Том 22 № 1

УДК 512.54 +519.17

СИММЕТРИЧЕСКИЕ 2-РАСШИРЕНИЯ 2-МЕРНОЙ РЕШЕТКИ. І

Е. А. Коновальчик¹, К. В. Костоусов

Исследование симметрических q-расширений d-мерной кубической решетки Λ^d представляет интерес для теории групп и теории графов. Для небольших $d \ge 1$ и q > 1 (особенно для q = 2) исследование симметрических q-расширений решетки Λ^d актуально также в связи с молекулярной кристаллографией и некоторыми физическими теориями. Ранее в работе В.И. Трофимова доказана конечность числа симметрических 2-расширений решетки Λ^d для произвольного целого положительного числа d. Данная работа посвящена описанию всех, с точностью до эквивалентности, симметрических 2-расширений решетки Λ^2 . В настоящей первой части работы перечислены все, с точностью до эквивалентности, реализации симметрических 2-расширений решетки Λ^2 , у которых лишь единичный автоморфизм оставляет на месте все блоки (мы доказываем, что имеется 87 таких реализаций). В готовящейся к выходу второй части работы будут перечислены остальные реализации симметрических 2-расширений решетки Λ^2 .

Ключевые слова: симметрическое расширение графа, d-мерная решетка.

E. A. Konoval'chik, K. V. Kostousov. Symmetrical 2-extensions of a 2-dimensional grid. I.

The investigation of symmetrical q-extensions of a d-dimensional cubic grid Λ^d is of interest both for group theory and for graph theory. For small $d \geq 1$ and q > 1 (especially for q = 2), the study of symmetrical q-extensions of Λ^d is also of interest in connection with molecular crystallography and some phisycal theories. V.I. Trofimov proved that there are only finitely many symmetrical q-extensions of Λ^d for any positive integer d. The aim of the present paper is to find all, up to equivalence, symmetrical 2-extensions of Λ^2 . In this paper, which is the first part of our study, we find all, up to equivalence, realizations of symmetrical 2-extensions of Λ^2 for which only trivial automorphism fixes all blocks (we show that there are 87 such realizations). In the second part of the study, we will list the remaining realizations of symmetrical 2-extensions of Λ^2 .

Keywords: symmetrical extension of a graph, d-dimensional grid.

1. Введение

Под d-мерной решеткой Λ^d для целого положительного числа d далее понимается d-мерная кубическая решетка, т.е. граф, вершинами которого являются все упорядоченные наборы $(a_1, \ldots a_d)$ из d целых чисел, и две вершины (a'_1, \ldots, a'_d) и (a''_1, \ldots, a''_d) смежны тогда и только тогда, когда $|a'_1 - a''_1| + \ldots + |a'_d - a''_d| = 1$. Следуя [1], для конечного графа Δ связный граф Г назовем симметрическим расширением решетки Λ^d посредством Δ , если существуют такая вершинно-транзитивная группа G автоморфизмов графа Γ и такая система импримитивности σ группы G на $V(\Gamma)$, что подграфы графа Γ , порожденные блоками из σ , изоморфны Δ и имеется изоморфизм φ графа Γ/σ (т.е. фактор-графа Γ по разбиению σ множества его вершин) на решетку Λ^d . Для целого положительного числа q граф Γ называется симметрическим q-расширением решетки Λ^d , если Γ является симметрическим расширением решетки Λ^d посредством некоторого графа Δ , такого что $|V(\Delta)| = q$. Четверка $(\Gamma, G, \sigma, \varphi)$ с указанными компонентами называется peanusauueй симметрического q-расширения Γ решетки Λ^d , а Γ будем называть графом этой реализации. Наряду с чисто математическим интересом, исследование симметрических q-расширений решетки Λ^d для небольших $d \ge 1$ и q > 1 актуально для молекулярной кристаллографии и некоторых физических теорий (см. [2]). При этом для кристаллографии из всех симметрических q-расширений решеток Λ^d наиболее интересны симметрические 2-расширения. Они естественным образом возникают при рассмотрении "молекулярных" кристаллов, "молекулы" которых состоят из двух "атомов" или, более общо, имеют выделенную ось.

¹Работа выполнена при поддержке молодежного гранта ИММ УрО РАН за 2013 г.

Естественно рассматривать реализации симметрических q-расширений решетки Λ^d с точностью до определяемой следующим образом эквивалентности (см. [2]). Назовем две такие реализации, $R_1 = (\Gamma_1, G_1, \sigma_1, \varphi_1)$ и $R_2 = (\Gamma_2, G_2, \sigma_2, \varphi_2)$, эквивалентными и будем писать $R_1 \sim R_2$, если найдется изоморфизм графа Γ_1 на граф Γ_2 , переводящий σ_1 в σ_2 . Реализацию ($\Gamma, G, \sigma, \varphi$) симметрического q-расширения решетки Λ^2 назовем максимальной, если $G = \operatorname{Aut}_{\sigma}(\Gamma) - \Gamma$ руппа всех автоморфизмов графа Γ , сохраняющих разбиение σ . Ясно, что каждая реализация симметрического q-расширения решетки Λ^d имеет эквивалентную ей максимальную реализацию. В [3, теорема 2] В.И. Трофимовым доказана конечность числа реализаций симметрических 2-расширений d-мерной решетки, с точностью до эквивалентности, для произвольного целого положительного числа d, а также предложен алгоритм для построения всех, с точностью до эквивалентности, таких реализаций.

