Tom 22 № 3

УДК 517.17

О ЛОКАЛЬНОМ СТРОЕНИИ ДИСТАНЦИОННО РЕГУЛЯРНЫХ ГРАФОВ МЭТОНА 1

Л. Ю. Циовкина

В настоящей работе исследуется строение локальных подграфов в дистанционно регулярных графах Мэтона четной степени. Описаны некоторые бесконечные серии локально Δ -графов данного семейства, где Δ — сильно регулярный граф, являющийся объединением аффинно полярных графов типа "—", псевдогеометрический граф для $pG_l(s,l)$ или граф ранга 3, реализумый с помощью конструкции Ван-Линта — Шрайвера. Показана характеризуемость некоторых графов Мэтона своими массивами пересечений в классе вершинно-транзитивных графов.

Ключевые слова: реберно симметричный граф, дистанционно регулярный граф, антиподальное накрытие, граф Мэтона, (локально) сильно регулярный граф, автоморфизм.

L. Yu. Tsiovkina. On the local structure of distance-regular Mathon graphs.

We study the structure of local subgraphs of distance-regular Mathon graphs of even valency. We describe some infinite series of locally Δ -graphs of this family, where Δ is a strongly regular graph that is the union of affine polar graphs of type "-," a pseudogeometric graph for $pG_l(s,l)$, or a graph of rank 3 realizable by means of the van Lint-Schrijver scheme. We show that some Mathon graphs are characterizable by their intersection arrays in the class of vertex transitive graphs.

Keywords: arc-transitive graph, distance-regular graph, antipodal cover, Mathon graph, (locally) strongly regular graph, automorphism.

MSC: 05E18, 05E30

DOI: 10.21538/0134-4889-2016-22-3-293-298

1. Введение

В связи с изучением дистанционно регулярных графов, в которых окрестности вершин сильно регулярны с неглавным собственным значением, не превосходящим 3, возникла задача описания локального строения графов из класса реберно симметричных антиподальных дистанционно регулярных накрытий полных графов с $a_1=c_2$. Описание и конструкции таких накрытий были получены в [1;10]. В [3] приведены примеры локально сильно регулярных графов степени, не большей 1000, из указанного класса накрытий и показано, что такие графы изоморфны некоторым графам Мэтона. В настоящей работе мы найдем несколько бесконечных серий локально Δ -графов из семейства графов Мэтона четной степени (в том числе, содержащих ряд вышеупомянутых примеров), где Δ — сильно регулярный граф, являющийся объединением графов, изоморфных графу $VO^-(4,2^{t/2})$, псевдогеометрический граф для сети $pG_t(s,t)$ или граф ранга 3, реализумый с помощью конструкции Ван-Линта — Шрайвера. Кроме того, мы установим характеризуемость некоторых графов Мэтона в классе вершиннотранзитивных графов.

Основным результатом настоящей работы является следующая теорема.

Теорема. Пусть $q=2^{2t}>2$ и r>1 делит q-1. Пусть $\mathrm{M}(q,r)$ — граф Мэтона c массивом пересечений $\{q,(r-1)(q-1)/r,1;1,(q-1)/r,q\}$ и Δ — локальный подграф графа $\mathrm{M}(q,r)$. Тогда Δ — реберно симметричный граф и справедливы следующие утверждения.

(1) Если r делит $2^t + 1$, то либо

¹Работа выполнена за счет гранта Российского научного фонда (проект 14-11-00061).

