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ON SΦ-EMBEDDED SUBGROUPS OF FINITE GROUPS1

L. Zhang, W.Guo, L.Huo

A subgroup H of G is called SΦ-embedded in G if there exists a normal subgroup T of G such that HT
is S-quasinormal in G and (H ∩ T )HG/HG ≤ Φ(H/HG), where HG is the maximal normal subgroup of G
contained in H and Φ(H/HG) is the Frattini subgroup of H/HG. In this paper, we investigate the influence

of SΦ-embedded subgroups on the structure of finite groups. In particular, some new characterizations of p-
supersolvability of finite groups are obtained by assuming some subgroups are SΦ-embedded.
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Л.Чжан, В.Г̇о, Л.Хо. О SΦ-вложенных подгруппах конечных групп.

Подгруппа H группы G называется SΦ-вложенной в G, если в G существует нормальная подгруппа T
такая, что HT является S-квазинормальной в G и (H ∩ T )HG/HG ≤ Φ(H/HG), где HG — максимальная

нормальная подгруппа группы G, содержащаяся в H, и Φ(H/HG) — подгруппа Фраттини группы H/HG.

Изучается влияние SΦ-вложенных подгрупп на структуру конечных групп. В частности, получены но-

вые характеризации p-сверхразрешимости конечных групп в предположении, что некоторые подгруппы

являются SΦ-вложенными.

Ключевые слова: силовская p-подгруппа, SΦ-вложенная подгруппа, p-сверхразрешимая группа, p-ниль-

потентная группа.

1. Introduction

Throughout this paper, all groups are finite and G denotes a finite group. All unexplained

notation and terminology are standard, as in [8; 9] and [12].

It is well-known that embedded subgroups play an important role in the study of finite groups.

Recall that a subgroup H of G is said to be quasinormal [5–7] (resp. S-quasinormal [19]) in G

if H permutes with all subgroups (resp. Sylow subgroups) of G. A subgroup H of G is said to be

n-embedded [10] in G if for some normal subgroup T of G and some S-quasinormal subgroup S

of G contained in H, HT is normal in G and H ∩ T ≤ S. Let F be a non-empty formation (see [8]

or [9]). A subgroup H of G is said to be Fs-quasinormal [11] in G if for some normal subgroup T

of G, HT is S-quasinormal in G and (H ∩ T )HG/HG ≤ ZF(G/HG). A p-subgroup H of G is called

sn-embedded [16] in G if for some normal subgroup T of G and some S-quasinormally embedded

subgroup S of G contained in H, HT is S-quasinormal in G and H∩T ≤ S. Note that a subgroup H

of G is said to be τ -quasinormal [15] in G if H permutes with all Sylow q-subgroups Q of G such

that (q, |H|) = 1 and (|H|, |QG|) 6= 1. A subgroup H of G is said to be weakly τ -embedded [4] in G

if for some normal subgroup T of G and some τ -quasinormal subgroup S of G contained in H,

HT is S-quasinormal in G and H ∩ T ≤ S. By using the above embedding subgroups, a series of

interesting results were obtained (see [4; 10; 11; 16]).

Now we introduce the following new embedded subgroup.

D e f i n i t i o n. A subgroup H of G is said to be SΦ-embedded in G if there exists a normal

subgroup T of G such that HT is S-quasinormal in G and (H ∩ T )HG/HG ≤ Φ(H/HG), where

HG is the maximal normal subgroup of G contained in H and Φ(H/HG) is the Frattini subgroup

of H/HG.
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In this paper, we will use the SΦ-embedded subgroup to study the structure of finite groups.

Some new characterizations of p-supersolvability of finite groups are obtained.

2. Preliminaries

Lemma 2.1. Let N be a normal subgroup of G and H ≤ G.

(1) Assume that P is a non-trivial p-subgroup of G for some prime divisor p of |G|. Then

Φ(P )N/N ≤ Φ(PN/N).

(2) Let H be a subgroup of G satisfying (|H|, |N |) = 1. Then Φ(H)N/N = Φ(HN/N).

(3) If H is subnormal in G and H is a π-subgroup of G, then H ≤ Oπ(G).

P r o o f. (1) and (2) are clear. (3) is well known (see [9, 1.10.17)]).

Lemma 2.2. Let G be a group and H ≤ K ≤ G.

(1) H is SΦ-embedded in G if and only if G has a normal subgroup T such that HT is S-

quasinormal in G, HG ≤ T and (H ∩ T )/HG ≤ Φ(H/HG).

