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ON S®-EMBEDDED SUBGROUPS OF FINITE GROUPS!
L. Zhang, W. Guo, L. Huo

A subgroup H of G is called S®-embedded in G if there exists a normal subgroup T of G such that HT
is S-quasinormal in G and (H NT)Hg/Hg < ®(H/Hg), where Hg is the maximal normal subgroup of G
contained in H and ®(H/H¢) is the Frattini subgroup of H/H¢. In this paper, we investigate the influence
of SP-embedded subgroups on the structure of finite groups. In particular, some new characterizations of p-
supersolvability of finite groups are obtained by assuming some subgroups are S®-embedded.
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JL. Uxan, B.I'o, JI. Xo. O S®-BroxKeHHBIX TOATPYIIIaX KOHEYHBIX I'PYIIIL.

Ilogrpynna H rpynnst G nasbiBaerca SP-piaoxkennoil B G, ecnu B (G cymecTByeT HOpMaJlbHas noarpymmoa 1’
takas, yro HT siBisierca S-kBasunopmanbuoit B G u (H NT)Hg/Hg < ®(H/Hg), tne Hg — MakcumasbHas
HOpMaJIbHas noArpynmna rpynnst G, cogepxkammasicsa B H, u ®(H/Hg) — nonrpynna @parrunu rpynnst H/Hg.
Usyuaerca Biausaue SP-BIOKEHHBIX MOAPYNI HA CTPYKTYPY KOHEUHBIX IPYII. B 9acTHOCTH, MOJYyYEeHBI HO-
BbI€ XapaKTEPU3aIUN P-CBEPXPA3PEIINMOCTH KOHEYHBIX IPYII B IIPE/IIOJIOXKEHUN, YTO HEKOTOPBIE ITOAIPYIIIb
ABIAIOTCA S P-BIIOXKEHHBIMU.

Koouessble ciioBa: cumoBcKast p-noArpymmna, SP-siokeHHast HOArPYIa, p-CBEPXpa3pelInMast IpyIa, p-HuIb-
[IOTEHTHAas IPyIIIa.

1. Introduction

Throughout this paper, all groups are finite and G denotes a finite group. All unexplained
notation and terminology are standard, as in [8;9] and [12].

It is well-known that embedded subgroups play an important role in the study of finite groups.
Recall that a subgroup H of G is said to be quasinormal [5-7] (resp. S-quasinormal [19]) in G
if H permutes with all subgroups (resp. Sylow subgroups) of G. A subgroup H of G is said to be
n-embedded [10] in G if for some normal subgroup 7' of G and some S-quasinormal subgroup S
of G contained in H, HT is normal in G and HNT < S. Let § be a non-empty formation (see [§]
or [9]). A subgroup H of G is said to be §s-quasinormal [11] in G if for some normal subgroup 7'
of G, HT is S-quasinormal in G and (H NT)Hqg/Hg < Zz(G/Hg). A p-subgroup H of G is called
sn-embedded [16] in G if for some normal subgroup T' of G and some S-quasinormally embedded
subgroup S of G contained in H, HT is S-quasinormal in G and HNT < S. Note that a subgroup H
of G is said to be T-quasinormal [15] in G if H permutes with all Sylow g-subgroups @ of G such
that (q,|H|) = 1 and (|H|,|Q%|) # 1. A subgroup H of G is said to be weakly 7-embedded [4] in G
if for some normal subgroup T of G and some 7T-quasinormal subgroup S of G contained in H,
HT is S-quasinormal in G and H NT < §. By using the above embedding subgroups, a series of
interesting results were obtained (see [4;10;11;16]).

Now we introduce the following new embedded subgroup.

Definition. A subgroup H of G is said to be S®-embedded in G if there exists a normal
subgroup 7' of G such that HT is S-quasinormal in G and (H NT)Hg/Hg < ®(H/Hg), where

H¢ is the maximal normal subgroup of G contained in H and ®(H/Hg) is the Frattini subgroup
of H/Hg.
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In this paper, we will use the S®-embedded subgroup to study the structure of finite groups.
Some new characterizations of p-supersolvability of finite groups are obtained.

2. Preliminaries

Lemma 2.1. Let N be a normal subgroup of G and H < G.

