УДК 519.17

ГРАФЫ, В КОТОРЫХ ЛОКАЛЬНЫЕ ПОДГРАФЫ СИЛЬНО РЕГУЛЯРНЫ СО ВТОРЫМ СОБСТВЕННЫМ ЗНАЧЕНИЕМ 5¹

А. А. Махнев, Д. В. Падучих

Дж. Кулен предложил задачу изучения дистанционно регулярных графов, в которых окрестности вершин — сильно регулярные графы со вторым собственным значением $\leq t$ для данного натурального числа t. Ранее задача Кулена была решена для t = 4. В данной работе завершена классификация дистанционно регулярных графов, в которых окрестности вершин являются сильно регулярными графами со вторым собственным значением $r, 4 < r \leq 5$.

Ключевые слова: сильно регулярный граф, собственное значение, дистанционно регулярный граф.

 ${\rm A.\,A.\,Makhnev},\,{\rm D.\,V.\,Paduchikh.}$ Graphs in which local subgraphs are strongly regular with second eigenvalue 5.

J. Koolen proposed the problem of studying distance-regular graphs in which the neighborhoods of vertices are strongly regular graphs with second eigenvalue $\leq t$ for a given positive integer t. Earlier Koolen's problem was solved for t = 4. We complete the classification of distance-regular graphs in which the neighborhoods of vertices are strongly regular graphs with second eigenvalue r, where $4 < r \leq 5$.

Keywords: strongly regular graph, eigenvalue, distance-regular graph.

MSC: 05B25, 05C25 DOI: 10.21538/0134-4889-2016-22-4-188-200

Введение

Мы рассматриваем неориентированные графы без петель и кратных ребер. Если a, b вершины графа Γ , то через d(a, b) обозначается расстояние между a и b, а через $\Gamma_i(a)$ подграф графа Γ , индуцированный множеством вершин, которые находятся на расстоянии i в Γ от вершины a. Подграф $\Gamma(a) = \Gamma_1(a)$ называется окрестностью вершины a и обозначается через [a]. Окрестности вершин называются также локальными подграфами.

Если вершины u, w находятся на расстоянии i в Γ , то через $b_i(u, w)$ (через $c_i(u, w)$) обозначим число вершин в пересечении $\Gamma_{i+1}(u)$ (в пересечении $\Gamma_{i-1}(u)$) с [w]. Граф диаметра d называется $ducmanuuonno peryлярным с массивом пересечений <math>\{b_0, \ldots, b_{d-1}; c_1, \ldots, c_d\}$, если значения $b_i(u, w)$ и $c_i(u, w)$ не зависят от выбора вершин u, w на расстоянии i. Положим $a_i = k - b_i - c_i$ и $k_i = |\Gamma_i(u)|$ (значение k_i не зависит от выбора вершины u). Дистанционно регулярный граф диаметра 2 называется сильно регулярным графом. Графом Тэйлора называется дистанционно регулярный граф с массивом пересечений $\{k, \mu, 1; 1, \mu, k\}$. Дистанционно регулярный граф диаметра d имеет d + 1 собственных значений: $k = \theta_0 > \theta_1 > \ldots > \theta_d$, и θ_i называется (i + 1)-м собственным значением.

Дж. Кулен предложил задачу изучения дистанционно регулярных графов, в которых окрестности вершин — сильно регулярные графы со вторым собственным значением, не большим t для данного натурального числа t. Заметим, что сильно регулярный граф с нецелым собственным значением является графом в половинном случае (имеет параметры $(4\mu + 1, 2\mu, \mu - 1, \mu))$,

¹Работа выполнена при поддержке гранта РНФ, проект 14-11-00061 (теоремы 1 и 4) и соглашения между Министерством образования и науки Российской Федерации и Уральским федеральным университетом от 27.08.2013, № 02.А03.21.0006 (теоремы 2 и 3).

а вполне регулярный граф, в котором окрестности вершин — сильно регулярные графы с $k' = 2\mu'$, либо имеет диаметр 2, либо является графом Тэйлора [1]. Таким образом, задача Кулена может быть решена пошагово для $t = 1, 2, \ldots$.

Ранее задача Кулена была решена для t = 3 (окончательный результат см. в [2]) и для t = 4 [3]. В данной работе решается задача Кулена для t = 5.

Система инцидентности с множеством точек P и множеством прямых \mathcal{L} называется α частичной геометрией порядка (s,t), если каждая прямая содержит s+1 точку, каждая точка лежит на t+1 прямой, любые две точки лежат не более чем на одной прямой, и для любого антифлага $(a,l) \in (P,\mathcal{L})$ найдется точно α прямых, проходящих через a и пересекающих l(обозначение $pG_{\alpha}(s,t)$). В случае $\alpha = 1$ геометрия называется обобщенным четырехугольником и обозначается GQ(s,t). Точечный граф геометрии определяется на множестве точек P, и две точки смежны, если они лежат на прямой. Точечный граф геометрии $pG_{\alpha}(s,t)$ сильно регулярен с $v = (s+1)(1+st/\alpha), k = s(t+1), \lambda = s-1+t(\alpha-1), \mu = \alpha(t+1)$. Сильно регулярный граф с такими параметрами для некоторых натуральных чисел α, s, t называется *псевдогеометрическим графом* для $pG_{\alpha}(s,t)$.

Сильно регулярный граф Γ со вторым собственным значением m-1 назовем исключительным, если он не принадлежит следующему списку:

- (1) объединение изолированных m-клик;
- (2) псевдогеометрический граф для $pG_t(t+m-1,t);$
- (3) дополнение псевдогеометрического графа для $pG_m(s, m-1);$
- (4) граф в половинном случае с параметрами $(4\mu+1, 2\mu, \mu-1, \mu), (-1+\sqrt{4\mu+1})/2 = m-1.$

В данной работе доказаны четыре теоремы, дающие список массивов пересечений дистанционно регулярных графов, в которых окрестности вершин — сильно регулярные графы со вторым собственным значением, не большим 5. В доказательствах были использованы компьютерные вычисления (см. алгоритмы 1 и 2).

Сначала приведем теорему редукции к графам, в которых окрестности вершин — исключительные графы со вторым собственным значением 5 (анонсировано в [4]).

Теорема 1 (Теорема редукции). Пусть Γ — дистанционно регулярный граф диаметра, большего 2, в котором окрестности вершин — сильно регулярные графы с неглавным собственным значением $t, 4 < t \leq 5, u$ — вершина графа Γ . Тогда [u] — исключительный сильно регулярный граф с неглавным собственным значением 5, или верно одно из утверждений:

 $(1) \, [u] - o b {\it ceduhenue} \, u {\it sonupo Bannak} \, 6$ -клик;

(2) [u] — псевдогеометрический граф для $pG_{s-5}(s,s-5)$, и либо

 $(i) \ s = 6 \ u \ \Gamma - граф Джонсона \ J(14,7), его стандартное частное или граф с массивом пересечений <math>\{49, 36, 1; 1, 12, 49\},$ либо

 $(ii) s = 7 u \Gamma$ имеет массив пересечений $\{64, 42, 1; 1, 21, 64\}$, либо

 $(iii) s = 10 u \Gamma - граф Тэйлора;$

(3) [u] – дополнение псевдогеометрического графа для $pG_6(s,5)$, $s = 12 \ u \ \Gamma$ – граф Тэйлора;

(4) [u] – граф в половинном случае с параметрами (4l+1, 2l, l-1, l), $l \in \{21, 22, 24, 25, 27, 28, 29, 30\}$ и Γ – граф Тэйлора.