(2) Suppose that H is SΦ-embedded in G, then H is SΦ-embedded in K.

(3) Let H be a normal subgroup of G. Then K/H is SΦ-embedded in G/H if and only if K is

SΦ-embedded in G.

(4) Suppose that H is normal in G, then for every SΦ-embedded subgroup E of G satisfying

(|H|, |E|) = 1, EH/H is SΦ-embedded in G/H.

P r o o f. (1) Assume that H is SΦ-embedded in G and let T0 be a normal subgroup of G

such that HT0 is S-quasinormal in G and (H ∩ T0)HG/HG ≤ Φ(H/HG). Let T = T0HG. Then

HT = HT0 is S-quasinormal in G and (H ∩ T )/HG = (H ∩ T0)HG/HG ≤ Φ(H/HG). The converse

is clear.

(2) Suppose that T is a normal subgroup of G such that HT is S-quasinormal in G, HG ≤ T

and (H ∩ T )/HG ≤ Φ(H/HG). Let T1 = T ∩ K. Then HT1 = HT ∩ K is S-quasinormal in K

(see [1, 1.2.14(4)]). Since HG ≤ HK , (H ∩ T1)HK/HK = (H ∩ T )HK/HK ≤ Φ(H/HK) by [8, A,

(9.2)(e)].

(3) Firstly, assume that K/H is SΦ-embedded in G/H. By (1), G/H has a normal subgroup

T/H such that (K/H)(T/H) is S-quasinormal in G/H, (K/H)G/H = KG/H ≤ T/H and (K/H ∩

T/H)/(K/H)G/H ≤ Φ((K/H)/(K/H)G/H ). Then KT is S-quasinormal in G by [1, 1.2.14(1)]. Since

Φ((K/H)/(K/H)G/H ) ∼= Φ(K/KG), (K ∩ T )/KG ≤ Φ(K/KG). Hence K is SΦ-embedded in G.

Analogously, one can show that if K is SΦ-embedded in G, then K/H is SΦ-embedded in G/H.

(4) Assume that H is normal in G and E is SΦ-embedded in G satisfying (|H|, |E|) = 1. By (1), G

has a normal subgroup T such that ET is S-quasinormal in G, EG ≤ T and (E∩T )/EG ≤ Φ(E/EG).

By (3), we only need to show that HE is SΦ-embedded in G. Clearly HET is S-quasinormal

in G by [1, 1.2.2]. Since (|H|, |E|) = 1, (|HE ∩ T : H ∩ T |, |HE ∩ T : E ∩ T |) = 1. Hence

HE ∩ T = (H ∩ T )(E ∩ T ) by [8, A, (1.6)(b)], and (HE ∩ T )(HE)G/(HE)G ≤ Φ(HE/(HE)G) by

[8, A, (9.2)] and Lemma 2.1(2). Thus HE is SΦ-embedded in G.

Lemma 2.3. Assume that G = N1×N2 · · · ×Nt, where t > 1 is an integer and N1, N2, · · · , Nt

are non-abelian simple groups. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|

with p | |Ni| for i = 1, 2, · · · , t. Then any non-identity subgroup of P ∩Ni can not be SΦ-embedded

in G, for i = 1, 2, · · · , t.

P r o o f. Assume that there exists an integer i ∈ {1, 2, · · · , t} such that P ∩ Ni has a non-

trivial subgroup H which is SΦ-embedded in G. Then H is SΦ-embedded in Ni by Lemma 2.2(2).

Obviously HNi
= 1. Let T be a normal subgroup of Ni such that HT is S-quasinormal in Ni

and H ∩ T ≤ Φ(H). If T = 1, then H = HT is S-quasinormal in Ni. Hence H ≤ Op(Ni) = 1
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by [1, 1.2.14(3)] and Lemma 2.1(3). This contradiction shows that T = Ni. It follows that H =

H ∩Ni ≤ Φ(H), a contradiction.

Lemma 2.4 [2, Theorem 7]. Let G be a group whose Sylow p-subgroups are of order p2 and

Op′(G) = 1. If G has the unique minimal normal subgroup N and N is isomorphic to a cyclic group

of order p, then G is p-supersolvable.

For a formation F of groups, GF denotes the F-residual of G, that is, GF =
⋂
{N |G/N ∈ F}.

Lemma 2.5 [3, Theorem 1]. Let F be a saturated formation and G be a group such that G /∈ F

but all its proper subgroups belong to F . Then GFΦ(G)/Φ(G) is the unique minimal normal subgroup

of G/Φ(G).