Данная работа посвящена описанию всех, с точностью до эквивалентности, реализаций симметрических 2-расширений решетки Λ^2 . В настоящей первой части работы перечислены все, с точностью до эквивалентности, реализации симметрических 2-расширений решетки Λ^2 такие, что лишь единичный автоморфизм их графа оставляет на месте все блоки. В готовящейся к выходу второй части работы будут перечислены остальные реализации симметрических 2-расширений решетки Λ^2 . По предложению 4 из [3] такое разбиение всех реализаций симметрических 2-расширений решетки Λ^2 на два класса совпадает с определенным следующим образом разбиением на классы I и II соответственно.

Для произвольной реализации ($\Gamma, G, \sigma, \varphi$) симметрического 2-расширения решетки Λ^2 и произвольной пары смежных вершин B_1, B_2 графа Γ/σ множество ребер графа Γ , один конец которых лежит в B_1 , а другой — в B_2 , будем называть *связью*. Возможны следующие типы связей: mun 1 — полная связь (4 ребра); mun 2 — два ребра, не имеющие общих концов; mun 3 — одно ребро; mun $\overline{3}$ — три ребра; mun 4 — два ребра, имеющие общий конец. Реализациями класса I назовем реализации, которые обязательно содержат связи типов, отличных от 1 и 2. Реализациями класса II назовем реализации, связи в которых исчерпываются связями типов 1 и 2.

Реализацию симметрического расширения решетки Λ^2 посредством графа K_2 (полного графа на двух вершинах) будем называть *насыщенной* реализацией симметрического 2-расширения решетки Λ^2 . Соответственно, реализацию симметрического расширения решетки Λ^2 посредством графа, дополнительного к K_2 , будем называть *ненасыщенной* реализацией симметрического 2-расширения решетки Λ^2 .

Нами показано, что с точностью до эквивалентности существует 87 реализаций симметрических 2-расширений решетки Λ^2 класса I, из которых 49 — насыщенные и 38 — ненасыщенные (см. теорему и следствие 1). Среди графов насыщенных реализаций симметрических 2-расширений решетки Λ^2 класса I имеется 46 попарно неизоморфных (в первоначальном варианте этой работы ошибочно утверждалось наличие 48 таких графов, что было озвучено со ссылкой на этот вариант в [4]); среди графов ненасыщенных реализаций класса I имеется 36 попарно неизоморфных; а среди всех графов реализаций класса I имеется 78 попарно неизоморфных (см. следствие 2 и следствие 3). Очевидно, что реализация симметрического 2-расширения решетки Λ^2 класса I не может быть эквивалентна реализации класса II. Однако, как будет показано во второй части работы, существует единственная, с точностью до изоморфизма, реализация класса I (реализация $R_{\beta_1(\overline{3},2),H_3}$, см. далее), граф которой изоморфен графу реализации класса II.

Представляет интерес вопрос о кристаллографических реализациях симметрических q-расширений решетки Λ^d в d-мерное евклидово аффинное пространство (см. [5]). В связи с этим в разд. 6 для каждой, с точностью до эквивалентности, реализации симметрического 2-расширения решетки Λ^2 класса I найдена эквивалентная ей кристаллографическая реализация.

В разд. 3 приводится описание реализаций симметрических 2-расширений решетки Λ^2 класса I (теорема и следствие 1). Оно получено в настоящей статье посредством комбина-

торных соображений в разд. 4 и, независимо, с помощью алгоритма из [3], реализованного в пакете GAP [6], в разд. 5. В разд. 2 содержатся предварительные результаты.

2. Предварительные результаты

Каждая вершинно-транзитивная группа автоморфизмов решетки Λ^2 порождается стабизилатором в этой группе вершины (0,0) и четырьмя элементами, переводящими вершину (0,0) в соседние с ней вершины. На основе этого с помощью GAP нами были перечислены все классы сопряженных вершинно-транзитивных подгрупп группы Aut(Λ^2) всех автоморфизмов решетки Λ^2 . Оказалось, что существует 35 таких классов, представителями которых являются группы H_1, \ldots, H_{35} , заданные в табл. 1 своими системами порождающих. В табл. 1 используются следующие автоморфизмы Λ^2 :

$$\begin{array}{ll} r_{\frac{\pi}{2}}:(x,y)\mapsto(y,-x), & r_{\pi}:(x,y)\mapsto(-x,-y), & r_{-\frac{\pi}{2}}:(x,y)\mapsto(-y,x), \\ m_{/}:(x,y)\mapsto(y,x), & m_{\backslash}:(x,y)\mapsto(-y,-x), & m_{\parallel}:(x,y)\mapsto(-x,y), \\ m_{-}:(x,y)\mapsto(x,-y), & t_{x}:(x,y)\mapsto(x+1,y), & t_{y}:(x,y)\mapsto(x,y+1) \end{array}$$

где $x, y \in \mathbb{Z}$.