- (i) $r=2^t+1$ и Δ объединение 2^t изолированных 2^t -клик, либо
- $(ii)\ r<2^t+1\ u\ \Delta$ сильно регулярный граф с параметрами $(2^{2t},(2^t+1)(2^t-1)/r,((2^t+1)/r-1)(2^t+1)/r-2)+2^t-2,(2^t+1)/r((2^t+1)/r-1)).$
 - (2) Если t четно $u \ r \ \partial$ елит $2^{t/2} + 1$, то либо
- $(i)\ r=2^{t/2}+1\ u\ \Delta-c$ ильно регулярный граф с параметрами $(2^{2t},(2^{t/2}-1)(2^t+1),2^{t/2}-2,2^{t/2}(2^{t/2}-1)),$ изоморфный аффинно полярному графу ${\rm VO}^-(4,2^{t/2}),$ либо
- $(ii)\ r<2^{t/2}+1\ u\ \Delta$ сильно регулярный граф с параметрами $(2^{2t},z(2^{t/2}-1)(2^t+1),z(2^{t/2}-1)(3+z(2^{t/2}-1))-2^t,z(2^{t/2}-1)(1+z(2^{t/2}-1))),$ являющийся объединением $z=(2^{t/2}+1)/r$ графов, изоморфных аффинно полярному графу $\mathrm{VO}^-(4,2^{t/2}).$
- (3) Если r простой делитель числа q-1, 2 это примитивный элемент по модулю r и (r-1) делит 2t, то Δ сильно регулярный граф (ранга 3) c параметрами $(2^{2t}, (2^{2t}-1)/r, (2^{2t}-3r+1+\epsilon(r-1)(r-2)2^t)/r^2, (2^{2t}-r+1-\epsilon(r-2)2^t)/r^2)$, где $\epsilon=(-1)^{2t/(r-1)+1}$, реализуемый c помощью конструкции Ван-Линта Шрайвера.

2. Терминология и вспомогательные результаты

Всюду в данной работе, если не оговорено иное, под термином «граф» мы будем понимать неориентированный граф без петель и кратных ребер. Для вершины a графа Γ через $\Gamma_i(a)$ обозначим i-окрестность вершини a, т.е. подграф, индуцированный Γ на множестве всех вершин, находящихся на расстоянии i от a. Локальным подграфом графа Γ будем называть граф $\Gamma_1(x)$ для некоторой вершины x графа Γ . Пусть \mathcal{F} — некоторый класс графов. Если каждый локальный подграф графа Γ принадлежит \mathcal{F} , то говорят, что Γ является локально \mathcal{F} графом. В частности, если для некоторого графа Δ каждый граф из \mathcal{F} изоморфен Δ , то Γ называется локально Δ -графом. Если граф Γ фиксирован, то также будем использовать обозначение $[a] = \Gamma_1(a)$. Через $V(\Gamma)$ мы будем обозначать множество вершин графа Γ .

Степенью вершины называется число вершин в ее окрестности. Граф Γ называется регулярным степень k, если степень любой вершины из Γ равна k. Граф Γ называется сильно регулярным с параметрами (v,k,λ,μ) , если он содержит v вершин, регулярен степени k и для любых двух вершин a и b графа Γ число вершин в $[a] \cap [b]$ равно λ , если вершины a, b смежны, и равно μ , если вершины a и b несмежны.

Если вершины x,y находятся на расстоянии i в Γ , то через $b_i(x,y)$ (через $c_i(x,y)$) обозначим число вершин в пересечении $\Gamma_{i+1}(x)$ ($\Gamma_{i-1}(x)$) с [y]. Граф Γ диаметра d называется dистанционно регулярным c массивом пересечений $\{b_0,b_1,\ldots,b_{d-1};c_1,\ldots,c_d\}$, если значения $b_i=b_i(x,y)$ и $c_i=c_i(x,y)$ не зависят от выбора вершин x,y на расстоянии i в Γ для любого $i=0,\ldots,d$ (полагается, что $b_d=c_0=0$).

Граф называется *реберно симметричным*, если его группа автоморфизмов действует транзитивно на множестве всех упорядоченных пар смежных вершин.