(1) Assume that P is a non-trivial p-subgroup of G for some prime divisor p of |G|. Then
®(P)N/N < ®(PN/N).

(2) Let H be a subgroup of G satisfying (|H|,|N|) = 1. Then ®(H)N/N = ®(HN/N).

(3) If H is subnormal in G and H is a w-subgroup of G, then H < O(G).

Proof (1) and (2) are clear. (3) is well known (see |9, 1.10.17)]).

Lemma 2.2. Let G be a group and H < K < G.

(1) H is SP-embedded in G if and only if G has a normal subgroup T such that HT is S-
quasinormal in G, Ho < T and (HNT)/Hg < ®(H/Hg).

(2) Suppose that H is SP®-embedded in G, then H is S®-embedded in K.

(3) Let H be a normal subgroup of G. Then K/H is S®-embedded in G/H if and only if K is
S®-embedded in G.

(4) Suppose that H is normal in G, then for every S®-embedded subgroup E of G satisfying
(|H|,|E|) =1, EH/H is S®-embedded in G/H.

Proof (1) Assume that H is SP-embedded in G and let Tj be a normal subgroup of G
such that HTj is S-quasinormal in G and (H NTy)Hg/Hg < ®(H/Hg). Let T = ToHg. Then
HT = HTj is S-quasinormal in G and (HNT)/Hg = (HNTy)Hg/He < ®(H/Hg). The converse
is clear.

(2) Suppose that T is a normal subgroup of G such that HT is S-quasinormal in G, Hg < T
and (HNT)/Hg < ®(H/Hg). Let Ty = TN K. Then HT} = HT N K is S-quasinormal in K
(see [1, 1.2.14(4)]). Since Hg < Hg, (HﬂTl)HK/HK = (Hﬂ T)HK/HK < @(H/HK) by [8, A,
(92)(c)].

(3) Firstly, assume that K/H is S®-embedded in G/H. By (1), G/H has a normal subgroup
T'/H such that (K/H)(T/H) is S-quasinormal in G/H, (K/H)q/p = Kg/H <T/H and (K/H N
T/H)/(K/H)q/g < ®((K/H)/(K/H)g/x)- Then KT is S-quasinormal in G by [1, 1.2.14(1)]. Since
((K/H)/(K/H)q/u) = ®(K/Kg), (KNT)/Kg < ®(K/Kg). Hence K is S®-embedded in G.
Analogously, one can show that if K is S®-embedded in G, then K/H is S®-embedded in G/H.

(4) Assume that H is normal in G and E is S®-embedded in G satistying (|H|, |E|) = 1. By (1), G
has a normal subgroup T such that ET is S-quasinormal in G, Eq < T and (ENT)/Eq < ®(E/Eq).
By (3), we only need to show that HE is S®-embedded in G. Clearly HET is S-quasinormal
in G by [1, 1.2.2]. Since (|H,|E|]) = 1, |(HENT : HNT|,|HENT : ENT|) = 1. Hence
HENT =(HNT)(ENT) by [8, A, (1.6)(b)], and (HENT)(HE)g/(HE)c < ®(HE/(HE)q) by
8, A, (9.2)] and Lemma 2.1(2). Thus HE is S®-embedded in G.

Lemma 2.3. Assume that G = N1 X Ny - -+ X N;, where t > 1 is an integer and N1, No,--- , N¢
are non-abelian simple groups. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|
with p | |N;| for i =1,2,--- ,t. Then any non-identity subgroup of P N N; can not be S®-embedded
inG, fori=1,2,--- ,t.

Proof. Assume that there exists an integer i € {1,2,--- ,t} such that P N N; has a non-
trivial subgroup H which is S®-embedded in G. Then H is S®-embedded in N; by Lemma 2.2(2).
Obviously Hy, = 1. Let T' be a normal subgroup of N; such that HT is S-quasinormal in IV;
and HNT < ®(H). If T = 1, then H = HT is S-quasinormal in N;. Hence H < O,(N;) =1
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by [1, 1.2.14(3)] and Lemma 2.1(3). This contradiction shows that 7' = N,. It follows that H =
HNN; <®(H), a contradiction.