В следующих двух теоремах найдены параметры исключительных графов со вторым собственным значением 5. Всего имеется 842 набора (набор (3263897, 3220950, 3178475, 3185550) отвечает графу с наибольшим числом вершин). Из них 378 наборов отвечают псевдогеометрическим графам ($pG_{445}(450, 4094)$) отвечает максимальному $s, pG_{408}(413, 5304)$ — максимальному t). В теоремах 2 (133 набора, отвечающих непсевдогеометрическим графам) и 3 (65 наборов, отвечающих псевдогеометрическим графам) перечислены наборы параметров графов, которые могут быть окрестностями вершин во вполне регулярном графе диаметра, большего 2 (для которых число w из леммы 1.1 не больше v - k - 1). **Теорема 2.** Пусть Γ – исключительный непсевдогеометрический сильно регулярный граф с неглавным собственным значением 5. Тогда его параметры приведены в табл. 1.

Теорема 3. Пусть Γ — исключительный псевдогеометрический граф для $pG_{s-5}(s,t)$. Если Γ вкладывается в качестве окрестности вершины в дистанционно регулярный граф диаметра, большего 2, то его параметры (s,t) приведены в табл. 2.

С помощью теоремы 3 в [5] анонсирован список массивов пересечений дистанционно регулярных графов, в которых окрестности вершин — исключительные псевдогеометрические графы для $pG_{s-5}(s,t)$.

Предложение 1. Пусть Γ — дистанционно регулярный граф диаметра $d \geq 3$, в котором окрестности вершин — исключительные псевдогеометрические графы для $pG_{s-5}(s,t)$. Тогда верно одно из утверждений:

(1) s = 10, $u \Gamma - граф Тэйлора;$

(2) s = 7, и либо t = 1 и Γ – локально T(9)-граф с массивом пересечений {36, 21, 10, 3; 1, 6, 15, 28} (половинный 9-куб), либо t = 18 и Γ – граф с массивом пересечений {512, 378, 1; 1, 189, 512};

(3) s = 6, u либо t = 4 u Γ – граф c массивом пересечений {175, 144, 22; 1, 24, 154} или {175, 144, 1; 1, 12, 175}, либо t = 8 u Γ – граф c массивом пересечений {343, 288, 1; 1, 96, 343}.

Ввиду теорем 1, 2 и предложения 1 завершает решение задачи Кулена для t = 5 следующая теорема.

Теорема 4. Пусть Γ — дистанционно регулярный граф диаметра, большего 2, в котором окрестности вершин имеют параметры из заключения теоремы 2. Тогда параметры окрестности и массив пересечений Γ приведены в табл. 3.

1. Предварительные результаты

Лемма 1.1. Пусть Γ — сильно регулярный граф с параметрами (v, k, λ, μ) и неглавными собственными значениями $\theta_1 = 5, \theta_2, \Delta$ — регулярный подграф из Γ степени μ на w вершинах. Тогда выполняются следующие утверждения:

(1) $(\mu - 5)v/(k - 5) \le w \le (\mu - \theta_2)v/(k - \theta_2);$

(2) если X_i — множество вершин из $\Gamma - \Delta$, смежных точно с і вершинами из Δ , $x_i = |X_i|$, то $x_0 \cdot w \le (v - x_0)(v - w)(5 - \theta_2)^2/(2k - 5 - \theta_2)^2$;

(3) $e_{c,u} x_0 = w, mo w \le v(5 - \theta_2)/(2k - 2\theta_2).$

Д о к а з а т е л ь с т в о. По [6, предложение 4.6.1] имеем $\theta_2 \leq \mu - (k - \mu)w/(v - w) \leq 5$, поэтому $(\mu - 5)(v - w) \leq (k - \mu)w \leq (\mu - \theta_2)(v - w)$. Отсюда $(\mu - 5)v/(k - 5) \leq w \leq (\mu - \theta_2)v/(k - \theta_2)$. Пусть X_i — множество вершин из $\Gamma - \Delta$, смежных точно с *i* вершинами из Δ , $x_i = |X_i|$.

Тогда $x_0 \cdot w \leq (v - x_0)(v - w)(5 - \theta_2)^2/(2k - 5 - \theta_2)^2$. Если $\mu = w$, то $\mu(2k - 5 - \theta_2) \leq (v - \mu)(5 - \theta_2)$ и $\mu \leq v(5 - \theta_2)/(2k - 2\theta_2)$. Лемма доказана.

Лемма 1.2. Пусть Γ — дистанционно регулярный граф диаметра d и окрестность некоторой вершины в Γ является сильно регулярным графом с параметрами (v', k', λ', μ') и неглавными собственными значениями 5, η_2 . Если $\mu' > 5$, то диаметр Γ не больше 3.

Д о к а з а т е л ь с т в о. Если $d(\Gamma) \ge 4$, то в окрестности вершины содержится объединение двух изолированных μ -подграфов, т.е. подграф с собственным значением μ' кратности не меньше 2. Значит, из переплетения спектров [6, предложение 3.2.1] следует, что для всех наборов параметров с $\mu' > 5$ диаметр Γ не больше 3. Лемма доказана.

Таблица 1

Параметры сильно регулярных графов из теоремы 2

(144, 65, 28, 30)	(529, 120, 17, 30)	(961, 160, 9, 30)	(1521, 200, 1, 30)
(162, 23, 4, 3)	(540, 77, 4, 12)	(969, 176, 13, 36)	(1534, 525, 140, 200)
(169, 70, 27, 30)	(540, 245, 100, 120)	(981, 392, 133, 172)	(1587, 488, 109, 168)
(171, 50, 13, 15)	(576, 125, 16, 30)	(1003, 300, 65, 100)	(1600, 205, 0, 30)
(196, 75, 26, 30)	(606, 275, 112, 135)	(1024, 165, 8, 30)	(1625, 580, 165, 230)
(208, 45, 8, 10)	(616, 75, 2, 10)	(1036, 375, 110, 150)	(1681, 784, 327, 399)
(210, 95, 40, 45)	(625, 130, 15, 30)	(1080, 221, 22, 51)	(1922, 904, 381, 464)
(235, 52, 9, 12)	(630, 68, 1, 8)	(1086, 155, 4, 25)	(1936, 645, 164, 240)
(238, 75, 20, 25)	(630, 185, 40, 60)	(1089, 170, 7, 30)	(1944, 725, 220, 300)
(256, 85, 24, 30)	(638, 49, 0, 4)	(1089, 320, 67, 105)	(2048, 805, 264, 350)
(273, 80, 19, 25)	(650, 55, 0, 5)	(1090, 495, 200, 245)	(2185, 936, 347, 441)
(288, 41, 4, 6)	(676, 135, 14, 30)	(1122, 209, 16, 44)	(2205, 950, 355, 450)
(289, 90, 23, 30)	(686, 250, 75, 100)	(1128, 245, 28, 60)	(2262, 875, 280, 375)
(300, 65, 10, 15)	(696, 125, 10, 25)	(1134, 275, 40, 75)	(2300, 1045, 420, 520)
(320, 145, 60, 70)	(704, 37, 0, 2)	(1156, 175, 6, 30)	(2420, 885, 260, 360)
(324, 95, 22, 30)	(722, 309, 116, 144)	(1156, 345, 74, 115)	(2484, 1040, 373, 480)
(329, 40, 3, 5)	(726, 203, 40, 63)	(1190, 145, 0, 20)	(2523, 962, 301, 407)
(336, 125, 40, 50)	(729, 140, 13, 30)	(1200, 545, 220, 270)	(2646, 1265, 544, 660)
(351, 140, 49, 60)	(742, 285, 92, 120)	(1210, 390, 95, 140)	(2668, 1155, 434, 550)
(361, 100, 21, 30)	(755, 130, 9, 25)	(1221, 500, 175, 225)	(2668, 1270, 543, 660)
(364, 33, 2, 3)	(760, 165, 20, 40)	(1296, 185, 4, 30)	(2784, 1265, 508, 630)
(364, 165, 68, 80)	(768, 325, 120, 150)	(1296, 518, 175, 228)	(3186, 1274, 427, 564)
(375, 110, 25, 35)	(780, 369, 158, 189)	(1332, 605, 244, 300)	(3249, 1392, 515, 657)
(400, 21, 2, 1)	(783, 230, 49, 75)	(1334, 465, 128, 180)	(3393, 1484, 565, 714)
(437, 100, 15, 25)	(784, 145, 12, 30)	(1344, 425, 100, 150)	$\left(3393, 1600, 675, 825 ight)$
(441, 110, 19, 30)	(800, 85, 0, 10)	(1350, 380, 73, 120)	(3510, 1595, 640, 795)
(456, 195, 74, 90)	(841, 150, 11, 30)	(1352, 525, 170, 225)	(3888, 1625, 580, 750)
(477, 140, 31, 45)	(848, 385, 156, 190)	(1369, 190, 3, 30)	(4602, 2033, 784, 988)
(484, 105, 14, 25)	(885, 260, 55, 85)	(1394, 175, 0, 25)	(4602, 2150, 895, 1100)
(484, 115, 18, 30)	(889, 222, 35, 62)	(1395, 410, 85, 135)	(4720, 2145, 860, 1070)
(486, 194, 67, 84)	(900, 155, 10, 30)	(1444, 195, 2, 30)	(7021, 3250, 1335, 1650)
(495, 38, 1, 3)	(904, 301, 78, 111)	(1445, 532, 159, 217)	
(505, 180, 53, 70)	(925, 330, 95, 130)	(1458, 329, 40, 84)	
(507, 44, 1, 4)	(936, 187, 18, 42)	(1470, 565, 180, 240)	