Пусть V — это векторное пространство размерности 2 над конечным полем F порядка q с невырожденной симплектической формой f. Пусть K — подгруппа мультипликативной группы F^* поля F индекса r>1, делящего число (q-1)/(q-1,2), и $b\in F^*$. Графом Мэтона называется граф, множеством вершин которого являются K-орбиты на множестве векторов пространства V, и две вершины Ku и Kv которого смежны тогда и только тогда, когда $f(u,v)\in bK$. Граф Мэтона является антиподальным дистанционно регулярным графом с массивом пересечений $\{q,(r-1)(q-1)/r,1;1,(q-1)/r,q\}$, и не зависит (с точностью до изоморфизма) от выбора элемента b (см. [4, предложение [2.5.3]). Граф Мэтона для заданных параметров q и r будем обозначать через M(q,r). Нетрудно понять, что M(q,r) допускает транзитивную на дугах группу автоморфизмов, изоморфную группе $L_2(q)$.

Приведем ниже некоторые известные сведения о реберно симметричных графах и свойствах группы $L_2(q)$ четной характеристики, которые далее нам понадобятся для доказательства теоремы.

Предложение 1 (см., например, [5, лемма 2.7]). Пусть даны неинвариантная подгруппа H группы G и элемент $g \in G - H$. Через $\Gamma = \Gamma(G, H, HgH)$ обозначим граф (возможно, ориентированный) со множеством вершин $V(\Gamma) = \{Hx \mid x \in G\}$, ребрами которого являются пары (Hx, Hy) такие, что $xy^{-1} \in HgH$. Тогда справедливы следующие утверждения.

- (1) Если G действует точно на $V(\Gamma)$, $g^2 \in H$ и $G = \langle H, g \rangle$, то Γ связный граф, $G \leq \operatorname{Aut}(\Gamma)$ и G действует точно и транзитивно и на вершинах, и на дугах графа Γ .
- (2) Если G действует транзитивно на дугах связного графа X, H стабилизатор вершины x графа X, $g \in G$ это некоторый 2-элемент, переставляющий две смежные вершины x и x^g графа X, то $X \simeq \Gamma(G, H, HgH)$, $g^2 \in H$ и $G = \langle H, g \rangle$.

Предложение 2 (см., например, [9; 6]). Пусть $G = L_2(q)$, где $q = 2^e > 2$, S - силовская 2-подгруппа группы G, $M = N_G(S)$ и g - некоторая инволюция из <math>G - S. Тогда выполняются следующие утверждения.

- (1) $G = \langle S, g \rangle$ и M = S : K, причем $K = M \cap M^g \simeq Z_{q-1}$ и $K \langle g \rangle \simeq D_{2(q-1)}$.
- (2) $S \cap M^g = 1$ u |S| = |Z(S)| = q.
- (3) $G = M \cup MgS$ и каждый элемент из G M представим единственным образом в виде xqy, где $x \in M$ и $y \in S$.
- (4) G содержит единственный класс инволюций и $C_G(a) = S$ для любой инволюции $a \in S$.
- (5) Для всех $t \in \{1, 2, ..., e\}$ и для всех делителей m числа $2^{(e,t)} 1$ группа G содержит подгруппу $E_{2^t}: Z_m$.

3. Доказательство теоремы

Пусть $G=L_2(q)$, где $q=2^{2t}>2$, $S\in Syl_2(G)$, $M=N_G(S)$, H – подгруппа из M нечетного индекса r>1 и g — это инволюция из G-S. Положим $M\cap M^g=\langle h\rangle$. Тогда $H=S\langle h^r\rangle$. Положим $\Gamma=\Gamma(G,H,HgH)$. Ввиду предложений 1 и 2 ясно, что $\Gamma\simeq \mathrm{M}(q,r)$. Пусть далее Δ — локальный подграф графа Γ и x — инволюция из S такая, что $x^g=g^x$. Через $\mathrm{Cay}(S,C)$ будем обозначать граф Кэли группы S по системе образующих $C\subseteq S-\{1\}$, т. е. граф на множестве элементов группы S, в котором две вершины s_1,s_2 смежны, если и только если $s_1s_2^{-1}\in C$.

Лемма 1. Δ — реберно симметричный граф степени (q-1)/r. В частности, если граф Δ связен, то $\Delta \simeq \Gamma(H, \langle h^r \rangle, \langle h^r \rangle x \langle h^r \rangle) \simeq \operatorname{Cay}(S, x^{\langle h^r \rangle})$.