Lemma 2.4 [2, Theorem 7|. Let G be a group whose Sylow p-subgroups are of order p* and
Oy (G) = 1. If G has the unique minimal normal subgroup N and N is isomorphic to a cyclic group
of order p, then G is p-supersolvable.

For a formation F of groups, G denotes the F-residual of G, that is, G = N{N|G/N € F}.

Lemma 2.5 [3, Theorem 1|. Let F be a saturated formation and G be a group such that G ¢ F
but all its proper subgroups belong to F. Then GT ®(G)/®(G) is the unique minimal normal subgroup

of G/B(G).

The following facts about the generalized Fitting subgroup are useful in our proofs (see [13,
Chapter X| and [10, Lemma 2.14, 2.15 and 2.16]).

Lemma 2.6. Let G be a group. Then:

(1) F*(F*(Q)) = F*(G) > F(G); if F*(QG) is solvable, then F*(G) = F(QG).

(2) Ca(F*(G) < F(G).

(3) If N is a normal solvable subgroup of G, then F*(G/®(N)) = F*(G)/®(N).

(4) If N is normal in G, then F*(N) = F*(G) N N.

(5) If P is a normal p-subgroup of G contained in Z(G), then F*(G/P) = F*(G)/P.

3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of G for a fixed prime divisor p of |G|. Suppose
that all mazimal subgroups of P are S®-embedded in G. Then G is p-supersolvable or |P| = p.

P r oo f. Suppose that the assertion is false and let G be a counterexample of minimal order.
Then |P| > p?. We proceed the proof via the following steps:

(1) G is not a non-abelian simple group (It follows directly from Lemma 2.3).

(2) Op(G) = 1.

Suppose that Op(G) > 1. Then G/Oy(G) satisfies the hypothesis for G by Lemma 2.2(4).
The choice of G implies that G/O,/ (G) is p-supersolvable. It follows that G is p-supersolvable, a
contradiction.

(3) G is not p-solvable. Consequently Op,(G) < P.

Assume that G is p-solvable. Then there exists a minimal normal subgroup N of G contained
in Op(G) by (2). We claim that G/N is p-supersolvable. It is obvious if |P/N| < p. We may,
therefore, assume that |P/N| > p?. Then G/N satisfies the hypothesis by Lemma 2.2(3). Hence
G/N is p-supersolvable. This implies that G has a unique minimal normal subgroup, N say, and
®(G) = 1. Then G = N x M for some maximal subgroup M of G and O,(G) N M = 1. Thus
Op(G) = N(Op(G) N M) = N and P = Op(G) x M,, where M, = PN M. Let P; be a maximal
subgroup of P containing M,. Clearly (P;)c = 1. By the hypothesis, G' has a normal subgroup T
such that P;T is S-quasinormal in G and PyNT < ®(P;). If T =1, then P, = P;T is S-quasinormal
in G. It follows from [1, 1.2.16] that P; is normal in G, a contradiction. Hence O,(G) < T, so
Py = My(PiNO,(G)) = Mp®(P1) = M,. Consequently |Op(G)| = p. Therefore G is p-supersolvable,
a contradiction.

(4) If Op(G) > 1, then |P/O,(G)| = p and Op(G) is a minimal normal subgroup of G.

Assume that |P/O,(G)| > p* Then G/O,(G) is p-supersolvable by Lemma 2.2(3) and the
choice of G. It follows that G is p-solvable, a contradiction. Hence |P/O,(G)| = p. Now assume
that N is a non-trivial normal subgroup of G such that N < O,(G). Then |P/N| > p?, and G/N is
p-supersolvable similar as above, which also implies G is p-solvable, which contradicts (3).
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(5) If N is a minimal normal subgroup of G, then G/N is p-supersolvable or |G/N|, = p.

By (2), p | |N|. If N is abelian, then N = O,(G) and |G/N|, = p by (4). Now assume that N
is non-abelian. Without loss of generality, we may assume |PN/N| > p?.

