Tom 22 № 3

УДК 512.54

КОНЕЧНЫЕ ГРУППЫ, ВСЕ МАКСИМАЛЬНЫЕ ПОДГРУППЫ КОТОРЫХ π -ЗАМКНУТЫ. II 1

В. А. Белоногов

Продолжается изучение пар (G,π) , где G — конечная простая неабелева группа и π — множество простых чисел такие, что G имеет лишь π -замкнутые максимальные подгруппы, хотя сама не является π -замкнутой. В статье (с учётом результатов первой статьи этой серии) указан список таких пар (G,π) в случае, когда G отлична от групп $PSL_r(q)$ и $PSU_r(q)$ при простом нечётном r и групп $E_8(q)$ (всюду q — степень простого числа).

Ключевые слова: конечная группа, простая группа, π -замкнутая группа, максимальная подгруппа.

V. A. Belonogov. Finite simple groups in which all maximal subgroups are π -closed. II.

We continue the study of pairs (G, π) , where G is a finite simple nonabelian group and π a set of primes, such that G has only π -closed maximal subgroups but is not π -closed itself. Using the results of the first paper from the series, we give a list of such pairs (G, π) in the case when G is different from the groups $PSL_r(q)$ and $PSU_r(q)$ with prime odd r and $E_8(q)$, where q is a prime power.

Keywords: finite group, simple group, π -closed group, maximal subgroup.

MSC: 20D06,20D08, 20E28

DOI: 10.21538/0134-4889-2016-22-3-12-22

Введение

Всюду далее G есть конечная группа и π — подмножество из $\pi(G)$. Скажем, что na- $pa~(G,\pi)$ имеет свойство (*), если группа G не π -замкнута, а все её максимальные подгруппы π -замкнуты, т. е. если G есть минимальная не π -замкнутая группа.

Прежде всего отметим следующий результат, практически сводящий изучение таких пар к случаю простых неабелевых групп G. Напомним, что $\mathit{cpynna}\ \mathit{Шмu}\partial\mathit{ma}$ есть конечная ненильпотентная группа, все собственные подгруппы которой нильпотентны.

Предложение 1 [1, теорема 1']. Для любых G и π со свойством (*) либо $G/\Phi(G)$ — простая неабелева группа, либо G — группа Шмидта.

Изучение таких пар (G,π) для простых групп G начато в статье [2], где доказаны две теоремы, которые мы приводим здесь в предложениях 2 и 3.

Предложение 2 [2, теорема 1]. Пусть G — конечная простая группа и π — множество простых чисел. Предположим, что группа G не π -замкнута, а все её максимальные подгруппы π -замкнуты. Тогда

- (I) $2 \notin \pi$;
- (II) G есть группа одного из следующих типов (всюду q есть степень некоторого простого числа):
 - (1) $G \cong A_r$, где r простое число и $r \geq 5$;
 - (2) $G \cong PSL_2(q)$, $\epsilon \partial e \ q > 5$;
 - (3) $G \cong PSL_r(q)$, где r нечётное простое число;

¹Работа выполнена при финансовой поддержке Комплексной программы фундаментальных научных исследований УрО РАН (проект 15-16-1-5).

```
(4) G \cong PSU_r(q), где r — нечётное простое число;
```

- (5) $G \cong Sz(q)$, $\epsilon \partial e \ q = 2^{2n+1} \ge 8$;
- (6) $G \cong {}^{2}G_{2}(q)$, $\epsilon \partial e \ q = 3^{2n+1} \ge 27$;
- (7) $G \cong {}^{3}D_{4}(q);$
- (8) $G \cong {}^{2}F_{4}(q)$, $\epsilon \partial e \ q = 2^{2n+1} > 8$;
- (9) $G \cong E_8(q)$;
- (10) G изоморфна одной из групп $M_{23}, J_1, J_4, Ly, Fi'_{24}$ и F_2 .

Предложение 3 [2, теорема 2]. Пусть $G - \kappa$ онечная спорадическая простая группа и π — подмножество из $\pi(G)$. Следующие утверждения равносильны:

- (A) группа G не π -замкнута, а все её максимальные подгруппы π -замкнуты;
- (В) выполнено одно из условий:
 - (1) $G \cong M_{23} \ u \ \pi = \{23\};$
 - (2) $G \cong J_1 \ u \ \pi = \{19\};$
 - (3) $G \cong J_4 \ u \varnothing \neq \pi \subseteq \{29, 43\};$
 - (4) $G \cong Ly \ u \varnothing \neq \pi \subseteq \{37, 67\};$
 - (5) $G \cong Fi'_{24} \ u \ \pi = \{29\};$
 - (6) $G \cong F_2 \ u \ \pi = \{47\}.$

Отметим, что доказательства предложений 2 и 3 основываются на результатах статьи автора [3] о контроле простого спектра конечных простых групп.

В настоящей статье доказана следующая теорема. В ней, как обычно, $\pi(n)$ есть множество всех простых делителей натурального числа n. Кроме того, для любой степени q простого числа используются следующие обозначения. Пусть $S(q) := \{q_0 \in \mathbb{N} \setminus \{1\} \mid q = q_0^T \text{ при некотором } \}$ простом числе r }. Далее, если P(x) — целочисленный многочлен от x, то положим $\pi_0(P(q)) :=$ $\pi(P(q))\setminus \cup_{q_0\in S(q)}\pi(P(q_0))$. Например, если $q=2^6$, то $S(q)=\{2^3,2^2\}$ и $\pi_0(q+1)=\pi(2^6+1)\setminus (\pi(8+1))$ $1) \cup \pi(4+1)) = \pi(65) \setminus \{3,5\} = \{13\}$, а если $q=2^7$, то $S(q)=\{2\}$ и $\pi_0(P(q)) = \pi(P(q)) \setminus \pi(P(2))$ при любом P(x). Таким образом, $\pi_0(n) \subseteq \pi(n)$ для чисел n вида P(q).