Д о к а з а т е л ь с т в о. Пусть Δ — окрестность вершины H в Γ . Тогда $V(\Delta) = \{Hgs \mid s \in S\} = \{Hg\} \cup \{Hgx^{h^j} \mid j \in \{1,\dots,q-1\}\}$. Стабилизатор вершины Hg в H совпадает с $\langle h^r \rangle$ и на $V(\Delta) - \{Hg\}$ имеется в точности $r \langle h^r \rangle$ -орбит. Кроме того, степень вершины в Δ равна $(q-1)/r = |h^r|$. Отсюда Δ — реберно симметричный граф. В частности, если граф Δ связен, то по предложению 1 имеем $\Delta \simeq \Gamma(H, \langle h^r \rangle, \langle h^r \rangle x \langle h^r \rangle)$, а поскольку вершины $\langle h^r \rangle x^{h^i}$ и $\langle h^r \rangle x^{h^j}$ смежны в графе $\Gamma(H, \langle h^r \rangle, \langle h^r \rangle x \langle h^r \rangle)$ для некоторых $i, j \in \{1, \dots, q-1\}$ тогда и только тогда, когда $x^{h^i} x^{h^j} \in x^{\langle h^r \rangle}$, то $\Gamma(H, \langle h^r \rangle, \langle h^r \rangle x \langle h^r \rangle) \simeq \operatorname{Cay}(S, x^{\langle h^r \rangle})$.

Напомним, что $(m,k;\lambda)$ -сетью называется система инцидентности, состоящая из точек и блоков, множество блоков которой можно разбить на k параллельных классов размера m таким образом, что выполнены следующие условия:

- (N1) каждая точка инцидентна ровно k блокам, причем в точности одному из каждого параллельного класса,
- (N2) любые два блока из разных параллельных классов инцидентны в точности λ общим точкам.

Хорошо известно (см., например, обзор [2]), что (m, k; 1)-сеть является α -частичной геометрией порядка (s, t), где $\alpha = l = k - 1$ и s = m - 1, а точечный граф (или граф коллинеарности)

частичной геометрии $pG_{\alpha}(s,l)$, т. е. граф, множеством вершин которого являются точки геометрии $pG_{\alpha}(s,l)$ и две вершины x,y которого смежны тогда и только тогда, когда точки x,y лежат на одной и той же прямой, сильно регулярен с параметрами $((s+1)(1+sl/\alpha),s(l+1),(s-1)+(\alpha-1)l,\alpha(l+1))$. Сильно регулярный граф с такими параметрами для некоторых натуральных чисел α,s,l называется nceedoreomempuческим графом для $pG_{\alpha}(s,l)$.

Лемма 2. Если r делит 2^t+1 , то либо (i) $r=2^t+1$ и Δ — объединение 2^t изолированных 2^t -клик, либо (ii) $r<2^t+1$ и Δ — сильно регулярный граф c параметрами $(2^{2t},k(2^t-1),(k-1)(k-2)+2^t-2,k(k-1))$, где $k=(2^t+1)/r$.

Доказательство. Пусть r делит 2^t+1 . Положим $f=h^{2^t+1}$ и $w=h^{(2^t-1)r}$. Тогда $\langle h^r \rangle = \langle w \rangle \times \langle f \rangle$. Ввиду утверждения (5) предложения 2 в S имеется подгруппа X порядка 2^t такая, что $X^f=X$. Кроме того, $X^{hf}=X^h$ и $\langle f \rangle$ имеет ровно 2^t+1 орбит на $S-\{1\}$, поэтому $\langle f \rangle$ нормализует ровно 2^t+1 подгрупп порядка 2^t из S. Заметим, что если $r=2^t+1$, то Δ является объединением 2^t изолированных 2^t -клик. Поэтому далее будем считать, что r строго делит 2^t+1 . Тогда $V(\Delta)$ допускает разбиение на 2^t X-орбит, каждая из которых является 2^t -кликой, а ввиду того что $\langle f \rangle$ фиксирует X-орбиту на $V(\Delta)$, содержащую вершину Hg, и переставляет циклически остальные X-орбиты, получим, что Δ — связный граф.