Let M/N be an arbitrary maximal subgroup of PN/N. Then M = NP;, where P| = PN M is
a maximal subgroup of P. We now show that M /N is S®-embedded in G/N. By Lemma 2.2(3) we
only need to show that M is S®-embedded in G. By the hypothesis, G has a normal subgroup 7" such
that P,T is S-quasinormal in G, (Py)g < T and (PLNT)/(P1)c < ®(P1/(P1)q). Obviously, MT is
S-quasinormal in G by [1, 1.2.2]. If N < T, then (M NT)Mg/Mg = (PPNT)Mg /Mg < ®(M/Mg)
by Lemma 2.1(1) and [8, A, (9.2)]. Thus M is S®-embedded in G. Hence we may assume that
NNT =11 PTAN =1, then LTNN = (P,NN)(T'NN) = 1. Thus LNNTN = (P,NT)N by
[8, A, (1.2)]. Similar as above, M is S®-embedded in G by taking the normal subgroup T'N. Now
assume that PLITNN # 1. Since |[PLTNN| = |PLTNN: PLTNNNT|=|PNNT : P,NT| is power
of p, AT NN < O,(G) by [1, 1.2.14(3)] and Lemma 2.1(3). It follows that P; N N is subnormal
in G. Hence PPN N = N since PPN N = PN N is a Sylow p-subgroup of N. Consequently N < Py,
a contradiction. The above shows that G/N satisfies the hypothesis. Therefore (5) holds by the
choice of G.

(6) If N is a minimal normal subgroup of G, then 1 < PN N < P.

In view of (2), we see that 1 < PN N. If P < N, then N is p-supersolvable since N satisfies the
hypothesis by Lemma 2.2(2). But since G/N is a p’-group, G is p-solvable, which contradicts (3).
Hence PN N < P.

(7) G has a unique minimal normal subgroup, N say.

By (1), G has a minimal normal subgroup. Now suppose that N7 and Ny are two different
minimal normal subgroups of G. Then G/N; is p-supersolvable or |G/N;|, = p for i = 1,2 by (5).

First assume that both G/N; and G/Nj are p-supersolvable, then G = G/(N1 N Ny) is p-super-
solvable, a contradiction. Secondly assume that G/N; is p-supersolvable and |G/Ns|, = p. By (6),
p | |V2|. The G-isomorphism Ny 22 Ny N;/Nj implies that |Na| = p, so |P| = p?. Therefore N1 N P
is a maximal subgroup of P by (6) again, and Nj is a non-abelian simple group since Ny N P is a
Sylow p-subgroup of Ni. Hence N1 N P is S®-embedded in N7 by Lemma 2.2(2), which contradicts
Lemma 2.3. Lastly suppose that |G/Ni|, = |G/Na|, = p. Then |[P N Ni| = [P N Na| = p and
|P| = p?. Consequently Nj is a non-abelian simple group and P N N; is S®-embedded in N; for
i =1,2 by Lemma 2.2(2), which contradicts Lemma 2.3 again. Hence we have (7).

(8) 0p(G) =1.

Assume that O,(G) # 1. Then by (4) and (7), Oy(G) is a maximal subgroup of P and
O,(G) = N. If O,(G) is the unique maximal subgroup of P, then O,(G) = ®(P) and P is cyclic.
Consequently |O,(G)| = p and |P| = p2. Hence by Lemma 2.4, G is p-supersolvable, a contradiction.
Thus P has a non-trivial maximal subgroup P; which is different from O,(G). Clearly P = P1O,(G)
and (P)g =1 by (7). Let T be a normal subgroup of G such that P;T is S-quasinormal in G and
PNT < ®(P). If T =1, then P; is S-quasinormal in G, which implies P; < G by [1, 1.2.16],
a contradiction. Also 7' = G induces that P, = P, NT < ®(Py;), a contradiction. Therefore
O,(G) <T < G, and so P < PT. If P,'T < G, then by [1, 1.2.14(3)], G has a proper normal
subgroup L such that P/T < L. Then L is p-supersolvable by the choice of G and Lemma 2.2(2).
But then G is p-solvable since G/L is a p’-group, which contradicts (3). Thus G = P;T. Clearly
Op(G) < PNT.If PNT = P, then G =T, a contradiction. Hence O,(G) = PN T is the Sylow
p-subgroup of T'. By the Schur-Zassenhaus Theorem, T' = Op(G) x T, where T, is a Hall p'-
subgroup of T'. Clearly O,(G) £ ®(G), so ®(G) = 1. Let M be a maximal subgroup of G such
that G = Op(G) x M. Then P = O,(G) x M,, where M, = PN M > 1. Let P» be a maximal
subgroup of P containing M,. Then (P)g = 1 and G has a normal subgroup K such that P, K is
S-quasinormal in G and P,NK < ®(P;). Similar as the above, we can obtain that O,(G) < K < G.
Thus P> = (P, N Oy(G))M, = ®(P,)M, = M,. This implies that |O,(G)| = p, which contradicts

Lemma 2.4. Hence we have (8).