The following facts about the generalized Fitting subgroup are useful in our proofs (see [13,

Chapter X] and [10, Lemma 2.14, 2.15 and 2.16]).

Lemma 2.6. Let G be a group. Then :

(1) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

(2) CG(F
∗(G) ≤ F (G).

(3) If N is a normal solvable subgroup of G, then F ∗(G/Φ(N)) = F ∗(G)/Φ(N).

(4) If N is normal in G, then F ∗(N) = F ∗(G) ∩N .

(5) If P is a normal p-subgroup of G contained in Z(G), then F ∗(G/P ) = F ∗(G)/P .

3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of G for a fixed prime divisor p of |G|. Suppose

that all maximal subgroups of P are SΦ-embedded in G. Then G is p-supersolvable or |P | = p.

P r o o f. Suppose that the assertion is false and let G be a counterexample of minimal order.

Then |P | > p2. We proceed the proof via the following steps:

(1) G is not a non-abelian simple group (It follows directly from Lemma 2.3).

(2) Op′(G) = 1.

Suppose that Op′(G) > 1. Then G/Op′(G) satisfies the hypothesis for G by Lemma 2.2(4).

The choice of G implies that G/Op′(G) is p-supersolvable. It follows that G is p-supersolvable, a

contradiction.

(3) G is not p-solvable. Consequently Op(G) < P .

Assume that G is p-solvable. Then there exists a minimal normal subgroup N of G contained

in Op(G) by (2). We claim that G/N is p-supersolvable. It is obvious if |P/N | 6 p. We may,

therefore, assume that |P/N | > p2. Then G/N satisfies the hypothesis by Lemma 2.2(3). Hence

G/N is p-supersolvable. This implies that G has a unique minimal normal subgroup, N say, and

Φ(G) = 1. Then G = N ⋊ M for some maximal subgroup M of G and Op(G) ∩ M = 1. Thus

Op(G) = N(Op(G) ∩ M) = N and P = Op(G) ⋊ Mp, where Mp = P ∩ M . Let P1 be a maximal

subgroup of P containing Mp. Clearly (P1)G = 1. By the hypothesis, G has a normal subgroup T

such that P1T is S-quasinormal in G and P1∩T ≤ Φ(P1). If T = 1, then P1 = P1T is S-quasinormal

in G. It follows from [1, 1.2.16] that P1 is normal in G, a contradiction. Hence Op(G) ≤ T , so

P1 = Mp(P1∩Op(G)) = MpΦ(P1) = Mp. Consequently |Op(G)| = p. Therefore G is p-supersolvable,

a contradiction.

(4) If Op(G) > 1, then |P/Op(G)| = p and Op(G) is a minimal normal subgroup of G.

Assume that |P/Op(G)| > p2. Then G/Op(G) is p-supersolvable by Lemma 2.2(3) and the

choice of G. It follows that G is p-solvable, a contradiction. Hence |P/Op(G)| = p. Now assume

that N is a non-trivial normal subgroup of G such that N < Op(G). Then |P/N | > p2, and G/N is

p-supersolvable similar as above, which also implies G is p-solvable, which contradicts (3).
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(5) If N is a minimal normal subgroup of G, then G/N is p-supersolvable or |G/N |p = p.

By (2), p | |N |. If N is abelian, then N = Op(G) and |G/N |p = p by (4). Now assume that N

is non-abelian. Without loss of generality, we may assume |PN/N | > p2.

Let M/N be an arbitrary maximal subgroup of PN/N . Then M = NP1, where P1 = P ∩M is

a maximal subgroup of P . We now show that M/N is SΦ-embedded in G/N . By Lemma 2.2(3) we

only need to show that M is SΦ-embedded in G. By the hypothesis, G has a normal subgroup T such

that P1T is S-quasinormal in G, (P1)G ≤ T and (P1 ∩ T )/(P1)G ≤ Φ(P1/(P1)G). Obviously, MT is

S-quasinormal in G by [1, 1.2.2]. If N ≤ T , then (M ∩T )MG/MG = (P1 ∩T )MG/MG ≤ Φ(M/MG)

by Lemma 2.1(1) and [8, A, (9.2)]. Thus M is SΦ-embedded in G. Hence we may assume that

N ∩T = 1. If P1T ∩N = 1, then P1T ∩N = (P1∩N)(T ∩N) = 1. Thus P1N ∩TN = (P1∩T )N by