Таблица 2

Параметры (s,t) псевдогеометрических графов из теоремы 3

s = 6	t = 3, 4, 6, 8, 9, 12, 14, 15, 22, 24, 29, 30, 36
s = 7	t = 1, 4, 6, 8, 9, 14, 15, 18, 22, 24, 29, 34, 36, 50, 54
s = 8	t = 2, 4, 6, 9, 10, 12, 14, 18, 24, 30, 34, 39, 42, 54, 66, 74, 84
s = 9	t = 12, 24, 44, 48, 84, 144
s = 10	t = 4, 16, 24, 27, 38, 49, 54, 60, 104, 126, 159, 214

Таблица З

Параметры графа Г из теоремы 4

$\Gamma(q)$	Г
1(a)	1
(256, 85, 24, 30)	$\{256, 170, 1; 1, 85, 256\}$
(288, 41, 4, 6)	$\{288, 246, 1; 1, 41, 288\}$
(329, 40, 3, 5)	$\{329, 288, 1; 1, 42, 329\}$
	$\{329, 288, 56, 1; 1, 28, 288, 329\}$
	$\{329, 288, 48; 1, 16, 282\}$
	$\{329, 288, 70, 1; 1, 14, 288, 329\}$
(441, 110, 19, 30)	$\{441, 330, 1; 1, 110, 441\}$
(495, 38, 1, 3)	$\{495, 456, 1; 1, 38, 495\}$
(540, 77, 4, 12)	$\{540, 462, 1; 1, 77, 540\}$
(638, 49, 0, 4)	$\{638, 588, 1; 1, 49, 638\}$
	$\{638, 588, 71; 1, 21, 568\}$
(650, 55, 0, 5)	$\{650, 594, 1; 1, 18, 650\}$
(676, 135, 14, 30)	$\{676, 540, 1; 1, 135, 676\}$
(704, 37, 0, 2)	$\{704, 666, 1; 1, 37, 704\}$
	$\{704, 666, 1; 1, 9, 704\}$
(961, 160, 9, 30)	$\{961, 800, 1; 1, 160, 961\}$
(1296, 185, 4, 30)	$\{1296, 1110, 1; 1, 185, 1296\}$

2. Теорема редукции

В этом разделе предполагается, что Γ — дистанционно регулярный граф, в котором окрестности вершин сильно регулярны с параметрами (v', k', λ', μ') и неглавными собственными значениями $\eta_1, \eta_2, 4 < \eta_1 \leq 5$. Зафиксируем вершину $u \in \Gamma$ и допустим, что [u] не является исключительным графом. Тогда [u] — один из следующих графов:

- (1) объединение изолированных 6-клик;
- (2) псевдогеометрический граф для $pG_{s-5}(s, s-5)$;
- (3) дополнение псевдогеометрического графа для $pG_6(s, 5)$;
- (4) граф в половинном случае с параметрами $(4\mu + 1, 2\mu, \mu 1, \mu), (-1 + \sqrt{4\mu + 1})/2 = 5.$

Лемма 2.1. Если [u] — псевдогеометрический граф для $pG_{s-5}(s, s-5)$, то верно одно из утверждений:

(1) s = 6 и Γ является графом Джонсона J(12,6), его стандартным частным или имеет массив пересечений $\{49, 36, 1; 1, 12, 49\};$

(2) $s = 7 \ u \ \Gamma$ имеет массив пересечений $\{64, 42, 1; 1, 21, 64\};$

(3) $s = 10 \ u \ \Gamma - граф$ Тэйлора.

Доказательство. Пусть [u] — псевдогеометрический граф для $pG_{s-5}(s, s-5)$. Тогда $v' = k = (s+1)^2$, $k' = \lambda = s^2 - 4s$, $\mu' = (s-5)(s-4) = s^2 - 9s + 20$, $b_1 = k - \lambda - 1 = 6s$ и μ делит $6s(s+1)^2$. По [7, теорема 20] либо Γ — граф Тэйлора и s = 10, либо $(s^2 - 9s + 15)(s+1)^2/(s^2 - 4s - 5) \le \mu \le 4s$, поэтому $s \le 9$.

Если s = 6, то [u] является 7 × 7-решеткой и $\mu \in \{4, 6, 12, 14\}$. В случае $\mu = 14$ диаметр Г равен 2. В случае $\mu = 4$ ввиду [9, теорема 1] Г является графом Джонсона J(14, 7) или его стандартным частным. В случае $\mu = 12$ имеем $b_2 = 1$ и Г имеет массив пересечений $\{49, 36, 1; 1, 12, 49\}$. В случае $\mu = 6$ имеем $k_2 = 6 \cdot 49$ и $b_2 = 1, 2, 3, 6$. Поэтому диаметр Г не больше 4. Если диаметр Γ равен 3, то Γ имеет массив пересечений {49, 36, b_2 ; 1, 6, c_3 }. В любом случае некоторое собственное значение графа Γ имеет нецелую кратность, противоречие.

Пусть диаметр Г равен 4. Тогда $k_3 = 36 \cdot 49/c_3$, Г имеет массив пересечений {49, 36, 6, b_3 ; 1, 6, c_3, c_4 } и $c_3 - b_3 \ge c_2 - b_2 + a_1 + 2$, поэтому $c_3 \ge b_3 + 14$. Отсюда $c_3 \in \{18, 21, 28, 36\}$. По [8, теорема 4.4.3] выполняются неравенства $s \ge b^- = -1 - b_1/(\theta_1 + 1)$, $r \le b^+ = -1 - b_1/(\theta_d + 1)$. Так как $r = 5, s = -2, b_1 = 36$, то $\theta_1 \le 35$ и $\theta_d \ge -7$. Если $c_3 = 18$, то $b_3 \le 4, k_3 = 98$ и c_4 делит 98 b_3 . В этом случае допустимых массивов пересечений нет.