Теорема. Пусть G — конечная простая группа, отличная от групп $PSL_r(q)$ и $PSU_r(q)$ с простым нечётным r и $E_8(q)$ (всюду q — степень простого числа), и π — подмножество из $\pi(G)$. Равносильны следующие условия:

- (A) группа G не π -замкнута, а все её максимальные подгруппы π -замкнуты;
- (B) $2 \notin \pi$, π не пусто и выполнено одно из следующих условий:
- (1) $G \cong A_r$, $\epsilon de\ r$ npocmoe число (≥ 5), отличное от 11,23 и чисел вида $(q^n-1)/(q-1)$, $r \partial e \ q - c m e n e h e n p o c m o r o u c n e \mathbb{N}, \ u \ \pi = \{r\};$
 - (2) $G \cong PSL_2(q), q > 5, \pi(q) = \{p\}, u$ верно одно из условий:
 - (2a) q = p u либо $\pi \subseteq \pi(p+1) \setminus \{3,5\}$, либо $p \in \pi \subseteq \pi(p(p^2-1)) \setminus \{3,5\}$;
 - (2b) $q=p^m>p$ u $\pi\subseteq\pi_0(q+1)\setminus\{5\},$ npuvëm $3\not\in\pi$ npu p>2;
- (3) $G \cong Sz(q)$ $(q = 2^{2n+1} \ge 8)$, $\pi \subseteq \pi_0(q^2 + 1)$ npu непростом 2n + 1 $u \pi \subseteq \pi(q^2 + 1)$ npu $npocmom\ 2n+1;$
- (4) $G \cong {}^2G_2(q) \ (q = 3^{2n+1} \ge 27), \ \pi \subseteq \pi_0(q^2 q + 1) \ npu \ npu$ npu npocmoм 2n + 1;

 - (5) $G \cong {}^{3}D_{4}(q)$ $u \pi \subseteq \pi_{0}(q^{4} q^{2} + 1);$ (6) $G \cong {}^{2}F_{4}(q)$ $(q = 2^{2n+1} \ge 8)$ $u \pi \subseteq \pi_{0}(q^{4} q^{2} + 1);$
 - $(7) \ G-c nopaduческая группа <math>u\ (G,\pi)-\kappa a\kappa\ в\ npedложении\ 3.$

Замечания. 1. Группы A_r с простым $r = (q^n - 1)/(q - 1)$, как в п. (1), встречаются очень редко (см. замечание 2 к предложению 1.2 ниже).

- 2. Заметим, что в п. (2) всегда $5 \notin \pi$ (это следует и непосредственно из предложения 1.4).
- 3. В п. (2b) при p=2 (как легко заметить) $3\in\pi_0(q+1)$ если и только если m- простое нечётное число.
- 4. Условия на π в п. (2) накладывают фактически и ограничения на параметр q. Например, условие (2b) противоречиво при q = 9 и q = 49.

- 5. В пп. (3)–(6) всегда $3 \notin \pi$ (так как 3 не делит m^2+1 и m^4-m^2+1 при любом целом m и $3 \mid q$ в (4)).
- 6. Пусть G удовлетворяет условию теоремы, G есть минимальная не π -замкнутая группа (т. е. выполнено условие (A) теоремы) и π_1 непустое подмножество из π . Тогда G может не быть минимальной не π_1 -замкнутой группой. Но это верно лишь в том и только в том случае, когда выполнено условие (2a) и $\pi_1 \subseteq \pi(p-1) \setminus \{3,5\}$ (т. е. $p \in \pi \setminus \pi_1$).

Используемые далее обозначения в основном стандартны (см., например, [4–6]). В частности, \mathbb{N} есть множество всех натуральных чисел, $\pi(G) = \pi(|G|)$ — множество всех простых делителей порядка конечной группы G; если π есть множество простых чисел, то π' есть множество всех простых чисел, не содержащихся в π ; π -холлова подгруппа группы G — это π -подгруппа из G, индекс которой в G есть π' -число (т. е. число, не делящееся на простые числа из π); группа, имеющая нормальную π -холлову подгруппу, называется π -замкнутой. Запись A := B (читается: A по определению равно B) означает, что A есть обозначение для B; запись B =: A равносильна записи A := B; $\dot{\cup}$ — знак объединения попарно непересекающихся множеств. Через Z_n , E_n и D_n обозначаются соответственно циклическая, элементарная абелева и диэдральная группы порядка n. G^n есть прямое произведение n экземпляров группы G.

Используются также следующие, несколько видоизменённые, обозначения из Атласа [6, с. XX]. Запись $G \doteq A.B$ (читается "G имеет тип A.B" или "G есть группа типа A.B") означает, что группа G имеет нормальную подгруппу, изоморфную A, фактор-группа по которой изоморфна B (т. е. G есть расширение A с помощью B). В случае расщепляемого расширения вместо точки может быть использован знак \leftthreetimes (в частности, в настоящей статье) или знак : (в Атласе [6] и многих других работах). Запись $G \doteq A_1.A_2.A_3.\dots.A_n$ при $n \geq 3$ означает, что G имеет возрастающий нормальный ряд с факторами A_1,A_2,A_3,\dots,A_n ; в частности, при любом $i \leq n$ группа G имеет нормальную подгруппу $N_i \doteq A_1.A_2.\dots.A_i \doteq (A_1.A_2.\dots.A_{i-1}).A_i$.

Используются также и некоторые произведения бинарных отношений между объектами теории групп; например, $A\cong B$ (существует H с $A\cong H\triangleq B$), $A>\doteq B$ (существует H с $A>H\doteq B$).

Краткое сообщение о результатах настоящей статьи сделано в [7].

1. Предварительные результаты

Предложение 1.1 [8, теорема 1]. Конечная неразрешимая группа G имеет точно 3 класса сопряжённых максимальных подгрупп если и только если $G/\Phi(G)$ изоморфна $PSL_2(7)$ или $PSL_2(2^r)$, где r — простое число.

Предложение 1.2. Пусть $G = A_r$, где r - npocmoe число, $r \ge 5$. Тогда каждая максимальная подгруппа M группы G удовлетворяет одному из следующих условий:

- (1) $M = M_{a,r-a}$, $ide M_{1,r-1} \cong A_{r-1}$, $M_{2,r-2} \cong S_{r-2}$ $ide M_{a,r-a} \doteq (A_a \times A_{r-a}).Z_2$ $ide M_{1,r-1} \cong A_{r-1}$, $ide M_{2,r-2} \cong S_{r-2}$ $ide M_{2,r-a} \doteq (A_a \times A_{r-a}).Z_2$ $ide M_{2,r-a} \cong S_{r-2}$ $ide M_{2,r-a} \doteq (A_a \times A_{r-a}).Z_2$ $ide M_{2,r-a} \cong S_{r-2}$ $ide M_{2,r-a} \doteq (A_a \times A_{r-a}).Z_2$ $ide M_{2,r-a} \cong S_{r-2}$ $ide M_{2,r-a} \doteq (A_a \times A_{r-a}).Z_2$ $ide M_{2,r-a} \cong S_{r-2}$ $ide M_{2,r-a} \cong$
 - (2) $M \doteq Z_r \times Z_{(r-1)/2}$ при r отличном от 7, 11, 17, 23;
- (3) $M \cong \leq \operatorname{Aut}(S)$, где $S = \operatorname{Soc}(M) \cong PSL_n(q)$, q cтепень простого числа, при $r = (q^n 1)/(q 1)$ (n npocmoe число); в частности,

 $M \cong PSL_3(2) \cong PSL_2(7) \ npu \ r = 7 \ u \ M \doteq PSL_2(16).Z_4 \ npu \ r = 17;$

- (4) $M \cong M_{11} \ npu \ r = 11;$
- (5) $M \cong M_{23} \ npu \ r = 23.$

Обратно, для любого $i \in \{1, 2, 3, 4, 5\}$ группа G имеет максимальную подгруппу M, удовлетворяющую условию (i).

