Vol. 22 No. 2

2016

MSC: 35Q30, 35Q31, 76D07, 76N10

DOI: 10.21538/0134-4889-2016-22-2-91-100

A SOLUTION CLASS OF THE EULER EQUATION IN A TORUS WITH SOLENOIDAL VELOCITY FIELD. III

Received February 4, 2016

V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh

We continue the study of the problem on the existence conditions for solenoidal solutions of the Euler equation in a torus D with respect to a pair (\mathbf{V}, p) of vector and scalar fields such that the lines of the vector field \mathbf{V} have a simple structure, coinciding with parallels and meridians of toroidal surfaces that are concentrically embedded in D. Here, in contrast to the previous two papers, the right-hand side of the Euler equation, i.e., the vector field \mathbf{f} in D, is not given in a special form but is considered to be arbitrary.

Keywords: scalar and vector fields, Euler equation, divergence, curl.

V.P. Vereshchagin^{\dagger}

Yu.N. Subbotin, Dr. Phys.-Math. Sci., RAS Corresponding Member, Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: yunsub@imm.uran.ru.

N.I. Chernykh, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia, e-mail: Chernykh@imm.uran.ru.

Cite this article as:

V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. III, *Trudy Inst. Mat. Mekh. UrO RAN*, 2016, vol. 22, no. 2, pp. 91–100.