Если $c_3 = 21$, то $k_3 = 84$, c_4 четно и делит $84b_3$. В этом случае допустимых массивов пересечений нет.

Если $c_3 = 28$, то $k_3 = 63$, c_4 делится на 3 и делит $63b_3$. В этом случае допустимых массивов пересечений нет.

Если $c_3 = 36$, то $k_3 = 49$, c_4 делит $49b_3$. В этом случае допустимых массивов пересечений нет.

Если s = 7, то $7 \le \mu \le 24$, μ делит $64 \cdot 42$, поэтому $\mu \in \{7, 8, 12, 14, 16, 21, 24\}$. В случае $\mu = 7$ имеем противоречие с тем, что [u] является графом Тервиллигера. По [8, теорема 4.4.3] выполняются неравенства $s \ge b^- = -1 - b_1/(\theta_1 + 1), r \le b^+ = -1 - b_1/(\theta_d + 1)$. Так как $r = 5, s = -3, b_1 = 42$, то $\theta_1 \le 20$ и $\theta_d \ge -8$. Если $d(\Gamma) \ge 4$, то $\mu \le 64/6$.

В случае $\mu = 12$ граф Γ имеет массив пересечений {64, 42, b_2 ; 1, 12, c_3 }, а в случае $\mu = 14$ — массив пересечений {64, 42, b_2 ; 1, 14, c_3 }. В любом случае некоторое собственное значение графа Γ имеет нецелую кратность, противоречие. В случае $\mu = 16$ имеем $k_2 = 168$, число b_2 делится на 8. Отсюда Γ имеет массив пересечений {64, 42, 8t; 1, 16, c_3 }. В случае $\mu = 24$ имеем $k_2 = 112$, b_2 делится на 4 и Γ имеет массив пересечений {64, 42, 4t; 1, 24, c_3 }. В любом случае некоторое собственное значение графа Γ имеет нецелую кратность, противоречие. В случае $\mu = 21$ имеем $k_2 = 128$ и Γ имеет массив пересечений {64, 42, 4t; 1, 24, c_3 }. В любом случае некоторое собственное значение графа Γ имеет нецелую кратность, противоречие. В случае $\mu = 21$ имеем $k_2 = 128$ и Γ имеет массив пересечений {64, 42, 1; 1, 21, 64}.

Пусть $\mu = 8$. Тогда $k_2 = 8 \cdot 42 = 336$ и b_2 делится на 4. По лемме 1.1 имеем $8b_2 \leq 56(64 - b_2)64/40^2$, поэтому $25b_2 \leq 7(64 - b_2)$ и $b_2 \leq 14$. Если $d(\Gamma) = 3$, то Γ имеет массив пересечений $\{64, 42, 4t; 1, 8, c_3\}$ и некоторое собственное значение графа Γ имеет нецелую кратность, противоречие. Значит, $d(\Gamma) = 4$, и по [8, теорема 5.2.1] имеем $c_3 - b_3 \geq c_2 - b_2 + a_1 + 2$, поэтому $42 \geq c_3 \geq b_3 + 31 - b_2$. В случае $b_2 = 8$ имеем $c_3 = 24, 28, 32, 42$, а в случае $b_2 = 12$ имеем $c_3 = 21, 24, 28, 32, 36, 42$. В любом случае допустимых массивов пересечений нет.

Если s = 8, то $21 \le \mu \le 36$, μ делит $81 \cdot 48$ и $\mu \in \{24, 27, 36\}$. По [8, теорема 4.4.3] выполняются неравенства $s \ge b^- = -1 - b_1/(\theta_1 + 1)$, $r \le b^+ = -1 - b_1/(\theta_d + 1)$. Так как $r = 5, s = -4, b_1 = 48$, то $\theta_1 \le 15$ и $\theta_d \ge -9$.

В случае $\mu = 24$ имеем $k_2 = 81 \cdot 2 = 162$ и Г имеет массив пересечений $\{81, 48, b_2; 1, 24, c_3\}$. В случае $\mu = 27$ имеем $k_2 = 3 \cdot 48 = 144$ и b_2 делится на 9. Отсюда Г имеет массив пересечений $\{81, 48, 9t; 1, 27, c_3\}$. В случае $\mu = 36$ имеем $k_2 = 9 \cdot 12 = 108$ и b_2 делится на 3. Отсюда Г имеет массив пересечений $\{81, 48, 3t; 1, 36, c_3\}$. В любом случае некоторое собственное значение графа Г имеет нецелую кратность, противоречие.

Если s = 9, то $38 \le \mu \le 50$, μ делит $100 \cdot 55$ и $\mu \in \{44, 50\}$. В случае $\mu = 44$ имеем $k_2 = 25 \cdot 5 = 125$, b_2 делится на 4 и Γ имеет массив пересечений $\{100, 55, 4t; 1, 44, c_3\}$. В случае $\mu = 50$ имеем $k_2 = 2 \cdot 55 = 110$, b_2 делится на 10 и Γ имеет массив пересечений $\{100, 55, 10t; 1, 50, c_3\}$. В любом случае некоторое собственное значение графа Γ имеет нецелую кратность, противоречие. Лемма доказана.

Лемма 2.2. Если [u] — дополнение псевдогеометрического графа для $pG_6(s,5)$, то Γ — граф Тэйлора.

Доказательство. Если [u] является дополнением псевдогеометрического графа для $pG_6(s,5)$, то $v' = k = (s+1)(5s+6)/6 = (5s^2+11s+6)/6$, $\bar{k}' = 6s$, $\bar{\lambda}' = s+24$ и $k-\lambda-1 = 6s$. Далее, $\mu' = v' - 2\bar{k}' - 2 + \bar{\lambda}' = (5s^2 - 55s + 138)/6$ и $(5s^2 - 55s + 144)/6 = \mu' + 1 \le \mu < 4s$, поэтому $s \le 13$. Так как s(s-11) делится на 6, то $s = 5, 6, 12, k = 31, 42, 143, \lambda = 0, 5, 70$, $b_1 = 30, 36, 72$ и $\mu' = -2, -2, 33$. По [7, теорема 20] либо Γ – граф Тэйлора, либо $36 \le \mu \le 48$. С другой стороны, по [7, теорема 20] имеем 296143/68 $\leq \mu$, противоречие. Лемма доказана.

Лемма 2.3. Если $[u] - epa \phi$ в половинном случае с параметрами (4l + 1, 2l, l - 1, l), то $l \in \{21, 22, 24, 25, 27, 28, 29, 30\}$ и Γ – граф Тэйлора.

Доказательство. Пусть [u] — граф в половинном случае с параметрами (4l +1, 2l, l-1, l). Тогда $4 < (-1 + \sqrt{4l+1})/2 \le 5$, поэтому $20 < l \le 30$. Так как 4l + 1 -сумма двух квадратов, то *l* ∈ {21, 22, 24, 25, 27, 28, 29, 30}. По [1] Г — граф Тэйлора. Лемма доказана. Из лемм 2.1–2.3 следует теорема 1.