314 L. Zhang, W. Guo, L. Huo

(9) Final contradiction.

Let Py be a maximal subgroup of P containing N, = PNN. Then (P;)¢ = 1 by (8). Hence by the
hypothesis, G has a normal subgroup 7 such that P;T is S-quasinormal in G and P,NT < ®(Fy).
If T =1, then P; is normal in G by [1, 1.2.16], a contradiction. Hence T' # 1 and so N < T.
Consequently PN N < PLNT < ®(P;) < ®(P). This implies that N is p-nilpotent (see [12, IV,
4.7]), which contradicts (2) and (8). The final contradiction completes the proof.

Corollary 3.1.1. Let p be a prime divisor of |G| and H be a p-nilpotent normal subgroup of G
such that G/H is p-supersolvable. If H has a Sylow p-subgroup P such that every mazimal subgroup
of P is S®-embedded in G, then G is p-supersolvable.

Proof. Suppose that the corollary is false and let (G, H) be a counterexample such that
|G| + |H| is minimal. Then clearly p? | |H]|.

Firstly we claim that H = P. Since Oy (H) is normal in G, (G/Oy(H), H/O,(H)) satisfies
the hypothesis by Lemma 2.2(4). The choice of (G, H) implies that G/O,/(H) is p-supersolvable if
Oy (H) > 1. It follows that G is p-supersolvable, a contradiction. Thus H = P.

Now we prove that H is a minimal normal subgroup of G. Let N be a minimal normal subgroup
of G contained in H. We first show that G/N is p-supersolvable. If |H/N| < p, this is clear. Hence
we may assume that |H : N| > p?. Then G/N is also p-supersolvable by considering (G/N, H/N)
and using Lemma 2.2(3). This implies that G' has a unique minimal normal subgroup N contained
in H and N ¢ ®(G). Let M be a maximal subgroup of G such that G = N x M. Since H N M is
normal in G (see [8, A, (8.4)]), HNM =1. Thus H=N(HNM)=N.

Let H; be a non-trivial maximal subgroup of H such that H; IG), for some Sylow p-subgroup G,
of G. By the hypothesis, G has a normal subgroup 7" such that H;7T is S-quasinormal in G and
HNT < ®H,). f HNT =1, then H; = Hi(HNT) = HN H,T is S-quasinormal in G (see
[1, 1.2.19]). Hence H; is normal in G by [1, 1.2.16], a contradiction. Thus H NT # 1, and so
H < T. This implies that H; = H; NT < ®(H;) and therefore H; = 1. Then |H| = p and so G is
p-supersolvable. The contradiction completes the proof.

Corollary 3.1.2. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with
(|IG|,p — 1) = 1. If every mazimal subgroup of P is S®-embedded in G, then G is p-nilpotent.

Proof It follows directly from Theorem 3.1 and [18, (10.1.8)].

Corollary 3.1.3. Let E be a normal subgroup of G such that G/E is p-nilpotent, where p is a
prime divisor of |G| with (|G|,p — 1) = 1. If E has a Sylow p-subgroup P such that every mazimal
subgroup of P is S®-embedded in G, then G is p-nilpotent.

Proof. First assume that E = P and let K/P be the normal Hall p’-subgroup of G/P. Then
K = P x K, by the Schur-Zassenhaus Theorem, where K,/ is a Hall p’-subgroup of K. Clearly
K,y is also a Hall p’-subgroup of G. By Lemma 2.2(2) and Corollary 3.1.2, K is p-nilpotent, and so
K = P x K. It follows that K, is normal in G, and consequently G is p-nilpotent. Now assume
that £ > P. Then E is p-nilpotent by Lemma 2.2(2) and Corollary 3.1.2. Let E,; be the normal
Hall p’-subgroup of E. By Lemma 2.2(4) and induction, G/E, is p-nilpotent. This also implies that
G is p-nilpotent.

