathematics and its Applications". (Yekaterinburg. 2016.) P. 32–41. (CEUR Workshop Proceedings; vol.1662). URL: http://ceur-ws.org/Vol-1662/.

Бердышев Виталий Иванович академик РАН Поступила 15.09.2016

Институт математики и механики им. Н. Н. Красовского УрО РАН e-mail: bvi@imm.uran.ru

REFERENCES

- 1. **Berdyshev V.I.**, **V.B. Kostousov**. Extreme problems in planning the route of the moving object under observation. MPMA 2016: Proc. of the 47th Internat. Youth School-Conf. "Modern Problems in Mathematics and its Applications". Ser. CEUR Workshop Proceedings, vol.1662, 2016, pp. 32–41. Available at: http://ceur-ws.org/ (in Russian).
- V.I. Berdyshev, RAS Academician, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: bvi@imm.uran.ru.