Докажем, что Δ является псевдогеометрическим графом для сети $pG_{k-1}(2^t,k-1)$. Для этого рассмотрим следующую систему инцидентности D на S. Точки системы D — это элементы группы S. Далее определим множество блоков системы D как множество X^{w^i} -орбит на S для всех $i \in \{1,\ldots,(2^t+1)/r\}$. Для $i \in \{1,\ldots,(2^t+1)/r\}$ через \mathcal{B}_i обозначим множество X^{w^i} -орбит на S. Тогда множество $\{\mathcal{B}_i\}_{i=1}^{(2^t+1)/r}$ формирует разбиение множества всех блоков системы D на $(2^t+1)/r$ параллельных классов, $|\mathcal{B}_i|=2^t$ и $S\langle f\rangle$ действует 2-транзитивно на \mathcal{B}_i . Покажем, что D является $(2^t,(2^t+1)/r;1)$ -сетью.

По построению точка $\{1\}$ инцидентна $(2^t+1)/r$ блокам, причем ровно одному блоку из каждого параллельного класса. Ввиду транзитивности действия H на S получим, что каждая точка из D инцидентна ровно $(2^t+1)/r$ блокам.

Покажем теперь, что любые два блока из разных параллельных классов инцидентны ровно одной общей точке. Предположим, что это не так и найдутся такие элементы $y_1, y_2 \in S, y_1 \neq y_2$, что $y_1, y_2 \in B_i \cap B_j$ для некоторых блоков $B_i \in \mathcal{B}_i, B_j \in \mathcal{B}_j$. Тогда $1, y_2y_1^{-1} \in (B_i \cap B_j)y_1^{-1} = B_iy_1^{-1} \cap B_jy_1^{-1}$ и $y_2y_1^{-1} \in X^{w^i} \cap X^{w^j}$. Но тогда $y_1 = y_2$, противоречие. Отсюда D — это $(2^t, (2^t+1)/r; 1)$ -сеть. Ясно, что граф коллинеарности построенной сети D изоморфен графу $\operatorname{Cay}(S, x^{\langle h^r \rangle})$. Значит ввиду леммы 1 Δ является сильно регулярным графом с параметрами $(m^2, k(m-1), (k-1)(k-2) + m-2, k(k-1))$, где $m = 2^t$ и $k = (2^t+1)/r$.

Утверждение (1) теоремы доказано.

Пусть V — векторное пространство размерности n над конечным полем порядка q с невырожденной квадратичной формой Q. Напомним, что $a\phi\phi$ инно полярный $spa\phi$ — это граф на множестве векторов пространства V, вершины x и y которого смежны тогда и только тогда, когда Q(x-y)=0 и $x\neq y$. Этот граф обозначается через $\mathrm{VO}^+(n,q), \mathrm{VO}^-(n,q)$ или $\mathrm{VO}(n,q)$ в случаях, если форма Q гиперболическая, эллиптическая или параболическая соответственно. Известно, что если число n четно, то граф $\mathrm{VO}^\pm(n,q)$ сильно регулярен с параметрами $(q^n, (q^{n/2-1}\pm 1)(q^{n/2}\mp 1), q(q^{n/2-2}\pm 1)(q^{n/2-1}\mp 1)+q-2, q^{n/2-1}(q^{n/2-1}\pm 1)),$ в противном случае аффинно полярный граф не является сильно регулярным.

Лемма 3. Если t четно $u \ r$ делит $2^{t/2} + 1$, то либо

- (i) $r=2^{t/2}+1$ и $\Delta-$ сильно регулярный граф c параметрами $(2^{2t},(2^{t/2}-1)(2^t+1),2^{t/2}-2,2^{t/2}(2^{t/2}-1)),$ либо
- (ii) $r < 2^{t/2} + 1$ и Δ сильно регулярный граф c параметрами $(2^{2t}, z(2^{t/2} 1)(2^t + 1), z(2^{t/2} 1)(3 + z(2^{t/2} 1)) 2^t, z(2^{t/2} 1)(1 + z(2^{t/2} 1)))$, где $z = (2^{t/2} + 1)/r$.