З а м е ч а н и е. При естественном вложении решетки Λ^2 в евклидову аффинную плоскость каждый автоморфизм $g \in \operatorname{Aut}(\Lambda^2)$ индуцируется единственной изометрией \tilde{g} этой плоскости. Изометрии, которыми индуцируются приведенные выше автоморфизмы Λ^2 , имеют следующий геометрический смысл: \tilde{r}_{θ} — поворот на угол θ против часовой стрелки вокруг начала координат для $\theta \in \{\pi/2, \pi, -\pi/2\}, \tilde{m}_{/}, \tilde{m}_{\backslash}$ — отражения относительно прямых y = x и y = -xсоответственно, $\tilde{m}_{|}, \tilde{m}_{-}$ — отражения относительно координатных осей y и x соответственно, $\tilde{t}_{x}, \tilde{t}_{y}$ — сдвиги на 1 вдоль осей x и y соответственно.

Систему представителей $\{H_1, \ldots, H_{35}\}$ классов сопряженных вершинно-транзитивных подгрупп группы $\operatorname{Aut}(\Lambda^2)$ обозначим через **H**.

Если имеется реализация $R = (\Gamma, G, \sigma, \varphi)$, то произвольный элемент g группы G индуцирует подстановку на σ , которая обозначается через g^{σ} , и, соответственно, группа G индуцирует на σ группу подстановок, которая обозначается через G^{σ} .

Отметим, что $H_1 = \operatorname{Aut}(\Lambda^2)$. Среди групп из **H** группы H_2 , H_3 , H_4 , H_{18} , H_{19} , H_{27} являются подгруппами индекса 2 группы H_1 ; группы H_5 , H_6 , H_7 , H_{10} , H_{11} , H_{13} , H_{20} , H_{21} , H_{23} , H_{28} , H_{29} , H_{31} , H_{32} – подгруппами индекса 4 группы H_1 ; группы H_8 , H_9 , H_{12} , H_{14} , H_{15} , H_{16} , H_{17} , H_{22} , H_{24} , H_{25} , H_{26} , H_{30} , H_{33} , H_{34} , H_{35} – подгруппами индекса 8 группы H_1 . Группы из **H**, являющиеся подгруппами индекса 8 группы H_1 , – это в точности все группы из **H**, имеющие тривиальный стабилизатор вершины. В табл. 2 указаны все включения $H_i < H_j$ (символом "+" на соответствующем месте) между содержащимися в **H** подруппами индекса 4 и 2 группы H_1 . Система представителей **H** классов сопряженных вершиннотранзитивных подгрупп группы $\operatorname{Aut}(\Lambda^2) = H_1$ выбрана таким образом, что для любых $i \in \{5, 6, 7, 10, 11, 13, 20, 21, 23, 28, 29, 31, 32\}, j \in \{2, 3, 4, 18, 19, 27\}$, если некоторая группа из класса, содержащего H_i , является подгруппой некоторой подгруппы из класса, содержащего H_j ,

В данной статье описаны с точностью до эквивалентности реализации симметрических 2расширений решетки Λ^2 класса I. Для каждой такой реализации ($\Gamma, G, \sigma, \varphi$) группа $\varphi G^{\sigma} \varphi^{-1}$ сопряжена в $\operatorname{Aut}(\Lambda^2)$ с некоторой группой H_i , имеющей нетривиальный стабилизатор вершины (т. е. с группой H_i , где $i \in \{1, 2, 3, 4, 5, 6, 7, 10, 11, 13, 18, 19, 20, 21, 23, 27, 28, 29, 31, 32\}$). Список этих групп обозначим через \mathbf{H}_{I} .

Для произвольных целых чисел *i* и *j* обозначим через $K_{i,j}$ подграф решетки Λ^2 , порожденный множеством вершин $\{(i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1)\}$. Пусть $R = (\Gamma, G, \sigma, \varphi)$ произвольная реализация симметрического 2-расширения решетки Λ^2 . Для произвольных целых чисел *i* и *j* обозначим через $K_{R,i,j}$ подграф графа Γ , порожденный множеством вершин из

Представители классов сопряженных	K	
вершинно-транзитивных подгрупп группы	$\operatorname{Aut}(\Lambda^2)$	1