3. Доказательство теорем 2 и 3

Пусть Γ — сильно регулярный граф с параметрами (v, k, λ, μ) и спектром $k^1, n - m^f$, $-m^{v-f-1}$. Параметры назовем *исключительными*, если выполнены ограничения из [10]:

(1) условие Крейна $\mu(n - m(m - 1)) \le (m - 1)(n - m)(n + m(m - 1));$

(2) абсолютная граница $v \le f(f+3)/2$ $(v \le f(f+1)/2,$ если $\mu(n-m(m-1)) \ne (m-1)(n-m(m-1))$ m)(n + m(m - 1)));

(3) μ -граница $\mu \leq m^3(2m-3)$ (в случае равенства имеем n = m(m-1)(2m-1));

(4) граница для числа 3-лап $n \le m(m-1)(\mu+1)/2 + m - 1$ (если $\mu \ne m(m-1), m^2$).

Теоремы 2 и 3 доказываются с помощью компьютерных вычислений, выполненных с помощью следующего алгоритма.

Алгоритм 1

- 1. Мы ищем параметры графа $\bar{\Gamma}$ с наименьшим собственным значением -6. Задается максимальное значение $\mu = 1458$. Ему отвечает n = 330. Проверяется допустимость полученных параметров.
- 2. Если $\mu = 1$, то переходим к шагу 4, в противном случае уменьшаем значение μ на 1. Находим максимальное $n = 15(\mu + 1) + 5$.
- 3. Ищем допустимые параметры. По допустимым параметрам графа $\bar{\Gamma}$ находим параметры графа Г. Если $\mu + n - 12 > 0$, то уменьшаем *n* на 1 и повторяем шаг 3, в противном случае переходим к шагу 2.
- 4. Среди допустимых параметров графа Γ ищем те, для которых *m* делит μ . Им отвечают псевдогеометрические графы. Соответствующую пару (s,t) помещаем в заключение теоремы 3. Оставшиеся параметры помещаем в заключение теоремы 2.

4. Новая граница для диаметра графа

В этом разделе мы получим границу для диаметра дистанционно регулярного графа, в котором окрестности вершин сильно регулярны.

Предложение 2. Пусть Г – дистанционно регулярный граф диаметра d, в котором окрестности вершин сильно регулярны с собственными значениями $\lambda, \eta_1, \eta_2, \eta_2 < 0.$ Если r — наименьшее натуральное число такое, что в шаре радиуса r средняя степень вершины не меньше $-b_1/(\eta_2+1)-1$, mo $d \leq 2r+1$.

При выборе очередного значения b_i среднюю степень в шаре радиуса *i* можно посчитать точно: $k = k - b_i k_i / v_i$, где v_i — число вершин в шаре.

Доказательство. По [8, лемма 3.2.1] средняя степень графа не превосходит его наибольшее собственное значение, причем равенство достигается только в случае регулярного графа. Поэтому мы ищем шар наименьшего радиуса r, в котором средняя степень не меньше $-b_1/(\eta_2+1)-1$, где $\eta_1 > \eta_2$ — неглавные собственные значения окрестности вершины.

По [8, теорема 4.4.3] в графе Γ не может быть двух изолированных шаров радиуса r, значит, $d \leq 2r + 1$. Более того, средняя степень в объединении слоев, изолированных от шара радиуса r, не превосходит $-b_1/(\eta_2 + 1) - 1$, и равенство возможно только в сфере радиуса d. Предложение доказано.

Применение предложения 2 проиллюстрируем на примере.

Пусть Г — дистанционно регулярный граф Тервиллигера диаметра d, в котором окрестности вершин изоморфны графу Хофмана — Синглтона с собственными значениями 7, $\eta_1 = 2$, $\eta_2 = -3$. Тогда $b_1 = 42$, $-b_1/(\eta_2 + 1) - 1 = 20$ и для шара радиуса 2 получим $\bar{k} = 50 - 50 \cdot 21b_2/1101$. (Известно [11], что диаметр вполне регулярного графа Тервиллигера, в котором окрестности вершин изоморфны графу Хофмана — Синглтона, не больше 7). Если d > 5, то $50(1101 - 21b_2)/1101 < 20$ и $b_2 > 31$.

5. Доказательство теоремы 4

Теорема 4 следует из приведенных ниже лемм 5.1–5.6.

До конца работы предполагается, что Γ — дистанционно регулярный граф диаметра, большего 2, в котором окрестности вершин сильно регулярны с параметрами (v', k', λ', μ') из заключения теоремы 2 (см. табл. 1) и неглавными собственными значениями $\eta_1 = 5, \eta_2$. Так как $k' \neq 2\mu'$, то ввиду [7, теорема 20] можно считать, что $\mu < 2b_1/3$. Для вершин $u, w \in \Gamma$ с d(u, w) = 2 через x_0 обозначим число вершин из [w] - [u], не смежных с вершинами из $[u] \cap [w]$. Тогда $b_2 \leq x_0$.

Лемма 5.1. $v' \leq 1444$.

Д о к а з а т е л ь с т в о. Допустим, что окрестность вершины в Г имеет параметры (2646, 1265,544,660). Ввиду леммы 1.1 имеем 1376 $\leq \mu \leq 1491, b_1 = 1380$, противоречие с тем, что $\mu > 2b_1/3$.

Аналогичное противоречие получим и для наборов параметров с v' > 2646.

Допустим, что окрестность вершины в Г имеет параметры (1445,532,159,217). Ввиду леммы 1.1 имеем $582 \le \mu \le 680, b_1 = 912$. Далее, $\mu < 608$, и μ делит 1445 · 912, противоречие.

Аналогичное противоречие получим в случаях (1470,565,180,240), (1681,784,327,399), (1922, 904,381,464), (2048,805,264,350), (2185,936,347,441), (2205,950,355,450), (2262,875,280,375), (2300, 1045,420,520), (2484,1040,373,480), (2523,962,301,407).

С помощью компьютерных вычислений с использованием алгоритма 2 (см. ниже) получим, что окрестность вершины в Г имеет параметры

(1) (1458,329,40,84) (и Г имеет массив пересечений {1458,1128,1;1,376,1458});

(2) (1521,200,1,30) (и Г имеет массив пересечений {1521,1320,1;1,330,1521}, {1521,1320,1; 1,264,1521} или {1521,1320,1;1,220,1521});

(3) (1587,488,109,168) (и Г имеет массив пересечений {1587,1098,1;1,549,1587}).

В любом случае диаметр графа Γ равен 3, и у Γ нет отличных от k целых собственных значений, противоречие с [8, с. 130]. Лемма доказана.

Лемма 5.2. Если $v' \ge 1122$, то окрестности вершин имеют параметры (1296, 185, 4, 30) и Γ имеет массив пересечений {1296, 1110, 1; 1, 185, 1296}.

Д о к а з а т е л ь с т в о. Допустим, что окрестность вершины в Г имеет параметры (1200, 545,220,270). Ввиду леммы 1.1 имеем 589 $\leq \mu \leq 650, b_1 = 654$, противоречие с тем, что $\mu \geq 2b_1/3$.

Аналогичное противоречие получим в случаях (1221,500,175,225), (1296,518,175,228), (1332, 605,244,300), (1352,525,170,225).