Corollary 3.1.4. Suppose that all mazimal subgroups of every non-cyclic Sylow subgroup of G
are S®-embedded in G. Then G is a Sylow tower group of supersolvable type.

Proof. Let pbe the smallest prime divisor of |G| and P be a Sylow p-subgroup of G. If P
is cyclic, then G is p-nilpotent by [18, 10.1.9]. Otherwise, G is still p-nilpotent by Corollary 3.1.2.
Let U be the normal Hall p’-subgroup of G. By Lemma 2.2(2), U satisfies the hypothesis. Therefore,
by induction, G is a Sylow tower group of supersolvable type.
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Theorem 3.2. Assume that all mazimal subgroups of every non-cyclic Sylow subgroup of F*(G)
are S®-embedded in G. Then G is supersolvable.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order.
We proceed via the following steps:

(1) Every proper normal subgroup of G containing F*(G) is supersolvable.

Let M be a proper normal subgroup of G containing F*(G). Then F*(M) = F*(G) by
Lemma 2.6(4). Hence M satisfies the hypothesis by Lemma 2.2(2). The choice of G implies that M
is supersolvable.

(2) G is not solvable.

Assume that G is solvable, then F*(G) = F(G) by Lemma 2.6(1).

If ®(G) = 1, then F(G) = Ny x Ny--- x Ny by [8, A, (10.6)], where ¢ > 1 is an integer
and Ny, Ns,---, Ny are minimal normal subgroups of G. Without loss of generality, assume that
P =Nj; x Ny---x Ng (1 <s<t)is the Sylow p-subgroup of F(G) for some prime p | |F(G)|. We
claim that |N;| = p for i = 1,2,--- | s. Otherwise, |NV;| > p for some i € {1,2,--- ,s}. Without loss
of generality, assume that |N7| > p. Let N be a maximal subgroup of N; such that Nf < G), for
some Sylow p-subgroup G), of G. Let P = N{Ny--- N,. Then P; is a maximal subgroup of P and
Py is normal in G, with (Py)g = Na--- N,;. Put D = (P;)g. Since P; is S®-embedded in G, G has
a normal subgroup 7" such that P;T is S-quasinormal in G, D < T and (P, NT)/D < ®(P,/D).
Since ®(Ny) < ®(N;) < ®(G) =1 and the G-isomorphism P;/D = Nf, we have that P, NT = D.
If Ny <T, then P <T and P, = P NT = D, which implies Nj = 1, a contradiction. Hence
Ny NT = 1. Consequently PNT = D and P, = PL(PNT) = PN PT is S-quasinormal in G
(see [1, 1.2.19]), which implies that P; is normal in G by [1, 1.2.16], a contradiction. Therefore
F(G) = Ny x Ny--- x Ny, where N; (i = 1,2,--- ,t) are all of prime order. But then G/Cq(N;)
(i =1,2,--- 1) is abelian, so G/(Ni_; Cc(N:)) = G/Ca(F(G)) is abelian. Also Cg(F(G)) = F(G)
by Lemma 2.6(2). This implies that G is supersolvable since every chief factor of G below F(G) is
cyclic.

Now assume ®(G) > 1. Let P = O,(®(G)) > 1. Since F*(G/P) = F(G/P) = F(G)/P (see
8, A, (9.3)(c)|), G/ P satisfies the assumptions by Lemma 2.2 (3), (4). The choice of G implies that
G/ P is supersolvable. Thus G is supersolvable, a contradiction.

(3) F*(G) = F(G) and G = F(G)OP(G).

By Lemma 2.2(2) and Corollary 3.1.4, F*(G) is a Sylow tower group of supersolvable type.
Particularly, F*(G) is solvable. Hence F*(G) = F(G) by Lemma 2.6(1). Suppose that
F(G)OP(G) < G. Then F(G)OP(QG) is supersolvable by (1). Thus G is solvable since G/F(G)OP(G)
is a p-group, which contradicts (2). Hence (3) holds.

(4) ®(F(G)) =1 and Cq(F(Q)) = F(Q).