[8, A, (1.2)]. Similar as above, M is SΦ-embedded in G by taking the normal subgroup TN . Now

assume that P1T ∩N 6= 1. Since |P1T ∩N | = |P1T ∩N : P1T ∩N ∩T | = |P1∩NT : P1∩T | is power

of p, P1T ∩ N ≤ Op(G) by [1, 1.2.14(3)] and Lemma 2.1(3). It follows that P1 ∩ N is subnormal

in G. Hence P1 ∩N = N since P1 ∩N = P ∩N is a Sylow p-subgroup of N . Consequently N ≤ P1,

a contradiction. The above shows that G/N satisfies the hypothesis. Therefore (5) holds by the

choice of G.

(6) If N is a minimal normal subgroup of G, then 1 < P ∩N < P .

In view of (2), we see that 1 < P ∩N . If P ≤ N , then N is p-supersolvable since N satisfies the

hypothesis by Lemma 2.2(2). But since G/N is a p′-group, G is p-solvable, which contradicts (3).

Hence P ∩N < P .

(7) G has a unique minimal normal subgroup, N say.

By (1), G has a minimal normal subgroup. Now suppose that N1 and N2 are two different

minimal normal subgroups of G. Then G/Ni is p-supersolvable or |G/Ni|p = p for i = 1, 2 by (5).

First assume that both G/N1 and G/N2 are p-supersolvable, then G ∼= G/(N1 ∩N2) is p-super-

solvable, a contradiction. Secondly assume that G/N1 is p-supersolvable and |G/N2|p = p. By (6),

p | |N2|. The G-isomorphism N2
∼= N2N1/N1 implies that |N2| = p, so |P | = p2. Therefore N1 ∩ P

is a maximal subgroup of P by (6) again, and N1 is a non-abelian simple group since N1 ∩ P is a

Sylow p-subgroup of N1. Hence N1 ∩P is SΦ-embedded in N1 by Lemma 2.2(2), which contradicts

Lemma 2.3. Lastly suppose that |G/N1|p = |G/N2|p = p. Then |P ∩ N1| = |P ∩ N2| = p and

|P | = p2. Consequently N1 is a non-abelian simple group and P ∩ Ni is SΦ-embedded in Ni for

i = 1, 2 by Lemma 2.2(2), which contradicts Lemma 2.3 again. Hence we have (7).

(8) Op(G) = 1.

Assume that Op(G) 6= 1. Then by (4) and (7), Op(G) is a maximal subgroup of P and

Op(G) = N . If Op(G) is the unique maximal subgroup of P , then Op(G) = Φ(P ) and P is cyclic.

Consequently |Op(G)| = p and |P | = p2. Hence by Lemma 2.4, G is p-supersolvable, a contradiction.

Thus P has a non-trivial maximal subgroup P1 which is different from Op(G). Clearly P = P1Op(G)

and (P1)G = 1 by (7). Let T be a normal subgroup of G such that P1T is S-quasinormal in G and

P1 ∩ T ≤ Φ(P1). If T = 1, then P1 is S-quasinormal in G, which implies P1 E G by [1, 1.2.16],

a contradiction. Also T = G induces that P1 = P1 ∩ T ≤ Φ(P1), a contradiction. Therefore

Op(G) ≤ T < G, and so P ≤ P1T . If P1T < G, then by [1, 1.2.14(3)], G has a proper normal

subgroup L such that P1T ≤ L. Then L is p-supersolvable by the choice of G and Lemma 2.2(2).

But then G is p-solvable since G/L is a p′-group, which contradicts (3). Thus G = P1T . Clearly

Op(G) ≤ P ∩ T . If P ∩ T = P , then G = T , a contradiction. Hence Op(G) = P ∩ T is the Sylow

p-subgroup of T . By the Schur-Zassenhaus Theorem, T = Op(G) ⋊ Tp′ , where Tp′ is a Hall p′-

subgroup of T . Clearly Op(G) � Φ(G), so Φ(G) = 1. Let M be a maximal subgroup of G such

that G = Op(G) ⋊ M . Then P = Op(G) ⋊ Mp, where Mp = P ∩ M > 1. Let P2 be a maximal

subgroup of P containing Mp. Then (P2)G = 1 and G has a normal subgroup K such that P2K is

S-quasinormal in G and P2∩K ≤ Φ(P2). Similar as the above, we can obtain that Op(G) ≤ K < G.