Доказательство. Пусть t четно и $r=2^{t/2}+1$. Положим $u=h^{2^t-1}$ и $y=h^{(2^t+1)(2^{t/2}+1)}$. Тогда $\langle h^r \rangle = \langle u \rangle \times \langle y \rangle$. Покажем, что граф Δ изоморфен аффиню полярному

графу VO $^-(4,2^{t/2})$. Для этого введем на S структуру векторного пространства размерности 4 над полем из $2^{t/2}$ элементов. Определим бинарные операции + на S и \cdot на $S-\{1\}$ по правилам: $s_1+s_2=s_1s_2$ для всех $s_1,s_2\in S$, и $s_1\cdot s_2=x^{h_1h_2}$ для всех $s_1,s_2\in S-\{1\}$, где элементы $h_1,h_2\in \langle h\rangle$ такие, что $s_i=x^{h_i},\ i=1,2$. Тогда $F=(S,+,\cdot)$ образует поле порядка 2^{2t} . Пусть X — подгруппа из S порядка $2^{t/2}$, нормализуемая элементом y. Можно считать, что $x\in X$. Тогда $\tilde{X}=(X,+,\cdot)$ образует подполе порядка $2^{t/2}$ поля \tilde{S} и \tilde{S} можно рассматривать как векторное пространство размерности A над A0, сопоставляя элементам A1, A2, A3, A4, A5, A5, A5, A6, A7, A8, A8, A9, A

Положим $w=h^{2^t+1}$ и $z=h^{(2^t+1)(2^{t/2}-1)}$. Тогда $\langle w \rangle$ нормализует ровно 2^t+1 подгрупп порядка 2^t из S. Пусть A_1,A_2 — две такие подгруппы, причем $A_1^u=A_2$ и $x\in A_1$. Тогда $A_i=\{1\}\cup v_i^{\langle w \rangle}$, где i=1,2, для $v_1=x$ и некоторого $v_2\in S$, $A_1\cap A_2=1$, $A_1\times A_2=S$, и $v_2\in x^{\langle u \rangle}$. Поэтому $\tilde{S}=\tilde{A}_1\oplus \tilde{A}_2$ — прямая сумма двух подпространств, \tilde{A}_1 и \tilde{A}_2 , размерности 2, соответствущих группам A_1,A_2 . Пусть u_1,u_2 — два линейно независимых вектора из $\tilde{S},u_i\in \tilde{A}_i,u_i\neq v_i$. Пусть $P=\langle v_1,v_2\rangle$ — это пространство, порожденное векторами v_1,v_2 , и $W=\langle u_1,u_2\rangle$ — пространство, порожденное векторами u_1,u_2 . Тогда $\tilde{S}=P\oplus W$.

Пусть $b^2+b+\alpha$ — некоторый неприводимый многочлен над \tilde{X} . Зададим на \tilde{S} невырожденную квадратичную форму Q, полагая $Q(v_i)=0$, $Q(u_1)=1$, $Q(u_2)=\alpha$, $f_Q(v_1,v_2)=f_Q(u_1,u_2)=1$, $f_Q(v_i,u_j)=0$ для всех $i,j\in\{1,2\}$, где f_Q — поляризация квадратичной формы Q. Тогда для произвольного вектора $v=\gamma_1v_1+\gamma_2v_2+\delta_1u_1+\delta_2u_2\in \tilde{S}$ имеем $Q(v)=\gamma_1\gamma_2+\delta_1^2+\delta_1\delta_2+\alpha\delta_2^2$. Через Φ обозначим аффинно полярный граф на \tilde{S} относительно квадратичной формы Q. По определению вершины y_1,y_2 графа Φ смежны, если и только если $Q(y_1+y_2)=0$ и $y_1\neq y_2$. Очевидно, что действие ρ группы S на \tilde{S} трансляциями определяет регулярную на $V(\Phi)$ группу автоморфизмов $\rho(S)$ графа Φ , а действие ϕ группы $\langle y \rangle$ на \tilde{S} по правилу $\phi(y):s\mapsto s^y$ задает группу автоморфизмов $\phi(\langle y \rangle)$ графа Φ , фиксирующую нулевой вектор и полурегулярную на его окрестности.