Assume that F(G) has a Sylow p-subgroup P such that ®(P) > 1. By Lemma 2.6(3),
F*(G/®(P)) = F*(G)/®(P). So G/®(P) satisfies the hypothesis. The choice of G implies that
G/®(P) is supersolvable. Consequently G is supersolvable. This contradiction shows that F(G)
is elementary abelian and so ®(F(G)) = 1. Then together with (3) and Lemma 2.6(2), we have
Co(F(G)) = F(G).

(5) There exists no normal subgroup of G contained in F(G) with prime order.

Assume that G has a normal subgroup N contained in F(G) with |[N| = p. Let C = Cg(N).
By (4), F(G) < C. If C < G, then C is supersolvable by (1). But since G/C' is abelian, it follows
that G is solvable, which contradicts (2). We may, therefore, assume C' = G, that is, N < Z(G). By
Lemma 2.6(5), F*(G/N) = F*(G)/N. Hence G/N is supersolvable by Lemma 2.2 and the choice
of G. It follows that GG is supersolvable, a contradiction.

(6) m(®(G)) = m(F(G)).

Suppose that (6) is false. Then F'(G) has a Sylow subgroup P such that P N ®(G) = 1. Similar
as the proof in (2), we see that there exists at least one minimal normal subgroup of G' contained
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in P with prime order, which contradicts (5).

(7) F(G) is a p-group and there exists exactly one minimal normal subgroup of G contained in
F(G), L say.

Suppose that |F'(G)| contains two different primes p and ¢. Let P and @ be the Sylow p-subgroup
and the Sylow g-subgroup of F(G). By (6), G has a minimal normal subgroup L contained in
PN®(G). By [13, p.128], F*(G/L) = F(G/L)E(G/L) and [F(G/L),E(G/L)| =1, where E(G/L)
is the layer of G/L. Denote E(G/L) = E/L. Since F(G/L) = F(G)/L by [8, A, (9.3)(c)], [, E] <
QN L = 1. It follows from (4) that F(G)E < Ce(Q). If Ca(Q) < G, then C(Q) is supersolvable
by (1). Hence F*(G/L) = F(G)/L by Lemma 2.6(1). The choice of G and Lemma 2.2 imply that
G/L is supersolvable. Consequently G is supersolvable, a contradiction. Therefore Cg(Q) = G,
which contradicts (5). Thus F/(G) is a p-group.

Now assume that X is another minimal normal subgroup of G contained in F(G) different
from L. Using the same symbol as above, then [X,E] < X NL =1, and so F(G)E < Cg(X). If
Ca(X) < G, then C(X) is supersolvable by (1). Similar as above, we see that G is supersolvable, a
contradiction. Therefore Cg(X) = G, which contradicts (5). Thus L is the unique minimal normal
subgroup of G contained in F(G).

(8) Final contradiction.

By (4), there exists a maximal subgroup P; of P = F(G) which does not contain L and
®(Py) = 1. Then (P1)g = 1 by (7). Let T' be a normal subgroup of G such that P;T is S-quasinormal
in Gand PLNT = 1. Since |[PNT|=|PNT:PNT|<|P:P|=p, PNT =1 by (5). Hence
P, =P (PNT)=PnNPTis S-quasinormal in G by [1, 1.2.19]. Thus P; is normal in G by (3) and
[1, 1.2.16]. The final contradiction completes the proof.

Corollary 3.2.1 [17, Theorem 3.1]. Let G be a solvable group. If all mazimal subgroups of the
Sylow subgroups of F(G) are normal in G, then G is supersolvable.

Note that a subgroup H of G is called c-normal [20] in G if there exists a normal subgroup N
of G such that HN = G and H "N < Hg. Clearly a ¢-normal subgroup H is S®-embedded in G.
But the following example shows that the converse is false.

Example 3.1. Let G = Sy and H = ((1234)). Clearly Hgz = 1 and ®(H) = {1,(13)(24)}. It
is easy to check that H is S®-embedded in G by taking the Klein 4-group Ky. However H is not
c-normal in G since G has no normal subgroup of order 6.

Corollary 3.2.2 [14, Theorem 1]|. Assume that G is solvable and every mazimal subgroup of
Sylow subgroups of F(G) is c-normal in G. Then G is supersolvable.