$H_1 = \langle r_{\frac{\pi}{2}}, m_/, t_x, t_y \rangle$	$H_{19} = \langle m_{/}, m_{\backslash}, m_{ }t_x, t_x^2, t_y^2 \rangle$
$H_2 = \langle r_{\overline{x}}, t_x, t_y \rangle$	$H_{20} = \langle r_{\pi}, t_x m_{\parallel}, t_y m_{\parallel}, t_x^2, t_y^2 \rangle$
$H_3 = \langle m_{\parallel}, m_{-}, t_x, t_y \rangle$	$H_{21} = \langle m_{\parallel}, t_x, t_y \rangle$
$H_4 = \langle m_{/}, m_{\backslash}, t_x, t_y \rangle$	$H_{22} = \langle t_x m_{ }, t_y m_{ }, t_x^2, t_y^2 \rangle$
$H_5 = \langle r_{\pi}, t_x, t_y \rangle$	$H_{23} = \langle m_{/}, t_x m_{ }, t_x^2, t_y^2 \rangle$
$H_6 = \langle m, t_x r_\pi, t_y r_\pi, t_x^2, t_y^2 \rangle$	$H_{24} = \langle t_x^{-1} m_{ }, t_y r_{-\frac{\pi}{2}}, t_x^4, t_y^4 \rangle$
$H_7 = \langle m_/, t_y r_\pi, t_x^2, t_y^2 \rangle$	$H_{25} = \langle t_x m_{\mid}, t_y m_{-}, t_x^2, t_y^2 \rangle$
$H_8 = \langle t_x r_\pi, t_y r_\pi, t_x^2, t_y^2 \rangle,$	$H_{26} = \langle t_x m_{ }, t_x^2, t_y \rangle$
$H_9 = \langle t_x r_\pi, t_y r_\pi, t_x^{-1} \mathring{m}_{\backslash}, t_x^4, t_y^4 \rangle$	$H_{27} = \langle m_{ }, m_{-}, t_x m_{/}, t_x^2, t_y^2 \rangle$
$H_{10} = \langle r_{\pi}, t_y m_{\parallel}, t_x, t_y^2 \rangle$	$H_{28} = \langle r_{\pi}, t_x m_/, t_x^2, t_y^2 \rangle$
$H_{11} = \langle m_{\parallel}, t_x r_{\pi}, t_x^2, t_y \rangle$	$H_{29} = \langle m_{\backslash}, t_x, t_y \rangle$
$H_{12}=\langle t_xr_\pi,t_ym_ert,t_x^2,t_y^2 angle$	$H_{30} = \langle t_x m_{\backslash}, t_x^2, t_y^2 \rangle$
$H_{13} = \langle m, t_x r_\pi, t_x^2, t_y \rangle$	$H_{31} = \langle m_/, t_x m, t_x^2, t_y^2 \rangle$
$H_{14} = \langle t_x r_\pi, t_y m, t_x^2, t_y^2 \rangle$	$H_{32} = \langle r_{\pi}, t_x r_{\frac{\pi}{2}}, t_x^2, t_y^2 \rangle$
$H_{15} = \langle t_x r_\pi, t_x^{-1} m_{ }, t_y m, t_x^4, t_y^2 \rangle$	$H_{33} = \langle t_y r_{-\frac{\pi}{2}}, \overline{t}_x^2, t_y^2 \rangle$
$H_{16} = \langle t_x r_\pi, t_x^2, t_y \rangle$	$H_{34} = \langle t_x m, t_x^2, t_y \rangle$
$H_{17} = \langle t_x r_\pi, t_x^{-1} m_{\downarrow}, t_x^4, t_y \rangle$	$H_{35} = \langle t_x, t_y \rangle$
$H_{18} = \langle r_{\frac{\pi}{2}}, m_{ }t_x, t_x^2, t_y^2 \rangle$	

Таблица 2

Включения $H_i < H_j$ между подгруппами индекса 4 и 2 группы H_1

j	2	3	4	18	19	27	j	2	3	4	18	19	27
5	+	+	+				21		+				
6		+					23					+	
7			+				28			+	+		+
10		+					29			+			
11		+					31					+	
13		+					32	+				+	+
20		+		+	+								

 $\varphi^{-1}(i,j) \cup \varphi^{-1}(i+1,j) \cup \varphi^{-1}(i+1,j+1) \cup \varphi^{-1}(i,j+1)$. Графы $K_{i,j}$ (где i,j – произвольные целые числа) будем называть клетками решетки Λ^2 , а графы $K_{R,i,j}$ – клетками реализации R. Автоморфизм h решетки Λ^2 , оставляющий на месте вершины (i,j+1), (i+1,j) и меняющий местами вершины (i,j), (i+1,j+1), будем называть отражением относительно главной диагонали клетки $K_{i,j}$ решетки Λ^2 . Для реализации R автоморфизм $g \in \text{Aut}_{\sigma}(\Gamma)$, такой что $\varphi g^{\sigma} \varphi^{-1} = h$, будем называть отражением относительно главной диагонали клетки $K_{R,i,j}$. Подобным образом определяются отражения относительно побочных диагоналей клеток.

Для нахождения реализаций симметрических 2-расширений решетки Λ^2 класса I нам понадобятся разбиения на орбиты на множестве всех клеток и на множестве всех ребер решетки Λ^2 для групп $H \in \mathbf{H}_{\mathrm{I}}$. Все такие разбиения на множестве клеток приведены в табл. 3 и обозначены через α_i , где $i \in \{1, 2, 3, 4\}$. Разные орбиты показаны различными оттенками серого цвета. Под изображением каждого разбиения на орбиты приведен список групп из \mathbf{H}_{I} , орбиты которых на множестве клеток решетки Λ^2 дают это разбиение. Будем говорить, что реализация $R = (\Gamma, G, \varphi, \sigma)$ соответствует разбиению α_i , если группа $\varphi G^{\sigma} \varphi^{-1}$ имеет разбиение α_i на множестве клеток решетки Λ^2 .