С помощью компьютерных вычислений (см. алгорит
м2)получим, что окрестность вершины в
 Γ имеет параметры

(1) (1122,209,16,44 (и Г имеет массив пересечений {1122,912,1;1,304,1122} или {1122,912, 1;1,228,1122});

(2) (1128,245,28,60) (и Г имеет массив пересечений {1128,882,1;1,294,1128});

(3) (1156,175,6,30) (
и Γ имеет массив пересечений {1156,980,1;1,245,1156} ил
и {1156,980,1; 1,196,1156});

(4) (1190,145,0,20) (и Г имеет массив пересечений {1190,1044,1;1,261,1190} или {1190,1044, 1;1,174,1190});

(5) (1296,185,4,30) (и Г имеет массив пересечений {1296,1110,1;1,222,1296} или {1296,1110, 1;1,185,1296});

(6) (1394,175,0,25) (и Г имеет массив пересечений {1394,1218,1;1,174,1394});

(7) (1395,410,85,135) (и Г имеет массив пересечений {1395,984,1;1,492,1395});

(8) (1444,195,2,30) (
и Γ имеет массив пересечений {1444,1248,1;1,312,1444} ил
и {1444,1248,1;1,208,1444}).

Только в случае (5) и $\mu = 185$ граф Г имеет отличное от k целое собственное значение. Лемма доказана.

Лемма 5.3. Если $800 \le v' \le 1090$, то окрестности вершин имеют параметры (961,160, 9,30) и Γ имеет массив пересечений {961,800,1;1,160,961}.

Д о к а з а т е л ь с т в о. Заметим, что средняя степень вершины в шаре радиуса 1 больше λ . Если $\lambda \ge -b_1/(\eta_2 + 1) - 1$, то по предложению 2 имеем $d(\Gamma) = 3$.

Указанное выше неравенство выполняется для любых параметров с $800 \le v' \le 1090$, перечисленных в табл. 1. Компьютерные вычисления с использованием алгоритма 2 показывают, что только массив пересечений {961, 800, 1; 1, 160, 961} является допустимым. Лемма доказана.

Лемма 5.4. Если $616 \le v' \le 784$, то окрестности вершин имеют параметры (638, 49, 0, 4) (и Г имеет массив пересечений {638, 588, 1; 1, 49, 638} или {638, 588, 71; 1, 21, 568}), или (650, 55, 0, 5) (и Г имеет массив пересечений {650, 594, 1; 1, 18, 650}), или (676, 135, 14, 30) (и Г имеет массив пересечений {676, 540, 1; 1, 135, 676}), или параметры (704, 37, 0, 2) (и Г имеет массив пересечений {704, 666, 1; 1, 37, 704} или {704, 666, 1; 1, 9, 704}).

Доказательство. Если $d(\Gamma) = 3$, то возникают только массивы пересечений из заключения леммы. Пусть $d(\Gamma) \ge 4$. Ввиду 1.2 возникают лишь параметры (638,49,0,4), (650,55,0,5), (704,37,0,2).

В случае параметров (638, 49, 0, 4) имеем $\eta_1 = 5, \eta_2 = -9$ и $-b_1/(\eta_2 + 1) - 1 = 72.5$. С помощью компьютерных вычислений, использующих результаты леммы 1.2, получены возможные значения μ и b_2 :

 $\mu = 8, \ b_2 = 2, 4, \dots, 270;$ $\mu = 11, b_2 = 11, 22, \dots, 198; \mu = 12, b_2 = 1, 2, \dots, 182;$ $\mu = 14, \ b_2 = 1, 2, \dots, 162;$ $\mu = 21, \ b_2 = 1, 2, \dots, 169;$ $\mu = 22, \ b_2 = 11, 22, \dots, 154;$ $\mu = 28, \ b_2 = 1, 2, \dots, 143;$ $\mu = 29, \ b_2 = 29, 58, 87, 116, 145;$ $\mu = 24, \ b_2 = 2, 4, \dots, 150;$ $\mu = 33, \ b_2 = 11, 22, \dots, 132; \ \mu = 42, \ b_2 = 1, 2, \dots, 125; \ \mu = 44, \ b_2 = 11, 22, \dots, 110;$ $\mu = 56, \ b_2 = 2, 4, \dots, 100; \qquad \mu = 58, \ b_2 = 29, 58, 87;$ $\mu = 49, \ b_2 = 1, 2, \dots, 108;$ $\mu = 66, b_2 = 11, 22, \dots, 88; \quad \mu = 77, b_2 = 11, 22, \dots, 66; \quad \mu = 84, b_2 = 1, 2, \dots, 65;$ $\mu = 87, \ b_2 = 29, 58;$ $\mu = 88, \ b_2 = 22, 44;$ $\mu = 98, \ b_2 = 1, 2, \dots, 50;$ $\mu = 132, \ b_2 = 11.$

В случае $\mu = 8$, если $\bar{k} = k - b_i k_i / v_i = 638 - 4683b_2 / 5322 < 72.5$, то $4683b_2 \ge 567.5 \cdot 5322$, противоречие. Значит, по предложению 2 имеем $d \le 5$. Для оставшихся значений μ оценка $d \le 5$ получается еще проще.

Пусть окрестности вершин имеют параметры (650, 55, 0, 5). Тогда $\eta_1 = 5, \eta_2 = -10$ и $-b_1/(\eta_2 + 1) - 1 = 65$.

В случае $\mu = 10$, если $\bar{k} = k - b_i k_i / v_i = 650 - 4683b_2 / 5322 < 65$, то $4683b_2 \ge 567.5 \cdot 5322$, противоречие. Значит, по по предложению 2 имеем $d \le 5$. Для оставшихся значений μ оценка $d \le 5$ получается еще проще.

Пусть окрестности вершин имеют параметры (704, 37, 0, 2). Тогда $\eta_1 = 5, \eta_2 = -7 \text{ u} - b_1/(\eta_2 + 1) - 1 = 110$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 560. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $144 \le \bar{k}$, и по предложению 2 имеем $d \le 5$.

Компьютерные вычисления (см. алгоритм 2) показывают, что в любом случае новых допустимых массивов пересечений нет. Лемма доказана.

Лемма 5.5. Если $361 \le v' \le 606$, то окрестности вершин имеют параметры (441,110, 19,30) (и Γ имеет массив пересечений {441,330,1;1,110,441}) или (495,38,1,3) (и Γ имеет массив пересечений {495,456,1;1,38,495}), или (540,77,4,12) (и Γ имеет массив пересечений {540,462,1;1,77,540}).

Доказательство. Если $d(\Gamma) = 3$, то возникают только массивы пересечений из заключения леммы.

Если $\lambda < -b_1/(\eta_2 + 1) - 1$, то возникают лишь параметры (364, 33, 2, 3), (400, 21, 2, 1), (495, 38, 1, 3), (507, 44, 1, 4).

Пусть окрестности вершин имеют параметры (364, 33, 2, 3). Тогда $\eta_1 = 5, \eta_2 = -6 \text{ u} - b_1/(\eta_2 + 1) - 1 = 330 : 5 - 1 = 65$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 240. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $124 \leq \bar{k}$, и по предложению 2 имеем $d \leq 5$.

Пусть окрестности вершин имеют параметры (495, 38, 1, 3). Тогда $\eta_1 = 5, \eta_2 = -7 \text{ u} - b_1/(\eta_2 + 1) - 1 = 456 : 6 - 1 = 75$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 288. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $307 \le \bar{k}$, и по предложению 2 имеем $d \le 5$.

Пусть окрестности вершин имеют параметры (507, 44, 1, 4). Тогда $\eta_1 = 5, \eta_2 = -8 \text{ u} - b_1/(\eta_2 + 1) - 1 = 462 : 7 - 1 = 65$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 220. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $287 \leq \bar{k}$, и по предложению 2 имеем $d \leq 5$.