Thus P2 = (P2 ∩ Op(G))Mp = Φ(P2)Mp = Mp. This implies that |Op(G)| = p, which contradicts

Lemma 2.4. Hence we have (8).
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(9) Final contradiction.

Let P1 be a maximal subgroup of P containing Np = P∩N . Then (P1)G = 1 by (8). Hence by the

hypothesis, G has a normal subgroup T such that P1T is S-quasinormal in G and P1 ∩ T ≤ Φ(P1).

If T = 1, then P1 is normal in G by [1, 1.2.16], a contradiction. Hence T 6= 1 and so N ≤ T .

Consequently P ∩ N ≤ P1 ∩ T ≤ Φ(P1) ≤ Φ(P ). This implies that N is p-nilpotent (see [12, IV,

4.7]), which contradicts (2) and (8). The final contradiction completes the proof.

Corollary 3.1.1. Let p be a prime divisor of |G| and H be a p-nilpotent normal subgroup of G

such that G/H is p-supersolvable. If H has a Sylow p-subgroup P such that every maximal subgroup

of P is SΦ-embedded in G, then G is p-supersolvable.

P r o o f. Suppose that the corollary is false and let (G,H) be a counterexample such that

|G|+ |H| is minimal. Then clearly p2 | |H|.

Firstly we claim that H = P . Since Op′(H) is normal in G, (G/Op′(H),H/Op′(H)) satisfies

the hypothesis by Lemma 2.2(4). The choice of (G,H) implies that G/Op′(H) is p-supersolvable if

Op′(H) > 1. It follows that G is p-supersolvable, a contradiction. Thus H = P .

Now we prove that H is a minimal normal subgroup of G. Let N be a minimal normal subgroup

of G contained in H. We first show that G/N is p-supersolvable. If |H/N | 6 p, this is clear. Hence

we may assume that |H : N | > p2. Then G/N is also p-supersolvable by considering (G/N,H/N)

and using Lemma 2.2(3). This implies that G has a unique minimal normal subgroup N contained

in H and N * Φ(G). Let M be a maximal subgroup of G such that G = N ⋊M . Since H ∩M is

normal in G (see [8, A, (8.4)]), H ∩M = 1. Thus H = N(H ∩M) = N .

Let H1 be a non-trivial maximal subgroup of H such that H1EGp for some Sylow p-subgroup Gp

of G. By the hypothesis, G has a normal subgroup T such that H1T is S-quasinormal in G and

H1 ∩ T ≤ Φ(H1). If H ∩ T = 1, then H1 = H1(H ∩ T ) = H ∩ H1T is S-quasinormal in G (see

[1, 1.2.19]). Hence H1 is normal in G by [1, 1.2.16], a contradiction. Thus H ∩ T 6= 1, and so

H ≤ T . This implies that H1 = H1 ∩ T ≤ Φ(H1) and therefore H1 = 1. Then |H| = p and so G is

p-supersolvable. The contradiction completes the proof.

Corollary 3.1.2. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with

(|G|, p − 1) = 1. If every maximal subgroup of P is SΦ-embedded in G, then G is p-nilpotent.

P r o o f. It follows directly from Theorem 3.1 and [18, (10.1.8)].

Corollary 3.1.3. Let E be a normal subgroup of G such that G/E is p-nilpotent, where p is a

prime divisor of |G| with (|G|, p − 1) = 1. If E has a Sylow p-subgroup P such that every maximal

subgroup of P is SΦ-embedded in G, then G is p-nilpotent.

P r o o f. First assume that E = P and let K/P be the normal Hall p′-subgroup of G/P . Then

K = P ⋊ Kp′ by the Schur-Zassenhaus Theorem, where Kp′ is a Hall p′-subgroup of K. Clearly

Kp′ is also a Hall p′-subgroup of G. By Lemma 2.2(2) and Corollary 3.1.2, K is p-nilpotent, and so

K = P ×Kp′ . It follows that Kp′ is normal in G, and consequently G is p-nilpotent. Now assume

that E > P . Then E is p-nilpotent by Lemma 2.2(2) and Corollary 3.1.2. Let Ep′ be the normal

Hall p′-subgroup of E. By Lemma 2.2(4) and induction, G/Ep′ is p-nilpotent. This also implies that

G is p-nilpotent.

Corollary 3.1.4. Suppose that all maximal subgroups of every non-cyclic Sylow subgroup of G

are SΦ-embedded in G. Then G is a Sylow tower group of supersolvable type.