Дугой решетки Λ^2 называется упорядоченная пара ее смежных вершин. Дуги, различающиеся лишь порядком вершин, назовем *противоположными*. Разбиения на орбиты на множестве всех дуг решетки Λ^2 , отвечающие группам из \mathbf{H}_{I} , приведены в табл. 4, и обозначены через β с индексами. Дуга изображена стрелкой, когда противоположная дуга лежит в другой орбите, и отрезком — в противном случае. Для каждого из этих разбиений орбиты на (неориентированных) ребрах пронумерованы: ребра *первой орбиты* изображены жирной черной линией, *второй* (если есть) — жирной серой линией, *третьей* (если есть) — тонкой линией. Под изображением каждого разбиения приведен список групп из \mathbf{H}_{I} , имеющих такое разбиение на орбиты на множестве дуг решетки Λ^2 .

Рассмотрим максимальные насыщенные реализации симметрических 2-расширений решетки Λ^2 типа I, изображенные в следующей табл. 5 (21 реализация, полное изображение каждой из которых получается путем периодического продолжения приведенного 2 × 2-фрагмента; на фрагментах изображений пары близких вершин образуют блоки из σ , центральный блок соответствует вершине (0,0) решетки Λ^2 , блок справа от него соответствует вершине (1,0), блок сверху — вершине (0,1)). Под изображением каждой из реализаций приведено ее обозначение. Если $R = (\Gamma, G, \sigma, \varphi)$ – любая из этих реализаций, и $R_{\beta(\tau_1,...,\tau_s);H}$ — ее обозначение, где β разбиение из { $\beta_0,...,\beta_5,\beta_{0.1},\beta_{0.2},\beta_{0.3}$ } (см. табл. 4) на орбиты группы $H \in \mathbf{H}_{\mathrm{I}}$ на множестве дуг $\Lambda^2, \tau_i \in \{1,2,3,\overline{3},4\}, i = 1,...,s$, то

(i) $\varphi G^{\sigma} \varphi^{-1} = H$, где $G = \operatorname{Aut}_{\sigma}(\Gamma)$;

(ii) ребрам из *i*-ой орбиты из β в R соответствуют связи типа τ_i для $i = 1, \ldots, s$.

Следуя [1], будем говорить, что реализация $R = (\Gamma, G, \sigma, \varphi)$ симметрического 2-расширения решетки Λ^2 удовлетворяет условию $[p_x, p_y]$ -периодичности, где p_x, p_y — положительные целые числа, если найдутся $g_1, g_2 \in \operatorname{Aut}_{\sigma}(\Gamma)$ такие, что $[g_1, g_2] = 1$ и $\varphi g_1^{\sigma} \varphi^{-1} = t_x^{p_x}, \varphi g_2^{\sigma} \varphi^{-1} = t_y^{p_y}$. Для каждой из ячеек табл. 5 среди всех пар $[p_x, p_y]$, таких что изображенная в этой ячейке реализация R удовлетворяет условию $[p_x, p_y]$ -периодичности, приводится минимальная в следующем смысле пара: если R удовлетворяет условию $[p'_x, p'_y]$ -периодичности для некоторых $p'_x \leq p_x$ и $p'_y \leq p_y$, то $p'_x = p_x$ и $p'_y = p_y$. (Минимальность приведенных пар легко устанавливается непосредственно. Заметим, что приведенные пары для реализаций $R_{\beta_0(3),H_4}, R_{\beta_1(3,1),H_3}, R_{\beta_1(3,2),H_3},$ $R_{\beta_1(\overline{3},3),H_5}, R_{\beta_1(3,3),H_{10}}, R_{\beta_4(1,2,3),H_{13}}, R_{\beta_4(2,2,3),H_{13}}$ не совпадают с парами периодов приведенных их изображений вдоль осей x и y.) Также в каждой из ячеек табл. 5 приводятся все, с точностью до сопряжения в Aut(Λ^2), подгруппы Aut(Λ^2), которые, как нетрудно показать, соответствуют вершинно-транзитивным подгруппам группы автоморфизмов изображенного расширения, сохраняющих блоки (все приведенные группы лежат в **H**₁).