З а м е ч а н и я. 1. В пп. (1)–(5) предложения 1.2 число классов сопряжённых подгрупп, изоморфных M, может быть больше единицы; например, в группе $A_{11} - 2$ класса сопряжённых подгрупп, изоморфных M_{11} (п. (4)), а в группе $A_{13} - 2$ класса сопряжённых максимальных подгрупп M, изоморфных $PSL_3(3)$ (п. (3)).

- $2.~{\rm B}$ п. (3) подгруппа M не определена однозначно. Уточнены лишь два её частных случая.
- 3. Подгруппы типа (3) встречаются в группах A_r очень редко. Выпишем, например (используя таблицы из [9]), все такие значения числа r (указывая в скобках соответствующее n) в следующих случаях:
- (a) при q=2 и $n\leq 94$: 7 (3), 31 (5), 127 (7), 8191 (13), 131071 (17), 524287 (19), 2147483647 (31), 2305843009213693951 (61), 618970019642690137449562111 (89);
- (б) при q=3 и $n\leq 101$: 13 (3), 1093 (7), 797161 (13), 133754733257489862401973357979128773 (71).

Доказательство предложения 1.2. Пусть M — максимальная подгруппа группы $G = A_r$. По теореме О'Нана — Скотта (см. [5, теорема 2.4]) или [10, Арренdix, 2-я теорема] любая максимальная подгруппа M группы G (при простом r) удовлетворяет одному из следующих условий:

- $(A)\ M \cong M_{a,b} := (S_a \times S_b) \cap G$, где r = a + b и a < b;
- (B) $M \cong AGL_1(r) \cap G \doteq Z_r \setminus Z_{(r-1)/2};$
- (C) $S = \text{Soc}(M) \leq M \cong \leq \text{Aut}(S)$, где M и S действуют примитивно на множестве $\{1,\ldots,r\}$, и, следовательно, S имеет максимальную подгруппу индекса r (стабилизатор точки).

Условие (A), очевидно, равносильно условию (1) доказываемого предложения, причём по [11, теорема и табл. I] все подгруппы группы G, изоморфные $M_{a,b}$ при указанных a и b, действительно максимальны в G.

Пусть для подгруппы M группы G выполнено условие (B). Тогда согласно [11, теорема и табл. I] M не максимальна в G в точности тогда, когда $r \in \{7, 11, 17, 23\}$, причём

```
Z_7 \leftthreetimes Z_3 \doteq H < PSL_3(2) \cong PSL_2(7) = M, M максимальна в A_r при r=7,
```

 $Z_{11} \setminus Z_5 \doteq H < PSL_2(11) \cong < M_{11} = M, M$ максимальна в A_r при r = 11,

 $Z_{17} \setminus Z_8 \doteq H < PSL_2(16).Z_4 = M, M$ максимальна в A_r при r = 17,

 $Z_{23} \setminus Z_{11} \doteq H < M_{23} = M, M$ максимальна в A_{23} при r = 23.

Таким образом, здесь мы получаем утверждения (2), (4), (5) и два частных случая утверждения (3), отмеченные в его формулировке.

Пусть, наконец, для подгруппы M выполнено условие (C) и H — максимальная подгруппа индекса r в S. Тогда по результату Р. Гуральника [12] для S, H и r имеются лишь следующие возможности:

- (C1) $S \cong PSL_n(q) \ (n \ge 2, q \ge 2)$ и $r = |S:H| = (q^n 1)/(q 1)$;
- (C2) $S \cong PSL_2(11)$, $H \cong A_5$, r = |S:H| = 11;
- (C3) $S \cong M_{11}$, $H \cong M_{10}$, r = |S:H| = 11;
- (C4) $S \cong M_{23}$, $H \cong M_{11}$, r = |S:H| = 23.

Является ли M максимальной в G можно увидеть по [11, теорема и табл. II–IV].

В случае (C1) будет выполнено условие (3) доказываемого предложения. Существование подгруппы S при указанном r обеспечивается упомянутой выше теоремой Гуральника.

В случаях (C2) и (C3), где r=11, подгруппа M из A_{11} изоморфна одной из групп $PSL_2(11)$ и M_{11} . Но максимальной в A_{11} является лишь M_{11} [6, с. 75], и мы получаем условие (4).

Наконец, условие (C4) приводит к условию (5), так как $M_{23} \cong \operatorname{Aut}(M_{23})$.

Предложение 1.2 доказано.

Подгрупповое строение групп $PSL_2(q)$ было определено А. Виманом [13] и Е. Х. Муром [14]. Из их работ (см. [15, разд. 2.1]) (а также из [16, табл. 8.1]) вытекает следующее утверждение (в каждом из пп. (1)–(8) после слова "если" записано необходимое и достаточное условие существования указанной максимальной подгруппы, под *классом* понимается класс сопряжённых подгрупп в G).

Предложение 1.3. Пусть $G = PSL_2(q)$, где $q = p^m$, p - npocmoe число, $m \in \mathbb{N}$, u d := (2, q - 1). Тогда любая максимальная подгруппа группы G имеет строение, указанное c точностью до изоморфизма в следующем списке:

(1) $E_q \leftthreetimes Z_{(q-1)/d}$ — группа Фробениуса с ядром E_q (всегда существует, 1 класс);

- (2) $D_{2(q-1)/d}$, echu $q \notin \{5,7,9,11\}$ (1 khacc);
- (3) $D_{2(q+1)/d}$, если $q \notin \{7,9\}$ (1 класс);
- (4) $PSL_2(q_0)$, если $q = q_0^r$, где $q_0 \mid q$, $q_0 \neq 2$, r простое, $u \ r$ нечётно при нечётном q (1 класс при каждом r);
 - (5) $PGL_2(q_0)$, если q нечётно $u \ q = q_0^2$, $q_0 \ | \ q \ (2 \ класса)$;
 - (6) S_4 , $ecnu \ q = p \equiv \pm 1 \ (\text{mod } 8) \ (2 \ \kappa nacca);$
 - (7) A_4 , ecnu $q = p \equiv \pm 3, 5, \pm 13 \pmod{40}$ (1 knacc);
 - (8) A_5 , $ecnu\ q = p \equiv \pm 1 \pmod{10}$ unu $q = p^2$, $ellet p \equiv \pm 3 \pmod{10}$ (2 knacca).

3 а м е ч а н и я. 1. Мы видим, что случаи (5)–(8) возможны лишь при нечётном q.