Группа $O^-(\tilde{S},Q)$ изометрий пространства (\tilde{S},Q) действует транзитивно на множестве ненулевых сингулярных векторов и содержит простую подгруппу $(O^-(\tilde{S},Q))^{(1)} = \Omega^-(\tilde{S},Q)$ индекса 2. Ясно, что любая изометрия пространства (\tilde{S},Q) централизует $\phi(\langle y \rangle)$ и нормализует $\rho(S)$.

Ввиду изоморфизма $\Omega_4^-(2^{t/2}) \simeq L_2(2^t)$ (см., например, [7, предложение 2.9.1 (v)]) получим, что $\langle u \rangle$ изоморфно вкладывается в группу $\Omega^-(\tilde{S},Q)$. Пусть ψ — данное вложение. Тогда группа $\psi(\langle u \rangle)$ действует регулярно на множестве одномерных сингулярных подпространств пространства (\tilde{S},Q) . Таким образом, $\psi(\langle u \rangle)$ действует транзитивно на 2^t+1 изолированных $(2^{t/2}-1)$ -кликах из окрестности нулевого вектора в Φ . Теперь по предложению 1 получим, что $\Phi \simeq \Gamma(H,\langle h^r \rangle,\langle h^r \rangle x \langle h^r \rangle) \simeq \Delta$.

Пусть теперь r — собственный делитель числа $m=2^{t/2}+1$. Применим рассуждения из [8, с. 67], отождествляя, как и выше, группу S с полем порядка 2^{2t} . Для каждого $j\in\{1,2,\ldots,m\}$ положим $\Gamma_j=\mathrm{Cay}(S,(x^{h^j})^{\langle h^m\rangle})$. Пусть $J\subset\{1,2,\ldots,m\}$ и Γ_J — граф на множестве элементов группы S, в котором вершины s_1 и s_2 смежны тогда и только тогда, когда s_1 и s_2 смежны в графе Γ_j для некоторого $j\in J$. Тогда матрица смежности графа Γ_J имеет три различных собственных значения: z(q-1)/m, $z(2^{t/2}-1)$, $z(2^{t/2}-1)-2^t$, где z=|J|. Значит, Γ_J — сильно регулярный граф с параметрами из п. (ii) заключения. Заметим, что если J состоит в точности из чисел, кратных r и не превосходящих m, то $\Gamma_J=\mathrm{Cay}(S,x^{\langle h^z\rangle})\simeq \Delta$, где z=m/r.

Утверждение (2) теоремы доказано.

Лемма 4. Если r — простой делитель числа q-1, 2 — это примитивный элемент по модулю r и (r-1) делит 2t, то Δ — сильно регулярный граф (ранга 3) c параметрами $(2^{2t},(2^{2t}-1)/r,(2^{2t}-3r+1+\epsilon(r-1)(r-2)2^t)/r^2,(2^{2t}-r+1-\epsilon(r-2)2^t)/r^2)$, где $\epsilon=(-1)^{2t/(r-1)+1}$, реализуемый c помощью конструкции Bан-Линта — Шрайвера.

Доказательство. Эта лемма является следствием теоремы 4 из [8]. \Box

Теорема доказана.

Покажем теперь, что некоторые графы Мэтона характеризуются своими массивами пересечений в классе вершинно-транзитивных графов.

Предложение 3. Пусть Γ — вершинно-транзитивный дистанционно-регулярный граф с массивом пересечений $\{n-1,(r-1)c_2,1;1,c_2,n-1\}$ и $n=rc_2+2$ — простое число Ферма. Если число r — простое, то $\Gamma \simeq \mathrm{M}(n-1,r)$.