B	B	Bara	Barr
ρ_0	$ ho_{0,1}$	$\rho_{0,2}$	$ ho_{0,3}$
	↓ ↓ ↓ ↓	↓↓ ↓↓	
(0,1)		\rightarrow $(0,1)$ \rightarrow $(0,1)$	(0,1)
(0,0) $(1,0)$	(0,0) $(1,0)$	\rightarrow (0,0) (1,0)	(0,0)
—;—;—;—		$ \rightarrow ' \rightarrow ' \rightarrow ' \rightarrow ' - $	— ` — · ` — ` ← `
	TIT		
$H_1, H_2, H_4, H_{18}, H_{19}$	H_{27}, H_{28}, H_{32}	H_{29}	H_{31}
eta_1	$eta_{1,1}$	β_2	eta_3
	\downarrow \downarrow \downarrow		
(0,1)	(0,1)	(0,1)	(0,1)
	+ $+$ $+$		
(0,0) $(1,0)$	(0,0) (1,0)	(0,0) $(1,0)$	(0,0) $(1,0)$
H_3, H_5, H_{10}, H_{20}	H_{11}, H_{21}	H_7	H_{23}
β_4	eta_5		
- (0,1)	- $(0,1)$ $ -$		
(0,0) $(1,0)$	(0,0) $(1,0)$		
· - · - · - · - · - · - · - · - · - · -	' ' ' '		
H_{13}	H_6		

Орбиты групп из H_I на дугах решетки Λ^2

В каждой из ячеек табл. 5 после обозначения $R_{\beta(\tau_1,...,\tau_s);H}$ изображенной в ней реализации мы приводим обозначения реализаций, получающихся из нее с помощью преобразований следующих двух видов. Пусть $R_{\beta(\tau_1,...,\tau_s);H} = (\Gamma, G, \sigma, \varphi)$.

Преобразование первого вида. Если $\tau_1 \in \{2, 3, \overline{3}\}$, то заменим в графе Г каждую связь, соответствующую первой орбите разбиения β , ее дополнением до полной связи и получающийся граф обозначим через Γ_1 . Если группа всех автоморфизмов графа Γ_1 , сохраняющих блоки σ , совпадает с G, то мы получили максимальную насыщенную реализацию ($\Gamma_1, G, \sigma, \varphi$) симметрического 2-расширения решетки Λ^2 , которую будем обозначать $R_{\beta(\overline{\tau}_1,...,\tau_s);H}$. При этом в случае, когда $\tau_1 = \overline{3}$, вместо $\overline{\overline{3}}$ будем писать просто 3.

Преобразование второго вида. Если $\tau_1 = 3$, то изменим в графе Γ каждую связь, соответствующую первой орбите разбиения β , заменяя единственное ее ребро на ребро, не имеющее с ним общих концов, и получающийся граф обозначим через Γ_2 . Если группа всех автоморфизмов графа Γ_2 , сохраняющих блоки σ , совпадает с G, то мы получили максимальную реализацию ($\Gamma_2, G, \sigma, \varphi$), которую будем обозначать как $R_{\beta(\tau'_1,...,\tau_s);H}$.

Аналогичные преобразования двух видов мы будем производить не только с первой, но и с произвольной *i*-й орбитой группы H на дугах решетки Λ^2 из разбиения β . Вместе с тем, мы будем применять указанные преобразования не только к реализациям, изображенным в табл. 5, но и к реализациям, получающимся из них при помощи этих преобразований. Мы назовем преобразования указанных двух видов *преобразованиями частичного дополнения*. В каждой из ячеек табл. 5 помимо изображенной реализации приведены обозначения всех, с точностью до эквивалентности, реализаций, получающихся из нее при помощи последовательности пре-