P r o o f. Let p be the smallest prime divisor of |G| and P be a Sylow p-subgroup of G. If P

is cyclic, then G is p-nilpotent by [18, 10.1.9]. Otherwise, G is still p-nilpotent by Corollary 3.1.2.

Let U be the normal Hall p′-subgroup of G. By Lemma 2.2(2), U satisfies the hypothesis. Therefore,

by induction, G is a Sylow tower group of supersolvable type.
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Theorem 3.2. Assume that all maximal subgroups of every non-cyclic Sylow subgroup of F ∗(G)

are SΦ-embedded in G. Then G is supersolvable.

P r o o f. Suppose that the theorem is false and let G be a counterexample of minimal order.

We proceed via the following steps:

(1) Every proper normal subgroup of G containing F ∗(G) is supersolvable.

Let M be a proper normal subgroup of G containing F ∗(G). Then F ∗(M) = F ∗(G) by

Lemma 2.6(4). Hence M satisfies the hypothesis by Lemma 2.2(2). The choice of G implies that M

is supersolvable.

(2) G is not solvable.

Assume that G is solvable, then F ∗(G) = F (G) by Lemma 2.6(1).

If Φ(G) = 1, then F (G) = N1 × N2 · · · × Nt by [8, A, (10.6)], where t > 1 is an integer

and N1, N2, · · · , Nt are minimal normal subgroups of G. Without loss of generality, assume that

P = N1 ×N2 · · · ×Ns (1 6 s 6 t) is the Sylow p-subgroup of F (G) for some prime p | |F (G)|. We

claim that |Ni| = p for i = 1, 2, · · · , s. Otherwise, |Ni| > p for some i ∈ {1, 2, · · · , s}. Without loss

of generality, assume that |N1| > p. Let N∗
1 be a maximal subgroup of N1 such that N∗

1 E Gp for

some Sylow p-subgroup Gp of G. Let P1 = N∗
1N2 · · ·Ns. Then P1 is a maximal subgroup of P and

P1 is normal in Gp with (P1)G = N2 · · ·Ns. Put D = (P1)G. Since P1 is SΦ-embedded in G, G has

a normal subgroup T such that P1T is S-quasinormal in G, D ≤ T and (P1 ∩ T )/D ≤ Φ(P1/D).

Since Φ(N∗
1 ) ≤ Φ(N1) ≤ Φ(G) = 1 and the G-isomorphism P1/D ∼= N∗

1 , we have that P1 ∩ T = D.

If N1 ≤ T , then P ≤ T and P1 = P1 ∩ T = D, which implies N∗
1 = 1, a contradiction. Hence

N1 ∩ T = 1. Consequently P ∩ T = D and P1 = P1(P ∩ T ) = P ∩ P1T is S-quasinormal in G

(see [1, 1.2.19]), which implies that P1 is normal in G by [1, 1.2.16], a contradiction. Therefore

F (G) = N1 × N2 · · · × Nt, where Ni (i = 1, 2, · · · , t) are all of prime order. But then G/CG(Ni)

(i = 1, 2, · · · , t) is abelian, so G/(
⋂t

i=1CG(Ni)) = G/CG(F (G)) is abelian. Also CG(F (G)) = F (G)

by Lemma 2.6(2). This implies that G is supersolvable since every chief factor of G below F (G) is

cyclic.

Now assume Φ(G) > 1. Let P = Op(Φ(G)) > 1. Since F ∗(G/P ) = F (G/P ) = F (G)/P (see

[8, A, (9.3)(c)]), G/P satisfies the assumptions by Lemma 2.2 (3), (4). The choice of G implies that

G/P is supersolvable. Thus G is supersolvable, a contradiction.

(3) F ∗(G) = F (G) and G = F (G)Op(G).

By Lemma 2.2(2) and Corollary 3.1.4, F ∗(G) is a Sylow tower group of supersolvable type.

Particularly, F ∗(G) is solvable. Hence F ∗(G) = F (G) by Lemma 2.6(1). Suppose that

F (G)Op(G) < G. Then F (G)Op(G) is supersolvable by (1). Thus G is solvable since G/F (G)Op(G)

is a p-group, which contradicts (2). Hence (3) holds.

(4) Φ(F (G)) = 1 and CG(F (G)) = F (G).

Assume that F (G) has a Sylow p-subgroup P such that Φ(P ) > 1. By Lemma 2.6(3),

F ∗(G/Φ(P )) = F ∗(G)/Φ(P ). So G/Φ(P ) satisfies the hypothesis. The choice of G implies that

G/Φ(P ) is supersolvable. Consequently G is supersolvable. This contradiction shows that F (G)

is elementary abelian and so Φ(F (G)) = 1. Then together with (3) and Lemma 2.6(2), we have

CG(F (G)) = F (G).