2. Из п. (4) следует, что G содержит подгруппу, изоморфную $PSL_2(q_1)$ при любом $q_1=p^k>2$, где k делит m.

Предложение 1.4. Пусть $G = PSL_2(p^m)$, где p-nростое число и $m \in \mathbb{N}$. Равносильны следующие условия:

- (1) 5 делит |G|;
- (2) выполнено одно из условий:
 - (2a) p = 5;
 - $(2b) \ p \equiv \pm 1 \, (\text{mod } 5);$
 - (2c) $p \equiv \pm 3 \pmod{5}$ и m чётно;
- (3) $G \geq \cong A_5$.

Д о к а з а т е л ь с т в о. (1) \Rightarrow (2): Предположим, что выполнено условие (1), т.е. число 5 делит p^m , p^m-1 или p^m+1 . Если $p\neq 5$, то, очевидно, p удовлетворяет одному из сравнений пп. (2b) и (2c). Для доказательства условия (2) нам нужно ещё показать, что в последнем случае число m чётно. И это действительно так, поскольку для p из п. (2c) мы имеем $p\equiv \pm 3 \pmod{5}$, $p^2\equiv -1 \pmod{5}$ и (по индукции по $n\in \mathbb{N}$) $p^{2n+1}=p^{2n-1}p^2\equiv (\pm 3)(-1)\equiv \pm 3 \pmod{5}$, и, следовательно, $5\nmid |PSL_2(p^{2n+1})|$. (Однако $5\mid |PSL_2(p^{2n})|$, так как $p^{2n}\equiv \pm 1 \pmod{5}$.)

 $(2) \Rightarrow (3)$: В случае (2a) группа G имеет согласно предложению 1.3 (см. также замечание 2) подгруппу $H \cong PSL_2(5)$, которая изоморфна A_5 .

Пусть выполнено условие (2b). Тогда, очевидно, p нечётно и согласно замечанию 2 предложения 1.3 группа G имеет подгруппу $H \cong PSL_2(p)$. Однако, с учетом условия $p \equiv \pm 1 \pmod 5$, которое можно записать и в виде $p \equiv \pm 1 \pmod {10}$, H согласно п. (8) предложения 1.3 имеет подгруппу, изоморфную A_5 .

Пусть выполнено условие (2c) (здесь возможен и случай p=2). Тогда ввиду чётности m согласно замечанию 2 после предложения 1.3 группа G имеет подгруппу $H\cong PSL_2(p^2)$, если p нечётно, и подгруппу, изоморфную $PSL_2(4)$, если p=2. Но согласно п. (8) предложения 1.3 H имеет подгруппу, изоморфную A_5 , а $PSL_2(4)\cong A_5$. Итак, $(2)\Rightarrow (3)$.

 $(3) \Rightarrow (1)$: Очевидно.

Предложение 1.4 доказано.

Предложение 1.5. Пусть $G = PSL_2(q)$. Тогда

- (1) при любом простом q > 3 группа G содержит максимальную подгруппу, изоморфную одной из групп S_4, A_4, A_5 типов (6)–(8) предложения 1.3 соответственно;
- (2) если G содержит максимальную подгруппу, изоморфную A_4 , то G не содержит максимальных подгрупп, изоморфных S_4 и A_5 .

Доказательство. (1): Пусть q=p>3 — простое число. Очевидно, мы можем считать, что p>5. Согласно предложению 1.3 группа G содержит подгруппу, изоморфную S_4 если и только если $p\equiv \pm 1 \pmod 8$, т.е. если и только если $p\equiv x \pmod 40$, где $x\in X:=\{1,7,9,17,23,31,33,39\}$, а также содержит максимальную подгруппу, изоморфную A_4 , если и только если $p\equiv y \pmod 40$, где $y\in Y:=\{3,13,27,37\}$ (случай p=5 мы исключили), и содержит максимальную подгруппу, изоморфную A_5 , если и только если $p\equiv \pm 1 \pmod {10}$, т.е. $p\equiv z \pmod {40}$, где $z\in Z:=\{1,9,11,19,21,23,31,39\}$. Поскольку каждое нечётное число

из отрезка [1,40], не кратное 5, встречается по крайней мере в одном из приведённых выше множеств X, Y и Z, то утверждение (1) справедливо.

(2): Предположим, что G содержит максимальную подгруппу $M\cong A_4$. M может быть типов (6) или (4) предложения 1.3. Если M — типа (4) предложения 1.3, то q=p — простое число. Поскольку в обозначениях предыдущего пункта $Y\cap (X\cup Z)=\varnothing$, то G не содержит максимальных подгрупп, изоморфных S_4 и A_5 , типов (6) и (8) предложения 1.3 соответственно. Но нужно ещё показать, что G не содержит максимальных подгрупп $PGL_2(3)\cong S_4$ типа (5) предложения 1.3 и максимальных подгрупп $PSL_2(5)\cong A_5$ типа (4) предложения 1.3. Однако, в этих случаях должно быть $q=3^2$ или $q=3^r$ при некотором простом r. Но у нас q=p — простое число.

Если M — типа (4) предложения 1.3 ($M\cong PSL_2(3)\cong A_4$), то $q=3^r$ некотором простом нечётном r. Тогда G не содержит максимальных подгрупп, изоморфных S_4 и A_5 , типов (6) и (8) предложения 1.3 соответственно. Но нужно ещё показать, что G не содержит максимальных подгрупп $PGL_2(3)\cong S_4$ типа (5) предложения 1.3 и максимальных подгрупп $PSL_2(5)\cong A_5$ типа (4) предложения 1.3. Однако в этих случаях должно быть $q=3^2$ или $q=5^l$ при некотором простом l, но у нас $q=3^r$ с нечётным r.

Предложение 1.5 доказано.

Предложение 1.6. Пусть G и π удовлетворяют условию (A) теоремы и K — секция некоторой собственной подгруппы группы G. Если K не имеет неединичных нормальных π -холловых подгрупп, то $\pi(K) \subseteq \pi'$. В частности, простые неабелевы секции собственных подгрупп группы G все являются π' -группами.

 \mathcal{A} о к а з а т е л ь с т в о непосредственно вытекает из [2, лемма 2.1] (собственная секция простой неабелевой группы G есть секция некоторой собственной подгруппы группы G).

2. Доказательство теоремы

Пусть G — конечная простая группа, удовлетворяющая условию теоремы. Ввиду предложений 2 и 3 G должна быть группой одного из типов (1), (2), (5)–(8) предложения 2. И нам нужно убедиться, что для каждой такой G (при возможном уточнении её параметров, как в пп. (1) и (2b)) в условии (B) теоремы указаны все возможные π со свойством условия (A). По-существу, нужно убедиться, что для любой такой группы G условия (A) и (B) равносильны.