Пусть окрестности вершин имеют параметры (400, 21, 2, 1). Тогда $\eta_1 = 5, \eta_2 = -4 \text{ u} - b_1/(\eta_2 + 1) - 1 = 378 : 3 - 1 = 125$. Если $b_2 \leq 275$, то для шара радиуса 2 среднее значение степени вершины не меньше 125, и по предложению 2 имеем $d \leq 5$. В случае d > 5 имеем либо $\mu = 2, b_2 = 276, 277, \ldots, 360,$ либо $\mu = 4, b_2 = 276, 278, \ldots, 324,$ либо $\mu = 6, b_2 = 276, 277, \ldots, 292$.

Компьютерные вычисления (см. алгоритм 2) показывают, что в случае $4 \le d \le 5$ допустимых массивов пересечений нет.

Пусть окрестности вершин имеют параметры (400, 21, 2, 1) и d > 5. Если Γ содержит четырехугольник, то по [8, следствие 5.2.2] имеем $d \leq 2k/(\lambda + 2)$ и $d \leq 34$. Компьютерные вычисления (см. алгоритм 2) показывают, что в этом случае допустимых массивов пересечений нет.

Значит, $\mu = 2$ и Γ — граф Тервиллигера. По [8, замечание (iii) после теоремы 5.4.1] имеем $c_3 \geq 4$. Покажем, что в случае $c_3 = 4$ имеем $b_2 \leq 36$. Пусть $c_3 = 4$, $a \in \Gamma$, $b \in \Gamma_3(a)$ и $\Delta = \Gamma_2(a) \cap [b]$. На Δ введем отношение μ -смежности, считая вершины $x, y \mu$ -смежными, если x и y смежны, и найдется вершина $u \in [a]$ такая, что $\{x, y\} \subset [u] \cap [b]$. Возьмем вершину $x \in \Delta$. По строению [x] имеется не больше двух вершин, μ -смежных с x. Причем если вершин две, то они не смежны друг с другом, и каждая из них μ -смежна с двумя вершинами. Но тогда мы получаем четырехугольник в Δ , что невозможно. Таким образом, вершина $x \mu$ -смежна ровно с одной вершиной y, и μ -подграфы $[a] \cap [x], [a] \cap [y]$ совпадают. Таким образом, если вершина $b \in \Gamma_3(a)$ смежна с вершиной $x \in \Gamma_2(a)$, то b смежна с ребром xy, лежащим в единственной максимальной 5-клике C, содержащей треугольник $\{x\} \cup ([a] \cap [x])$. В C есть ровно два ребра,

которые инцидентны с x и лежат в $\Gamma_2(a)$. С каждым из них может быть смежно не более 18 вершин из $\Gamma_3(a)$. Следовательно, $b_2 \leq 36$, и по предложению 2 имеем $d \leq 5$.

Если d > 5, то для шара радиуса 3 среднее значение степени вершины в этом шаре меньше 125, но больше $k - b_3$, поэтому $b_3 > 275$. Компьютерные вычисления (см. алгоритм 2) показывают, что в этом случае допустимых массивов пересечений нет (при этом вычисления заканчивались при $d \leq 21$). Лемма доказана.

Лемма 5.6. Если $144 \le v' \le 351$, то окрестности вершин имеют параметры (256,85, 24,30) (и Γ имеет массив пересечений {256,170,1;1,85,256}) или (288,41,4,6) (и Γ имеет массив пересечений {288,246,1;1,41,288}), или (329,40,3,5) (и Γ имеет массив пересечений {329,288,1;1,42,329}, {329,288,56,1;1,28,288,329}, {329,288,48;1,16,282} или {329,288,70,1;1,14,288,329}).

Доказательство. Если $d(\Gamma) = 3$, то возникают только массивы пересечений из заключения леммы.

Если $\lambda < -b_1/(\eta_2 + 1) - 1$, то возникают лишь параметры (162, 23, 4, 3), (329, 40, 3, 5).

Пусть окрестности вершин имеют параметры (162, 23, 4, 3). Тогда $\eta_1 = 5, \eta_2 = -4 \text{ u} - b_1/(\eta_2 + 1) - 1 = 138 : 3 - 1 = 45$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 90. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $72 \leq \bar{k}$, и по предложению 2 имеем $d \leq 5$.

Пусть окрестности вершин имеют параметры (329, 40, 3, 5). Тогда $\eta_1 = 5, \eta_2 = -7 \text{ u} - b_1/(\eta_2 + 1) - 1 = 288 : 6 - 1 = 47$. Компьютерные вычисления показывают, что максимальное значение b_2 равно 70. Так как для шара радиуса 2 среднее значение степени вершины не меньше $k - b_2$, то $259 \leq \bar{k}$, и по предложению 2 имеем $d \leq 5$.

Компьютерные вычисления (см. алгорит
м2)показывают, что в случае $4 \le d \le 5$ возникают только массивы пересе
чений из заключения леммы. Лемма доказана.

Вычисление возможных массивов пересечений графа Г осуществлялось посредством алгоритма поиска с возвратом.

Алгоритм 2. Вычисление возможных массивов пересечений графа Г

Строим последовательность $b_0, c_1, b_1, \ldots, c_i, b_i$. Составляем последовательность из известных значений параметров: $b_0 = v', c_1 = 1, b_1 = v' - k' - 1$. После этого переходим к выполнению шага 1.

- 1. Добавляем к последовательности новый элемент с начальным значением 0 в случае b_i или v' в случае c_i .
- 2. Проверяем частичную последовательность на выполнение необходимых условий существования графа. Если все условия выполняются, переходим к следующему шагу. Иначе переходим к шагу 4.
- 3. Если последний элемент не b_i или b_i ≠ 0, то переходим к шагу 1. Иначе проверяем построенную последовательность на выполнение условий допустимости массива пересечений [8, предложение 4.1.6]. Проверка того, что все числа пересечений p^m_{jl} неотрицательные целые, выполняется по формулам из [8, лемма 4.1.7]. Для проверки целочисленности кратностей собственных значений Г используется многочлен из [8, лемма 2.2.6], для которого кратности являются корнями. Если последовательность проходит проверку, то выводим ее в качестве очередного допустимого массива пересечений. Далее переходим к шагу 4.
- 4. Присваиваем следующее значение последнему элементу $(b_i$ или c_i): b_i увеличиваем, c_i уменьшаем. Если новое значение выходит за допустимые пределы (больше b_{i-1} для b_i , меньше c_{i-1} для c_i), то последовательность укорачивается на один элемент, и, если i = 1, то вычисление закончено, в противном случае (i > 1) повторяем шаг 4. Если новое значение укладывается в пределы, переходим к шагу 2.

Теперь перечислим *необходимые условия*, использованные в алгоритме. Через *d* будем обозначать диаметр графа Г.

Поскольку окрестности вершин в Γ сильно регулярны с одними и теми же параметрами (v', k', λ', μ') , нетрудно понять, что μ -подграфы в Γ регулярны степени μ' . Поэтому $c_2 > \mu'$ и $c_2\mu'$ четно.

С помощью формул из [8, лемма 4.1.7] некоторые числа p_{jl}^m можно вычислить и в случае неполного массива пересечений. Если граф существует, то p_{jl}^m — неотрицательные целые числа.

Поскольку окрестности вершин в графе Γ сильно регулярны, то при помощи границы Хоффмана [8, предложение 1.3.2] можно оценить сверху максимальный размер клики в Γ . По теореме Турана в графе Δ на *n* вершинах без r + 1-клик число ребер не превосходит $\frac{r-1}{2r}n^2$. Применяя теорему Турана к регулярному подграфу $\Gamma_i(a)$ степени $a_i = b_0 - c_i - b_i$, получаем $a_i \leq (r-1)k_i/r$, где $k_i := |\Gamma_i(a)|$, a — любая вершина из Γ . Ввиду того, что число связности сильно регулярного графа равно его степени, $a_i \geq k'$, 0 < i < d.