Д о к а з а т е л ь с т в о. Пусть G — вершинно-транзитивная группа автоморфизмов графа Γ и ϕ — действие, индуцированное группой G на множестве Σ антиподальных классов графа Γ . Так как (r,n)=1, то ввиду [5, теорема 2.5] действие ϕ точное и $\phi(G)\simeq G$. Пусть группа G неразрешима. Тогда по теореме Бернсайда получим, что $\phi(G)$ это 2-транзитивная группа подстановок на Σ . По условию (r,n-1)=1, поэтому Γ — реберно симметричный граф. Теперь исходя из [1] $\Gamma\simeq \mathrm{M}(n-1,r)$.

Если же группа G разрешима, то стабилизатор любых двух антиподальных классов в G тривиален, противоречие с тем, что для $F \in \Sigma$ группа $G_{\{F\}}$ содержит элемент порядка r. \square

П р и м е р ы. Пусть $\Gamma=\mathrm{M}(n-1,r)$ и число r — простое. При n=5 граф Γ изоморфен графу прямых графа Петерсена. При n=17 имеем r=3 и Γ — локально свернутый 5-куб или r=5 и Γ — локально $4\times K_4$ -граф. Если n=257, то либо r=3 и Γ — локально граф Ван-Линта — Шрайвера с параметрами (256, 85, 24, 30), либо r=5 и Γ — локально $\mathrm{VO}^-(4,4)$ -граф, либо r=17 и Γ — локально $16\times K_{16}$ -граф. Если n=65537, то либо r равно 3 или 5 и Γ — локально граф Ван-Линта — Шрайвера с параметрами ($2^{16},21845,7224,7310$) или ($2^{16},13107,2498,2652$) соответственно, либо r=17 и Γ — локально $\mathrm{VO}^-(4,16)$ -граф, либо r=257 и Γ — локально $2^8\times K_{28}$ -граф.

СПИСОК ЛИТЕРАТУРЫ

- 1. Махнев А.А., Падучих Д.В., Циовкина Л.Ю. Реберно симметричные дистанционно регулярные накрытия клик с $\lambda = \mu$ // Тр. Ин-та математики и механики УрО РАН. 2013. Т. 19, № 2. С. 237–246.
- 2. **Махнев А.А.** Частичные геометрии и их расширения // Успехи мат. наук. 1999. Т. 54, № 5(329). С. 25–76.
- 3. **Махнев А.А., Самойленко М.С.** О дистанционно регулярных накрытиях клик с сильно регулярными окрестностями вершин // Совр. пробл. матем. и ее прил.: сб. тр. 46-й Междунар. мол. шк.-конф. / ИММ УрО РАН. Екатеринбург, 2015. С. 13–18.
- 4. Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin etc: Springer-Verlag, 1989. 494 p.
- 5. Godsil C.D., Liebler R.A., Praeger C.E. Antipodal distance transitive covers of complete graphs // Europ. J. Comb. 1998. Vol. 19, no. 4. P. 455–478.
- 6. **Dickson L.E.** Linear groups: with an exposition of the Galois field theory. N. Y.: Dover Publications, 1958
- 7. **Kleidman P.B., Liebeck W.M.** The subgroup structure of the finite classical groups. Cambridge: Cambr. Univ. Press. 1990. 304 p. (London Math. Soc. Lect. Notes Texts; vol. 129.)
- 8. Shrijver A., van Lint J.H. Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields // Combinatorica. 1981. Vol. 1. P. 63–73.
- 9. Suzuki M. On a class of doubly transitive groups // Ann. of Math. (2). 1962. Vol. 75, no. 1. P. 105–145.
- 10. **Tsiovkina L.Yu.** Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with $\lambda = \mu$ related to groups Sz(q) and $^2G_2(q)$ // J. Algebr. Comb. 2015. Vol. 41. P. 1079–1087.

Циовкина Людмила Юрьевна

Поступила 05.08.2015

канд. физ.-мат. наук

науч. сотрудник

Институт математики и механики им. Н. Н. Красовского УрО РАН e-mail: l.tsiovkina@gmail.com