Случай 1. Пусть $G = A_r$, где r — простое число и $r \ge 5$ (т. е. G — группа типа (1) предложения 2). Предположим, что существует множество π , которое удовлетворяет условию (A) для рассматриваемого G.

Максимальные подгруппы группы G перечислены в пп. (1)–(5) предложения 1.2. Поскольку G имеет максимальную подгруппу A_{r-1} (см. п. (1)) с $\pi(A_{r-1}) = \pi((r-1)!)$, которая, очевидно, не может быть π -замкнутой, так как $2 \notin \pi$ по предложению 2 и A_{r-1} не имеет неединичных нормальных холловых подгрупп нечётного порядка, то, следовательно, $\pi \cap \pi(A_{r-1}) = \emptyset$, т. е. $\pi = \{r\}$.

Обратно, если $\pi = \{r\}$, то из предложения 1.2 следует, что все максимальные подгруппы в G π -замкнуты если и только если r отлично от 11,23 и чисел вида $(q^n-1)/(q-1)$, где q — степень простого числа и $n \in \mathbb{N}$, так как подгруппы типов (3)–(5) предложения 1.2 не r-замкнуты.

Итак, в случае 1 условия (А) и (В) теоремы равносильны.

Случай 2. Пусть $G = PSL_2(q), q > 5$, т. е. выполнено условие (2) предложения 2.

Тогда $|G|=q(q^2-1)/d$, где d=(2,q-1), и, очевидно, $\pi(G)=\pi(q)\dot{\cup}\pi((q-1)/d)\dot{\cup}\pi((q+1)/d)$. Максимальные подгруппы групп $G=PSL_2(q)$ приведены в предложении 1.3. Особую роль играют подгруппы $B\doteq E_q \leftthreetimes Z_{q-1},\ D_-\cong D_{2(q-1)},\ D_+\cong D_{2(q+1)},$ назовём их подгруппами 1-го типа; они почти всегда (за исключением случая $q\in\{7,9,11\}$) существуют. Остальные подгруппы, а именно подгруппы вида $PSL_2(q_0)$, $PGL_2(q_0)$ и подгруппы, изоморфные $A_4,S_4,$

 A_5 , назовём *подгруппами* 2-го *типа*. Они существуют не всегда, причём в случае, когда $q=2^m$, где m — простое число (и только в этом случае), отсутствуют вовсе.

Предположим, что множество π удовлетворяет условию (A) для рассматриваемой G. Так как по условию (A) все максимальные подгруппы группы G π -замкнуты, то все подгруппы 2-го типа в G должны быть π' -группами (так как они не имеют неединичных нормальных подгрупп нечётного порядка). Кроме того, $5 \in \pi'$ по предложению 1.4. Таким образом,

$$\{5\} \cup \pi(H) \subseteq \pi'$$
 при $H \in \{PSL_2(q_0), PGL_2(q_0), A_4, S_4, A_5\}$. (2.1)

Случай **2**а. Пусть q = p.

По условию p > 5. Предположим сначала, что $p \in \{7,11\}$ (особенный случай предложения 1.3). Группа $G \cong PSL_2(7)$ имеет лишь максимальные подгруппы, изоморфные $Z_7 \leftthreetimes Z_3$ и S_4 . В этом случае $\pi = \{7\}$ и, значит, выполнено условие п. (2a) теоремы. Группа $G \cong PSL_2(11)$ имеет точно 4 класса максимальных подгрупп: $B \cong Z_{11} \leftthreetimes Z_5, D_+ \cong D_{12}$ и 2 класса подгрупп, изоморфных A_5 . В этом случае $\pi = \{11\}$, т. е. снова выполнено условие (2a) теоремы.

Далее мы предполагаем, что $p \notin \{7,11\}$, т.е. p > 11. В этом случае согласно предложению 1.3 группа G имеет все три максимальные подгруппы B, D_- , D_+ 1-го типа и не имеет подгрупп вида $PSL_2(q_0)$ и $PGL_2(q_0)$. Согласно предложению 1.1 группа G должна иметь по крайней мере ещё одну максимальную подгруппу. Поэтому G содержит подгруппу, изоморфную одной из групп S_4 , A_4 и A_5 . В любом случае по (2.1) $\{2,3,5\} \subseteq \pi'$.

- **2а1**. Предположим, что $p \notin \pi$. Поскольку подгруппа $B = E_p \leftthreetimes Z_{(p-1)/2}$ не имеет неединичных нормальных p'-подгрупп нечётного порядка, то $\pi(Z_{(p-1)/2}) \subseteq \pi'$, и тогда (см. конец предыдущего абзаца) должно быть $\pi \subseteq \pi(p+1) \setminus \{2,3,5\}$, т. е. реализуется первая возможность утверждения (2а) теоремы.
- **2а2**. Предположим, что $p \in \pi$. Тогда все максимальные подгруппы 1-го типа, очевидно, являются π_1 -замкнутыми при любом $\pi_1 \subseteq \pi(G) \setminus \{2,3,5\}$. Но этим свойством обладают и все максимальные подгруппы 2-го типа, так как они являются $\{2,3,5\}$ -группами. Таким образом, реализуется вторая возможность утверждения (2а) теоремы.

Итак, в случае 2а выполнено условие (2а) теоремы.

Случай 2b распадается на следующие два подслучая.

2b1. Пусть $q=2^m$ ($m\geq 3$, так как q>5). Если m — простое число, то согласно предложению 1.1 B,D_-,D_+ — единственные максимальные подгруппы в G; из их строения видно, что $\pi\subseteq\pi(2^m+1)$ и, значит, выполнено условие (2b) теоремы, так как $\pi_0(2^m+1)=\pi(2^m+1)$ при простом m.

Пусть m — непростое число. Тогда по предложению 1.3 кроме подгрупп B, D_-, D_+ группа G имеет ещё лишь максимальные подгруппы вида $H_{q_0} = PSL_2(q_0)$, где $q = q_0^b, q_0 > 2$ и b — простое число. Поэтому $\pi \subseteq \pi(q+1) \setminus \cup_{q_0 \in S(q)} \pi(PSL_2(q_0)) = \pi(q+1) \setminus \cup_{q_0 \in S(q)} \pi((q_0+1)(q_0-1)) = \pi(q+1) \setminus \cup_{q_0 \in S(q)} \pi(q_0+1) = \pi_0(q+1)$ (учитываем, что $(q+1,q_0-1) = (q_0^b+1,q_0-1) = (q_0^b+q_0,q_0-1) = (q_0^b+1,q_0-1) = \dots = (q_0+1,q_0-1) = 1$). Итак, при произвольном $q=2^m$ с $m \in \mathbb{N}$ выполнено условие (2b) теоремы (при p=2). (Заметим, что в этом случае $3 \in \pi_0(q+1) \Leftrightarrow m$ — простое нечётное.)