Неравенство Тервиллигера из [8, теорема 5.2.1] позволяет оценить сверху b_i с помощью $c_i - c_{i-1} + b_{i-1} - a_1 - 2$ в случае, когда известно, что Γ содержит четырехугольник. Из [8, следствие 5.2.2] явствует, что применение этого неравенства автоматически ограничивает диаметр Γ : $d \leq 2k/(a_1 + 2)$, где $k = b_0$. Кроме того, диаметр Γ можно оценить с помощью леммы 1.2 и предложения 2. Из [8, следствие 5.9.7] получаем, что $k_{i+1} > k_i$ для всех i < d/3.

Еще одно неравенство следует из [8, теорема 5.2.5]. Если $\lambda \leq 2\mu - 2$, то $c_i - b_{i-1} \geq c_{i-1} - b_{i-2} + 2$ для $2 \leq i \leq d$. Если сверх того $\lambda \leq \mu$, то $c_i \geq c_{i-1} + 1$ для $2 \leq i \leq d$.

Из [8, теорема 5.4.1] и последующего замечания следует, что *выполняется* одно из утверждений:

1. $c_3 \ge \frac{3}{2}\mu$; 2. $c_3 \ge \mu + b_2, \ d = 3.$

Причем, если Γ не содержит четырехугольников, то $c_3 \geq 2\mu$.

Из предложения 5.5.1 и следствия 5.5.3 [8] получаем, что $b_i + c_{i+1} > \lambda + 2$ для всех i, $2 \le i \le d-1$.

Из [8, лемма 5.5.5] получаем неравенство $a_2 \ge \mu - \lambda + 1$.

Из еще одного неравенства Тервиллигера [8, предложение 5.5.6] получаем следующее неравенство. Для 0 < i < d имеем $b_i \leq \max(k - 2c_i, (k - c_i)/2)$ и, если достигается равенство, то $b_i = c_i = k/3$.

Предложение 5.6.1 [8] можно использовать, исключая случай (iii), потому что $a_d = \lambda + 1$ и $b_{d-1} = 1$ влекут несвязность окрестности, тогда как по определению исключительный граф связен.

Из [8, теорема 4.4.3] получаем неравенства $\theta_1 \leq -1 - b_1/(\eta_2 + 1)$, $\theta_d \geq -1 - b_1/(\eta_1 + 1)$. В [8, предложение 4.1.1] дается последовательность Штурма $(w_j(x))_j$, корнями которой служат собственные значения Γ . Вычисляя значения $w_j(x)$ для правых частей неравенств и подсчитывая число смен знаков, можно определить, выполняются ли неравенства на очередном шаге алгоритма.

СПИСОК ЛИТЕРАТУРЫ

- Махнев А.А. О графах, окрестности вершин которых сильно регулярны с k = 2µ // Мат. сб. 2000. Т. 191, № 7. С. 89–104.
- 2. Махнев А.А., Падучих Д.В. Дистанционно регулярные графы, в которых окрестности вершин сильно регулярны со вторым собственным значением, не большим 3 // Докл. АН. 2015. Т. 464, № 4. С. 396–400.
- Махнев А.А., Падучих Д.В. Дистанционно регулярные графы с сильно регулярными локальными подграфами, имеющими собственное значение 4 // Мальцевские чтения: тез. докл. Новосибирск, 2016. С. 72.
- 4. Makhnev A.A. Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions // Intern. Conf. "Groups and Graphs, Algorithms and Automata": Abstr. Yekaterinburg, 2015. P. 68.

- 5. Гутнова А.К., Махнев А.А. Расширения псевдогеометрических графов для *pG*_{s-5}(*s*, *t*). Владикавказ. мат. журн. 2016. Т. 18, № 3. С. 35–42.
- 6. Brouwer A.E., Haemers W.H. Spectra of graphs N. Y.: Springer, 2012. 250 p.
- Koolen J.H., Park J. Distance-regular graphs with a₁ or c₂ at least half the valency // J. Comb. Theory. Ser. A 2012. Vol. 119, no. 3. P. 546–555.
- Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin: Springer-Verlag, 1989. 495 p.
- Blokhuis A., Brouwer A.E. Locally 4-by-4 grid graphs // J. Graph Theory. 1989. Vol. 13, no. 3. P. 229–244.
- 10. Neumaier A. Strongly regular graphs with smallest eigenvalue -m // Arch. Math. 1979. Vol. 33, no. 1. P. 392–400.
- 11. Гаврилюк А.Л., Махнев А.А. О дистанционно регулярных графах, в которых окрестности вершин изоморфны графу Хофмана Синглтона // Докл. АН. 2009. Т. 428, № 2. С. 157–160.

Махнев Александр Алексеевич

д-р физ.-мат. наук, член-корр. РАН

Поступила 18.08.2016

зав. отделом

Институт математики и механики им. Н. Н. Красовского УрО РАН,

Уральский федеральный университет

e-mail: makhnev@imm.uran.ru

Падучих Дмитрий Викторович

д-р физ.-мат. наук, вед. науч. сотрудник

Институт математики и механики им. Н. Н. Красовского УрО РАН

e-mail: dpaduchikh@gmail.com

REFERENCES

- 1. Makhnev A.A. On graphs the neighbourhoods of whose vertices are strongly regular with $k = 2\mu$. Math. Sb., 2000, vol. 191, no. 7, pp. 1033–1048.
- Makhnev A. A., Paduchikh D.V. Distance-regular graphs in which neighborhoods of vertices are strongly regular with nonprincipal eigenvalue not greater than 3. *Dokl. Akad. Nauk.*, 2015, vol. 464, no. 4, pp. 396– 400 (in Russian).
- 3. Makhnev A. A., Paduchikh D.V. Distance-regular graphs with strongly regular local subgraphs having eigenvalue 4. *Mal'tsev Readings: Abstr.*, Novosibirsk, 2016, p. 72 (in Russian).
- 4. Makhnev A.A. Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions. *Intern. Conf.* "Groups and Graphs, Algorithms and Automata": Abstr., Yekaterinburg, 2015, p. 68.
- 5. Gutnova A.K., Makhnev A.A. Extensions of pseudo-geometric graphs for $pG_{s-5}(s,t)$. Vladikavkaz. Mat. Zhurn., 2016, vol. 18, no. 3, pp. 35–42 (in Russian).
- 6. Brouwer A.E., Haemers W.H. Spectra of graphs. New York: Springer, 2012, 250 p.
- Koolen J.H., Park J. Distance-regular graphs with a₁ or c₂ at least half the valency. J. Comb. Theory., Ser. A, 2012, vol. 119, no. 3, pp. 546–555.
- 8. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin: Springer-Verlag, 1989, 495 p.
- 9. Blokhuis A., Brouwer A.E. Locally 4-by-4 grid graphs. J. Graph Theory, 1989, vol. 13, no. 3. P. 229-244.
- 10. Neumaier A. Strongly regular graphs with smallest eigenvalue -m. Arch. Math., 1979, vol. 33, no. 1, pp. 392–400.
- 11. Gavrilyuk A.L., Makhnev A.A. On distance-regular graphs Graphs in which neighborhoods of vertices are isomorphic to the Hoffman–Singleton graph. *Dokl. Akad. Nauk.*, 2009, vol. 428, no. 2, pp. 157–160. (in Russian).

A.A. Makhnev, Dr. Phys.-Math. Sci, RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia; Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: makhnev@imm.uran.ru

D. V. Paduchikh, Dr. Phys.-Math. Sci, Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: dpaduchikh@gmail.com.