(5) There exists no normal subgroup of G contained in F (G) with prime order.

Assume that G has a normal subgroup N contained in F (G) with |N | = p. Let C = CG(N).

By (4), F (G) ≤ C. If C < G, then C is supersolvable by (1). But since G/C is abelian, it follows

that G is solvable, which contradicts (2). We may, therefore, assume C = G, that is, N ≤ Z(G). By

Lemma 2.6(5), F ∗(G/N) = F ∗(G)/N . Hence G/N is supersolvable by Lemma 2.2 and the choice

of G. It follows that G is supersolvable, a contradiction.

(6) π(Φ(G)) = π(F (G)).

Suppose that (6) is false. Then F (G) has a Sylow subgroup P such that P ∩Φ(G) = 1. Similar

as the proof in (2), we see that there exists at least one minimal normal subgroup of G contained
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in P with prime order, which contradicts (5).

(7) F (G) is a p-group and there exists exactly one minimal normal subgroup of G contained in

F (G), L say.

Suppose that |F (G)| contains two different primes p and q. Let P and Q be the Sylow p-subgroup

and the Sylow q-subgroup of F (G). By (6), G has a minimal normal subgroup L contained in

P ∩Φ(G). By [13, p.128], F ∗(G/L) = F (G/L)E(G/L) and [F (G/L), E(G/L)] = 1, where E(G/L)

is the layer of G/L. Denote E(G/L) = E/L. Since F (G/L) = F (G)/L by [8, A, (9.3)(c)], [Q,E] ≤

Q ∩ L = 1. It follows from (4) that F (G)E ≤ CG(Q). If CG(Q) < G, then CG(Q) is supersolvable

by (1). Hence F ∗(G/L) = F (G)/L by Lemma 2.6(1). The choice of G and Lemma 2.2 imply that

G/L is supersolvable. Consequently G is supersolvable, a contradiction. Therefore CG(Q) = G,

which contradicts (5). Thus F (G) is a p-group.

Now assume that X is another minimal normal subgroup of G contained in F (G) different

from L. Using the same symbol as above, then [X,E] ≤ X ∩ L = 1, and so F (G)E ≤ CG(X). If

CG(X) < G, then CG(X) is supersolvable by (1). Similar as above, we see that G is supersolvable, a

contradiction. Therefore CG(X) = G, which contradicts (5). Thus L is the unique minimal normal

subgroup of G contained in F (G).

(8) Final contradiction.

By (4), there exists a maximal subgroup P1 of P = F (G) which does not contain L and

Φ(P1) = 1. Then (P1)G = 1 by (7). Let T be a normal subgroup of G such that P1T is S-quasinormal

in G and P1 ∩ T = 1. Since |P ∩ T | = |P ∩ T : P1 ∩ T | 6 |P : P1| = p, P ∩ T = 1 by (5). Hence

P1 = P1(P ∩T ) = P ∩P1T is S-quasinormal in G by [1, 1.2.19]. Thus P1 is normal in G by (3) and

[1, 1.2.16]. The final contradiction completes the proof.

Corollary 3.2.1 [17, Theorem 3.1]. Let G be a solvable group. If all maximal subgroups of the

Sylow subgroups of F (G) are normal in G, then G is supersolvable.

Note that a subgroup H of G is called c-normal [20] in G if there exists a normal subgroup N

of G such that HN = G and H ∩N ≤ HG. Clearly a c-normal subgroup H is SΦ-embedded in G.

But the following example shows that the converse is false.

Example 3.1. Let G = S4 and H = 〈(1234)〉. Clearly HG = 1 and Φ(H) = {1, (13)(24)}. It

is easy to check that H is SΦ-embedded in G by taking the Klein 4-group K4. However H is not

c-normal in G since G has no normal subgroup of order 6.

Corollary 3.2.2 [14, Theorem 1]. Assume that G is solvable and every maximal subgroup of

Sylow subgroups of F (G) is c-normal in G. Then G is supersolvable.

Theorem 3.3. Let E be a normal subgroup of G such that G/E is p-supersolvable, where p is

a prime divisor of |G|. If every cyclic subgroup of E with order p or 4 (if p = 2) is SΦ-embedded

in G, then G is p-supersolvable.