2b2. Предположим, что $q = p^m$, p > 2, m > 1.

Рассмотрим наименьший случай: q=9. Группа $G\cong PSL_2(9)$ имеет точно 5 классов максимальных подгрупп: $B\cong E_9\leftthreetimes Z_4$ и по 2 класса подгрупп, изоморфных S_4 и A_5 , причём $\pi(G)=\pi(A_5)$. Поэтому $G\cong PSL_2(9)$ не удовлетворяет условию (A) теоремы ни при каком π . Это утверждение можно (в случае, если G и π удовлетворяют условию (A)) записать и в виде условия (2b): $\pi\in\pi(9+1)\setminus\{5\}$, которое противоречиво, поскольку в (B) $2\not\in\pi$ и $\pi\neq\varnothing$.

Пусть теперь q>9. Тогда по предложению 1.3 G имеет максимальную подгруппу вида $PSL_2(p^a)$ или $PGL_2(p^a)$, где $ar=m, a\geq 1, r$ — простое число, и теперь по (2.1) $\{2,3,5,p\}\subseteq \pi'$. Отсюда и из наличия в G подгруппы Фробениуса $E_q \times Z_{(q-1)/2}$, следует, что $\pi(q-1)/2)\subseteq \pi'$,

и тогда должно быть $\pi \subseteq \pi(q+1) \setminus \{2,3,5\}$. Следовательно, выполнено утверждение (2b) теоремы.

Таким образом, для любой G, указанной в условии (2), утверждения (A) и (B) теоремы равносильны.

Случай 3. Пусть
$$G \cong Sz(q)$$
, где $q = 2^{2n+1} \ge 8$. $(Sz(2) \doteq Z_5 \times Z_4.)$

Тогда $|G|=q^2(q-1)(q^2+1)=q^2(q-1)(q-\sqrt{2q}+1)(q+\sqrt{2q}+1)$, причём множители q^2 , $q-1, q+\sqrt{2q}+1, q-\sqrt{2q}+1$ попарно взаимно просты.

Согласно работе М. Судзуки [17] (см. также теорему 4.1 в [5]) каждая максимальная подгруппа группы G сопряжена в G с одной из подгрупп следующего списка:

- (1) $B \doteq E_q.E_q.Z_{q-1}$ группа Фробениуса;
- (2) $D \cong D_{2(q-1)}$;
- (3) $F_+ \doteq Z_{q+\sqrt{2q}+1} \leftthreetimes Z_4$ группа Фробениуса;
- (4) $F_- \doteq Z_{q-\sqrt{2q}+1} \leftthreetimes Z_4$ группа Фробениуса; (5) $H_{q_0} \cong Sz(q_0)$, где $q=q_0^r, r$ (нечётное) простое число и $q_0>2$.

Пусть π — множество простых чисел, удовлетворяющее условию (A) для данной G. Тогда $2 \notin \pi$ по предложению 1 и, очевидно, $\pi \neq \emptyset$. По предложению 1.6 подгруппы типов (1), (2) и (5) не могут быть π -замкнутыми. Подгруппы же типов (3) и (4) π -замкнуты если и только если $\pi \subseteq q^2 + 1$. Отсюда следуют следующие два утверждения. Во-первых, если 2n+1 не является простым числом, т. е. $S(q) \neq \{2\}$, то

$$\pi' \supseteq \{2\} \cup \pi(q-1) \cup (\cup_{q_0 \in S(q)} \pi(H_{q_0})) = \{2\} \cup \pi(q-1) \cup (\cup_{q_0 \in S(q)} \pi((q_0-1)(q_0^2+1))) = \{2\} \cup \pi(q-1) \cup (\cup_{q_0 \in S(q)} \pi(H_{q_0})) = \{2\} \cup \{2$$

$$\{2\} \cup \pi(q-1) \cup (\cup_{q_0 \in S(q)} \pi(q_0^2+1)) \text{ if } \pi \subseteq \pi(q^2+1) \setminus (\cup_{q_0 \in S(q)} \pi(q_0^2+1)) = \pi_0(q^2+1)).$$

Если же 2n+1 — простое число, т. е. $S(q)=\{2\}$, то п. (5) приведённого списка пуст, и в этом случае $\pi \subseteq \pi(q^2+1)$.

Таким образом, верно утверждение (B)(3) теоремы. А отсюда и из списка максимальных подгрупп группы G следует равносильность для G утверждений (A) и (B) теоремы.

Случай 4. Пусть
$$G\cong {}^2G_2(q)$$
, где $q=3^{2n+1}\geq 27$. $({}^2G_2(3)\cong P\Gamma L_2(8)\doteq PSL_2(8)\leftthreetimes Z_3.)$

Тогда $|G|=q^3(q-1)(q^3+1)=2^3q^3\frac{q-1}{2}\frac{q+1}{4}(q+\sqrt{3q}+1)(q-\sqrt{3q}+1),$ где все множители последнего разложения попарно взаимно просты. Согласно [18;19] (см. также [5, теорема 4.2]) каждая максимальная подгруппа группы G сопряжена в G с одной из подгрупп следующего списка:

- (1) $B \doteq P \times Z_{q-1}, |P| = q^3;$
- (2) $D \cong (E_4 \times D_{(q+1)/2}) \times Z_3$;
- (3) $M \cong Z_2 \times PSL_2(q)$;
- (4) $Y \doteq Z_{q+\sqrt{3q}+1} \leftthreetimes Z_6$ группа Фробениуса;
- (5) $Z \doteq Z_{q-\sqrt{3q}+1} \leftthreetimes Z_6$ группа Фробениуса;
- (6) $H_{q_0} \cong {}^2G_2(q_0)$, где $q = q_0^r$, r простое число и $q_0 > 3$.

Пусть π — множество простых чисел, удовлетворяющее условию (A) для данной $G, 2 \not\in$ $\pi \neq \emptyset$.

По предложению 1.6 подгруппы типа (3), а потому и типов (1) и (2), а также типа (6) не могут быть π -замкнутыми. Подгруппы же типов (4) и (5) π -замкнуты если и только если $\pi \subseteq \pi(q^2 - q + 1) = \pi((q^3 + 1)/(q + 1)).$

Таким образом, если 2n+1 не является простым числом, т. е. $S(q) \neq \{3\}$, то

$$\pi'\supseteq\{2,3\}\cup\pi(q^2-1)\cup(\cup_{q_0\in S(q)}\pi(H_{q_0}))=\{2,3\}\cup\pi(q^2-1)\cup(\cup_{q_0\in S(q)}\pi(q_0^2-q_0+1),\ \mathsf{H}_{q_0})=\{2,3\}\cup\pi(q^2-q_0+1)\cup(\cup_{q_0\in S(q)}\pi(q_0^2-q_0+1),\ \mathsf{H}_{q_0})=\{2,3\}\cup\pi(q^2-q_0+1)\cup$$

Если же 2n+1 — простое число, т.е. $S(q)=\{3\}$, то п. (6) пуст, и в этом случае $\pi\subseteq$ $\pi(q^2 - q + 1)$.