		1			
		┝ <mark>╶╞╴╞ ┝╴╞╸┝ ┝╶┍</mark>			
$\begin{array}{c} R_{\beta_0(3),H_1} \\ \hline R_{\beta_0(\overline{3}),H_1} \\ [1,1] \\ H_1,H_2,H_4, \\ H_7,H_{18},H_{19}, \\ H_{23},H_{29},H_{31} \end{array}$	$\frac{R_{\beta_0(3),H_4}}{R_{\beta_0(\overline{3}),H_4}}$ [1,1] $H_4, H_5,$ H_7, H_{28}, H_{29}	$\frac{R_{\beta_0(3),H_{19}}}{R_{\beta_0(\overline{3}),H_{19}}}$ [2,2] $H_{19}, H_{20}, H_{23}, H_{31}, H_{32}$	$\frac{R_{\beta_{0.1}(4),H_{27}}}{[2,2]}$ H_{27},H_{28},H_{32}	$\frac{R_{\beta_{0.2}(4),H_{29}}}{[1,1]}$	$\frac{R_{\beta_{0.3}(4),H_{31}}}{[2,2]}$ H_{31}
$\frac{R_{\beta_1(3,1),H_3}}{R_{\beta_1(\overline{3},1),H_3}}$	$\frac{R_{\beta_1(3,2),H_3}}{R_{\beta_1(\overline{3},2),H_3}} \\ R_{\beta_1(\overline{3},\overline{2}),H_3} \\ R_{\beta_1(\overline{3},\overline{2}),H_3} \\ R_{\beta_1(\overline{3},\overline{2}),H_3} \\ \end{cases}$	$R_{\beta_1(\overline{3},3),H_5}$	$\frac{R_{\beta_1(3,3),H_{10}}}{R_{\beta_1(\overline{3},3),H_{10}}} \\ R_{\beta_1(\overline{3},\overline{3}),H_{10}} \\ R_{\beta_1(\overline{3},\overline{3}),H_{10}} \\ R_{\beta_1(\overline{3},\overline{3}),H_{10}} \\ \end{cases}$	$R_{\beta_1(\bar{3},3),H_{20}}$	$\frac{R_{\beta_2(1,3),H_7}}{R_{\beta_2(1,\overline{3}),H_7}}$
$ \begin{bmatrix} 1,1 \\ H_3, H_5, H_6, \\ H_{10}, H_{11}, \\ H_{13}, H_{20} \end{bmatrix} $	$egin{array}{c} [1,1] \ H_3,H_5,H_6,\ H_{10},H_{11},\ H_{13},H_{20} \end{array}$	$egin{array}{c} [1,1] \ & H_5 \end{array}$	[1,2] H_{10}	[2,2] H_{20}	$\begin{bmatrix} 2,2 \end{bmatrix}$ H_7
$ \frac{R_{\beta_{2}(2,3),H_{7}}}{R_{\beta_{2}(\overline{2},3),H_{7}}} \\ R_{\beta_{2}(2,\overline{3}),H_{7}} \\ R_{\beta_{2}(2,\overline{3}),H_{7}} \\ R_{\beta_{2}(\overline{2},\overline{3}),H_{7}} $	$\frac{R_{\beta_2(3,\overline{3}),H_7}}{R_{\beta_2(3',\overline{3}),H_7}}$	$\frac{R_{\beta_3(3,1),H_{23}}}{R_{\beta_3(\overline{3},1),H_{23}}}$	$\frac{R_{\beta_{3}(2,3),H_{23}}}{R_{\beta_{3}(\overline{2},3),H_{23}}} \\ R_{\beta_{3}(2,\overline{3}),H_{23}} \\ R_{\beta_{3}(2,\overline{3}),H_{23}} \\ R_{\beta_{3}(\overline{2},\overline{3}),H_{33}} \\ R_{\beta_{3}(\overline{3},\overline{3}),H_{33}} \\ R_{\beta_{3}(\overline{3},3$	$\frac{R_{\beta_3(3,\overline{3}),H_{23}}}{R_{\beta_3(3',\overline{3}),H_{23}}}$	$\frac{R_{\beta_4(1,2,3),H_{13}}}{R_{\beta_4(1,2,\overline{3}),H_{13}}} \\ R_{\beta_4(1,\overline{2},3),H_{13}} \\ R_{\beta_4(1,\overline{2},3),H_{13}} \\ R_{\beta_4(1,\overline{2},\overline{3}),H_{13}} \\ R_{\beta_4(1,\overline{2},3$
$[2,2] \\ H_7$	$\begin{matrix} [2,2] \\ H_7 \end{matrix}$	[2,2] $_{H_{23}}$	$ \begin{bmatrix} 2,2 \\ H_{23} \end{bmatrix} $	[2,2] H_{23}	$ \begin{bmatrix} 2,1 \\ H_{13} \end{bmatrix} $
				·	<u>.</u>
$\frac{R_{\beta_4(2,2,3),H_{13}}}{R_{\beta_4(2,2,\overline{3}),H_{13}}}$	$\frac{R_{\beta_{5}(1,2,3),H_{6}}}{R_{\beta_{5}(1,2,\overline{3}),H_{6}}}$ $R_{\beta_{5}(1,\overline{2},3),H_{6}}$ $R_{\beta_{5}(1,\overline{2},\overline{3}),H_{6}}$ $R_{\beta_{5}(1,\overline{2},\overline{3}),H_{6}}$	$\frac{R_{\beta_5(2,2,3),H_6}}{R_{\beta_5(2,2,\overline{3}),H_6}}$			
$[2,1]; H_{13}$	$[2,2]; H_6$	$[2,2]; H_6$			

49 максимальных насыщенных реализаций симметрических 2-расширений решетки Λ^2 класса I

Рис. 1. Примеры применения преобразований частичного дополнения

образований частичного дополнения. То, что любая другая получающаяся из нее реализация эквивалентна одной из указанных, несложно проверить непосредственно. Никакие две реализации, приведенные в различных ячейках и рассмотренные с точностью до эквивалентности, не могут быть получены одна из другой при помощи преобразований частичного дополнения.

Пусть ($\Gamma, G, \sigma, \varphi$) = $R_{\beta(\tau_1, ..., \tau_s);H}$ — любая из 49 реализаций, приведенных в табл. 5. Тогда граф Γ будем обозначать через $\Gamma_{\beta(\tau_1, ..., \tau_s);H}$.