P r o o f. Suppose that the theorem is false and let (G,E) be a counterexample such that

|G|+ |E| is minimal. Note that Up denotes the class of p-supersolvable groups. Then:

(1) p | |E| and E = GUp

(It follows directly from the choice of (G,E)).

(2) G is a minimal non-p-supersolvable group and Op′(G) = 1.

It follows from Lemma 2.2 (2), (4) and the choice of (G,E).

(3) G/Φ(G) is a non-abelian simple group.

By (2) and Lemma 2.5, GUp

Φ(G)/Φ(G) is the unique minimal normal subgroup of G/Φ(G). Let

N = GUp

Φ(G). Then G/N is p-supersolvable. Hence p | |N/Φ(G)|.

Assume that N/Φ(G) is abelian. Then N is solvable. It follows from (2) and [9, (3.4.2)] that GUp

is a p-group and GUp

/Φ(GUp

) is a non-cyclic G-chief factor with exponent p or 4 (if GUp

/Φ(GUp

)
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is a non-abelian 2-group). Take x ∈ GUp

\Φ(GUp

) such that 〈x〉Φ(GUp

) is normal in some Sylow p-

subgroup of G. Denote H = 〈x〉. Then H is of order p or 4. If H is normal in G, then GUp

/Φ(GUp

) =

HΦ(GUp

)/Φ(GUp

) is cyclic of order p, a contradiction. Thus HG = 1 or HG = 〈x2〉 = Φ(H) if

|H| = 4. By the hypothesis, G has a normal subgroup T such that HT is S-quasinormal in G,

HG ≤ T and (H ∩ T )/HG ≤ Φ(H/HG). Obviously H ∩ T ≤ Φ(H) whether HG = 1 or HG = 〈x2〉.

Since GUp

/Φ(GUp

) is a chief factor of G, (T ∩ GUp

)Φ(GUp

) = GUp

or Φ(GUp

). In the case when

(T ∩ GUp

)Φ(GUp

) = GUp

, we have that H = H ∩ T ≤ Φ(H), a contradiction. Hence T ∩ GUp

≤

Φ(GUp

), so HΦ(GUp

) = (HT ∩GUp

)Φ(GUp

) is S-quasinormal in G by [1, 1.2.19]. But then HΦ(GUp

)

is normal is G (see [1, 1.2.16]). Consequently HΦ(GUp

) = GUp

and so GUp

/Φ(GUp

) is cyclic. This

contradiction shows that N/Φ(G) is non-abelian. It follows from (2) that G/Φ(G) = N/Φ(G) is a

non-abelian simple group.

(4) F (G) = Φ(G) = Op(G) = Z(G).

By (2) and (3), F (G) = Φ(G) = Op(G) ≥ Z(G). If C = CG(Op(G)) < G, then C ≤ Φ(G)

by (3). Let M be an arbitrary maximal subgroup of G. Then Op(G) = Φ(G) ≤ M = ZUp(M)

by (2), and so Op(G) ≤ ZU (M). Hence M/CM (Op(G)) = M/(M ∩ C) = M/C is supersolvable by

[12, VI, 9.8]. This shows that G/C is a minimal non-supersolvable group. Then G/C is solvable (see

[18, (10.3.4)]) and so G is solvable, which contradicts (3). Therefore C = G.

(5) Final contradiction.

Note that if every element of order p or 4 belongs to Φ(G) = Z(G), then G is p-nilpotent by

[12, IV, 5.5], and so G is p-supersolvable. Hence there exists an element x in G of order p or 4, which

does not belong to Φ(G). Let H = 〈x〉. If H is normal in G, then HΦ(G) = G by (3), and so G = 〈x〉

is cyclic, which is impossible. Then HG = 1 or HG = 〈x2〉 = Φ(H) (when |H| = 4). Let T be a

normal subgroup of G such that HT is S-quasinormal in G, HG ≤ T and (H ∩T )/HG ≤ Φ(H/HG).

Similar as above, we have that H ∩ T ≤ Φ(H). By (3), T = G or T ≤ Φ(G). If T = G, then

H = H ∩ T ≤ Φ(H), a contradiction. Hence T ≤ Φ(G). It follows from [1, 1.2.7(2) and 1.2.14(3)]

that HTΦ(G)/Φ(G) = HΦ(G)/Φ(G) is subnormal in G/Φ(G). Then HΦ(G) = G by (3) and the

choice of x. Thus G = 〈x〉 is cyclic. This contradiction completes the proof.
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