Итак, справедливо утверждение (B)(4) теоремы. А отсюда и из списка максимальных подгрупп группы G следует равносильность для G утверждений (A) и (B) теоремы.

Случай 5. Пусть $G \cong {}^{3}D_{4}(q), q = p^{n}$, где p — простое число и $n \in \mathbb{N}$.

Тогда $|G|=q^{12}(q^8+q^4+1)(q^6-1)(q^2-1)$, причём $q^8+q^4+1=(q^4-q^2+1)(q^4+q^2+1)$ и $q^6-1=(q^4+q^2+1)(q^2-1)$. Таким образом,

$$\pi(G) = \pi(q) \dot{\cup} \pi(q^4 - q^2 + 1) \dot{\cup} \pi(q^6 - 1). \tag{5.1}$$

Приведём список максимальных подгрупп группы G (он получен в [20] и приведён также в [5, теорема 4.3]):

 $M_1 \doteq A \leftthreetimes SL_2(q^3).Z_{q-1},$ где $|A| = q^9;$ $M_2 \doteq B \leftthreetimes SL_2(q).Z_{q^2-1},$ где $|B| = q^{11};$ $M_3 \cong G_2(q)$ (порядка $q^6(q^6-1)(q^2-1));$ $M_4 \cong PGL_3(q),$ если $q \equiv 1 \pmod 3;$ $M_5 \cong PGU_3(q),$ если $2 < q \equiv 2 \pmod 3;$ $M_6^{q_0} \cong {}^3D_4(q_0),$ если q_0 делит q и $q = q_0^r,$ где r — простое число; $M_7 \cong SL_2(q^3) \leftthreetimes SL_2(q),$ если q чётно; $M_8 \doteq Z_2 \cdot (PSL_2(q^3) \leftthreetimes PSL_2(q)) \leftthreetimes Z_2,$ если q нечётно; $M_9 \doteq SL_3(q).Z_{q^2+q+1}.Z_2;$ $M_{10} \doteq SU_3(q).Z_{q^2-q+1}.Z_2;$ $M_{11} \doteq (Z_{q^2+q+1} \rightthreetimes Z_{q^2+q+1}) \leftthreetimes SL_2(3);$ $M_{12} \doteq (Z_{q^2-q+1} \rightthreetimes Z_{q^2-q+1}) \leftthreetimes SL_2(3);$ $M_{13} \doteq Z_{q^4-q^2+1} \leftthreetimes Z_4.$

Пусть π — множество простых чисел, удовлетворяющее условию (A) для данной $G, 2 \notin \pi \neq \varnothing$.

Обратим внимание на "большую" подгруппу $M_3 \cong G_2(q)$. Ясно, что $\pi' \supseteq \pi(G_2(q))$ (по предложению 1.6). Если из приведённого списка максимальных подгрупп исключить все подгруппы M_i с $\pi(M_i) \subseteq \pi(G_2(q))$, в том числе саму $G_2(q)$, то, как легко увидеть, в нём останутся лишь подгруппы вида $M_6^{q_0} \cong {}^3D_4(q_0)$ с $q_0 \in S(q)$ и подгруппа $M_{13} \doteq Z_{q^4-q^2+1} \leftthreetimes Z_4$.

Как видно из (5.1), число $q^4 - q^2 + 1$ взаимно просто с $|G_2(q)|$. Таким образом, поскольку в списке максимальных подгрупп группы G присутствует и подгруппа $^3D_4(p)$ (при простом n), то в любом случае (при простом и непростом n)

$$\pi' \supseteq \pi(G_2(q)) \cup (\cup_{q_0 \in S(q)} \pi(^3D_4(q_0))) = \pi(q(q^6 - 1)) \cup (\cup_{q_0 \in S(q)} \pi(q_0^4 - q_0^2 + 1))$$

(здесь мы учли что $\pi(^3D_4(q_0)) = \pi(q_0(q_0^4 - q_0^2 + 1)(q_0^6 - 1))$ и $q_0^6 - 1$ делит $q^6 - 1)$, и

$$\pi \subseteq \pi(q^4 - q^2 + 1) \setminus (\bigcup_{q_0 \in S(q)} \pi(q_0^4 - q_0^2 + 1) = \pi_0(q^4 - q^2 + 1).$$

Следовательно, верно утверждение (B)(7) теоремы. А отсюда и из списка максимальных подгрупп группы G следует равносильность для G утверждений (A) и (B) теоремы.

Случай 6. Пусть $G \cong {}^2F_4(q)$, где $q = 2^{2n+1}$ и $n \geq 1$.

Тогда $|G|=q^{12}(q^6+1)(q^4-1)(q^3+1)(q-1)$, где $q^6+1=(q^2+1)(q^4-q^2+1)$, $q^2+1=(q+\sqrt{2q}+1)(q-\sqrt{2q}+1)$ и $q^4-q^2+1=ab$, где $a=q^2+q+1+\sqrt{2q}(q+1)$ и $b=q^2+q+1-\sqrt{2q}(q+1)$, причём

$$\begin{split} \pi(G) &= \{2\} \,\dot\cup\, \pi(q^6+1) \,\dot\cup\, \pi(q^3+1) \,\dot\cup\, \pi(q-1), \\ \pi(q^6+1) &= \pi(q^2+1) \,\dot\cup\, \pi(q^4-q^2+1), \quad \text{if } \pi(q^4-q^2+1) = \pi(a) \,\dot\cup\, \pi(b). \end{split}$$

Рассмотрим список S максимальных подгрупп группы G, полученный в [21] (см. также [5, теорема 4.5]):

$$M_1 \doteq A \leftthreetimes (Sz(q) \times Z_{q-1})$$
, где $|A| = q^{10}$; $M_2 \doteq B \leftthreetimes GL_2(q)$, где $|B| = q^{11}$; $M_3 \doteq SU_3(q) \leftthreetimes Z_2$; $M_4 \doteq PGU_3(q) \leftthreetimes Z_2$; $M_5 \doteq Sz(q) \leftthreetimes Z_2$;

 $M_6 \doteq Sp_4(q) \leftthreetimes Z_2;$ $M_7^{q_0} \cong {}^2F_4(q_0),$ если q_0 делит q и $q=q_0^r,$ где r — простое нечётное число; $M_8 \doteq (Z_{q+1} \times Z_{q+1}) \leftthreetimes GL_2(3);$ $M_9 \doteq (Z_{q+\sqrt{2q}+1} \times Z_{q+\sqrt{2q}+1}) \leftthreetimes 4S_4;$ $M_{10} \doteq (Z_{q-\sqrt{2q}+1} \times Z_{q-\sqrt{2q}+1}) \leftthreetimes 4S_4;$ $M_{11} \doteq Z_a \leftthreetimes Z_{12};$ $M_{12} \doteq Z_b \leftthreetimes Z_{12}.$

Пусть π — множество простых чисел, удовлетворяющее условию (A) для данной $G,\ 2 \not\in \pi \neq \varnothing$.