Theorem 3.3. Let E be a normal subgroup of G such that G/E is p-supersolvable, where p is
a prime divisor of |G|. If every cyclic subgroup of E with order p or 4 (if p = 2) is S®-embedded
in G, then G is p-supersolvable.

Proof. Suppose that the theorem is false and let (G, E) be a counterexample such that
|G| + |E| is minimal. Note that &P denotes the class of p-supersolvable groups. Then:

(1) p| |E| and E = GY" (It follows directly from the choice of (G, E)).

(2) G is a minimal non-p-supersolvable group and O (G) = 1.

It follows from Lemma 2.2 (2), (4) and the choice of (G, E).

(3) G/®(G) is a non-abelian simple group.

By (2) and Lemma 2.5, GY" ®(G)/®(G) is the unique minimal normal subgroup of G/®(G). Let
N = GY"®(G). Then G/N is p-supersolvable. Hence p | |[N/®(G)|.

Assume that N/®(G) is abelian. Then N is solvable. It follows from (2) and [9, (3.4.2)] that GY”
is a p-group and GY’ /®(GY") is a non-cyclic G-chief factor with exponent p or 4 (if GY* /®(GY")
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is a non-abelian 2-group). Take z € GY" \ ®(G"") such that (z)®(GY*") is normal in some Sylow p-
subgroup of G. Denote H = (z). Then H is of order p or 4. If H is normal in G, then GY* /®(GY") =
H®(GY")/®(GY") is cyclic of order p, a contradiction. Thus Hg = 1 or Hg = (22) = ®(H) if
|H| = 4. By the hypothesis, G has a normal subgroup T such that HT is S-quasinormal in G,
Hg <Tand (HNT)/Hg < ®(H/Hg). Obviously HNT < ®(H) whether Hg = 1 or Hg = (2?).
Since GY" /®(GY") is a chief factor of G, (T N GY")(GY") = GY” or ®(GY"). In the case when
(T NGY")D(GH") = GY” | we have that H = HNT < ®(H), a contradiction. Hence 7' N G4 <
®(GY"), 50 HO(GY") = (HTNGY")®(GY") is S-quasinormal in G by [1, 1.2.19]. But then H®(GY")
is normal is G (see [1, 1.2.16]). Consequently H®(GY") = GY" and so G** /®(GY") is cyclic. This
contradiction shows that N/®(G) is non-abelian. It follows from (2) that G/®(G) = N/®(G) is a
non-abelian simple group.

(4) F(G) = 8(G) = 0,(G) = Z(G).

By (2) and (3), F(G) = ®(G) = O,(G) > Z(G). If C = Cq(0,(G)) < G, then C < ®(G)
by (3). Let M be an arbitrary maximal subgroup of G. Then O,(G) = ®(G) < M = Zy»(M)
by (2), and so Op(G) < Zy(M). Hence M/Cu(Op(G)) = M/(M NC) = M/C is supersolvable by
[12, VI, 9.8|. This shows that G/C' is a minimal non-supersolvable group. Then G/C is solvable (see
[18, (10.3.4)]) and so G is solvable, which contradicts (3). Therefore C' = G.

(5) Final contradiction.

Note that if every element of order p or 4 belongs to ®(G) = Z(G), then G is p-nilpotent by
[12, IV, 5.5], and so G is p-supersolvable. Hence there exists an element x in G of order p or 4, which
does not belong to ®(G). Let H = (x). If H is normal in G, then H®(G) = G by (3), and so G = (x)
is cyclic, which is impossible. Then Hg = 1 or Hg = (2?) = ®(H) (when |H| = 4). Let T be a
normal subgroup of G such that HT is S-quasinormal in G, Hg < T and (HNT)/Hg < ®(H/Hg).
Similar as above, we have that H NT < ®(H). By (3), T = G or T < ®(G). If T = G, then
H=HNT < ®(H), a contradiction. Hence T' < ®(G). It follows from [1, 1.2.7(2) and 1.2.14(3)]
that HT®(G)/®(G) = H®(G)/®(G) is subnormal in G/®(G). Then H®(G) = G by (3) and the

choice of x. Thus G = (x) is cyclic. This contradiction completes the proof.
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