Очевидно, что π' содержит $\pi(M_i)$ при $i \leq 6$ и $M_7^{q_0}$ (из-за отсутствия в M_i неединичных нормальных подгрупп нечётного порядка), а также при $i \in \{8, 9, 10\}$, так как числа $q+1, q+\sqrt{2q}+1, q-\sqrt{2q}+1$ делят |Sz(q)|. Таким образом,

$$\pi' \supseteq (\pi(G) \setminus \pi(ab)) \cup (\cup_{q_0 \in S(q)} \pi(^2F_4(q_0))). \tag{6.1}$$

Поскольку $\pi(G)\setminus \pi(ab)=\{2\}\cup \pi(q^2+1)\cup \pi(q^3+1)\cup \pi(q-1)$ и $\pi(^2F_4(q_0))=\{2\}\cup \pi(q_0^2+1)\cup \pi(q_0^4-q_0^2+1)\cup \pi(q_0^3+1)\cup \pi(q_0-1)$, то (6.1) можно переписать в виде (заметим, что $q=q_0^r$, где r — нечётное число, так как оно делит 2n+1, и поэтому q^2+1 делится на q_0^2+1)

$$\pi' \supseteq (\pi(G) \setminus \pi(ab)) \cup (\cup_{q_0 \in S(q)} \pi(q_0^4 - q_0^2 + 1)). \tag{6.2}$$

Кроме того, так как (ab, |G|/ab) = 1 и (a, b) = 1, то из (6.2) получаем

$$\pi \subseteq \pi(ab) \setminus (\cup_{q_0 \in S(q)} \pi(q_0^4 - q_0^2 + 1)) = \pi(q^4 - q^2 + 1) \setminus (\cup_{q_0 \in S(q)} \pi(q_0^4 - q_0^2 + 1) = \pi_0(q^4 - q^2 + 1)$$

и, следовательно, верно утверждение (B)(6) теоремы. А отсюда и из списка максимальных подгрупп группы G следует равносильность для G утверждений (A) и (B) теоремы.

Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Белоногов В. А.** О конечных группах, все максимальные подгруппы которых π -замкнуты // Междунар. школа-конф. по теор. групп, посв. 70-летию В. В. Кабанова: сб. ст. Нальчик: К-БГУ, 2014. С. 6–9.
- 2. **Белоногов В. А.** Конечные простые группы, все максимальные подгруппы которых π -замкнуты. І // Тр. Ин-та математики и механики УрО РАН. 2015. Т. 21, № 1. С. 25–34.
- 3. **Белоногов В. А.** О контроле простого спектра конечной простой группы // Тр. Ин-та математики и механики УрО РАН. 2013. Т. 19, № 3. С. 29–44.
- 4. Gorenstein D. Finite Groups. New York: Harper & Row, 1968. 527 p.
- 5. Wilson R. A. The finite simple groups. London: Springer-Verlag, 2009. 298 p.
- 6. Atlas of finite groups / J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson. Oxford: Clarendon Press, 1985. 252 p.
- 7. **Belonogov V. A.** Finite groups in which all maximal subgroups are π -closed // Междунар. конф. "Алгебра и логика: Теория и приложения", посвящ. 70-летию В. М. Левчука: тез. докл. Красноярск, 2016. С. 90.
- 8. **Белоногов В. А.** Конечные группы с тремя классами максимальных подгрупп// Мат. сб. 1986. Т. 131, № 2. С. 225–239.
- 9. Factorizations of $b^n \pm 1$, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers / J. Brillhart et al. Providence: American Math. Society, 1988. 236 p. (Contemporary Math.; vol. 22).
- 10. **Aschbacher M., Scott L.** Maximal subgroups of finite groups // J. Algebra. 1985. Vol. 92, no. 1. P. 44-80.
- 11. Liebeck M. W., Praeger C. E., Saxl J. The classification of the maximal subgroups of the finite alternating and symmetric groups // J. Algebra. 1987. Vol. 111, no. 2. P. 365–383.
- 12. **Guralnick R.** Subgroups of prime power index in a simple group // J. Algebra. 1983. Vol. 81, no. 2. P. 304–311.

- 13. **Wiman A.** Bestimmung aller Untergruppen einer doppelt unendlichen Reihe von einfachen Gruppen // Stockh. Acad. Bihang. 1899. Vol. 25, no. 2. P. 1–47.
- 14. **Moor E. H.** The subgroups of the generalized finite modular group // Dicennial Publications of the University of Chicago. Chicago: The University of Chicago Press, 1903. Vol. 9. P. 141–190.
- 15. **King O. H.** The subgroup structure of finite classical groups in terms of geometric configuratios // Surveys in combinatorics. Cambridge: Cambridge Univ. Press, 2005. P. 29–56. (London Math. Soc. Lecture Note Ser.; vol. 327.)
- Bray J. N., Holt D. F., Roney-Dougal C. M. The maximal subgroups of the low-dimensional finite classical groups // Cambridge: Cambridge Univ. Press, 2013. 438 p. (London Math. Soc. Lect. Note Ser.; vol. 407.)
- 17. Suzuki M. On a class of doubly transitive groups // Ann. of Math. 1962. Vol. 75, no. 1. P. 105–145.
- 18. **Левчук В. М., Нужин Я. Н.** О строении групп Ри // Алгебра и логика. 1985. Т. 24, № 1. С. 26–41.
- 19. **Kleidman P.B.** The maximal subgroups of the finite Chevalley groups $G_2(q)$ with q odd, the Ree groups $^2G_2(q)$, and their automorphism groups // J. Algebra. 1988. Vol. 117, no. 1. P. 30–71.
- 20. **Kleidman P. B.** The maximal subgroups of the Steinberg triality groups ${}^3D_4(q)$ and their automorphism groups // J. Algebra. 1988. Vol. 115, no. 1. P. 182–199.
- 21. **Malle G.** The maximal subgroups of ${}^{2}F_{4}(q)$ // J. Algebra. 1991. Vol. 139, no. 1. P. 52–69.

Белоногов Вячеслав Александрович

Поступила 29.12.2015

д-р физ.-мат. наук, профессор ведущий науч. сотрудник

Институт математики и механики им. Н. Н. Красовского УрО РАН

e-mail: belonogov@imm.uran.ru