Для иллюстрации применения преобразований частичного дополнения рассмотрим реализацию $R_{\beta_1(3,2),H_3} = (\Gamma_{\beta_1(3,2),H_3}, G, \sigma, \varphi)$, изображенную в ячейке на пересечении второй строки и второго столбца табл. 5. Имеем $G = \operatorname{Aut}_{\sigma}(\Gamma_{\beta_1(3,2),H_3})$. Легко видеть, что $\varphi G^{\sigma} \varphi^{-1} = H_3$, причем эта группа имеет на множестве ребер решетки Λ^2 разбиение на орбиты β_1 . Ребра из первой орбиты соответствуют связям типа 3, а ребра из второй орбиты — связям типа 2. Применяя преобразование первого вида к первой орбите, мы получим реализацию $R_{\beta_1(\overline{3},2),H_3}$ (рис. 1a, 1b). Применяя преобразование первого вида ко второй орбите, мы получим реализацию $R_{\beta_1(3,\overline{2}),H_3}$, приведенную на рис. 1с. Реализацию $R_{\beta_1(\overline{3},\overline{2}),H_3}$ получаем путем композиции указанных преобразований (ее изображения мы не приводим). Применяя преобразование второго вида к первой орбите, мы получим реализацию $R_{\beta_1(3',2),H_3}$, приведенную на рис. 1d. Отметим, что в данном примере она эквивалентна исходной реализации.

Будем говорить, что произвольная реализация R симметрического 2-расширения решетки Λ^2 coomsemcmeyem комбинации $\beta(\tau_1, \ldots, \tau_s)$, если для нее выполняется приведенное выше условие (ii). Далее, будем говорить, что две такие комбинации $\beta(\tau_1, \ldots, \tau_s)$ и $\tilde{\beta}(\tilde{\tau}_1, \ldots, \tilde{\tau}_s)$ эквивалентны, если для каждой реализации R, соответствующей какой-либо из этих комбинаций, найдется эквивалентная R реализация, соответствующая другой из этих комбинаций.

Заметим, что перечисление всех, с точностью до эквивалентности, реализаций симметрических 2-расширений решетки Λ^2 сводится к перечислению всех, с точностью до эквивалентности, насыщенных реализаций симметрических 2-расширений решетки Λ^2 . Действительно, очевидно, что каждая ненасыщенная реализация симметрического 2-расширения решетки Λ^2 получается из однозначно определенной насыщенной реализации путем удаления ребра в каждом блоке. Для максимальной насыщенной реализации $R_{\beta(\tau_1,...,\tau_s);H}$ соответствующую ей таким образом ненасыщенную реализацию будем обозначать через $\overline{R}_{\beta(\tau_1,...,\tau_s);H}$.

3. Основные результаты

Теорема. В табл. 5 приведены все, с точностью до эквивалентности, насыщенные реализации симметрических 2-расширений решетки Λ^2 класса I (все приведенные в табл. 5 реализации попарно неэквивалентны).

Следствие 1. С точностью до эквивалентности существует 49 насыщенных и 38 ненасыщенных реализаций симметрических 2-расширений решетки Λ^2 класса I.

Д о к а з а т е л ь с т в о. При удалении ребер внутри блоков у 49 реализаций, приведенных в табл. 5, графы одиннадцати из них, как легко видеть, становятся несвязными ($\Gamma_{\beta_0(3),H_1}$,

 $\Gamma_{\beta_0(3),H_4}$, $\Gamma_{\beta_0(3),H_{19}}$, $\Gamma_{\beta_1(3,2),H_3}$, $\Gamma_{\beta_1(3,\overline{2}),H_3}$, $\Gamma_{\beta_1(3,3),H_{10}}$, $\Gamma_{\beta_2(2,3),H_7}$, $\Gamma_{\beta_2(\overline{2},3),H_7}$, $\Gamma_{\beta_3(2,3),H_{23}}$, $\Gamma_{\beta_3(\overline{2},3),H_{23}}$, $\Gamma_{\beta_4(2,2,3),H_{13}}$), а остальные 38 реализаций дают все, с точностью до эквивалентности, ненасыщенные реализации симметрических 2-расширений решетки Λ^2 класса *I*.

Следствие 2. Среди графов реализаций, приведенных в табл. 5, изоморфными являются в точности следующие: $\Gamma_{\beta_0(3),H_4}$ и $\Gamma_{\beta_1(3,3),H_{10}}$; $\Gamma_{\beta_1(\overline{3},3),H_5}$ и $\Gamma_{\beta_1(\overline{3},3),H_{10}}$; $\Gamma_{\beta_1(3,\overline{3}),H_{10}}$; Γ

Следствие 3. Среди графов 87 реализаций симметрических 2-расширений решетки Λ^2 класса I из следствия 1 лишь 78 попарно неизоморфны. Помимо перечисленных в следствии 2, изоморфными являются в точности следующие из них: $\Gamma_{\beta_1(3,2),H_3}$, $\overline{\Gamma}_{\beta_{0.1}(4),H_{27}}$, $\overline{\Gamma}_{\beta_1(\overline{3},3),H_5}$ и $\overline{\Gamma}_{\beta_1(\overline{3},3),H_{10}}$; $\Gamma_{\beta_3(\overline{2},3),H_{23}}$ и $\overline{\Gamma}_{\beta_1(3,\overline{3}),H_{10}}$; $\Gamma_{\beta_1(3,\overline{2}),H_3}$ и $\overline{\Gamma}_{\beta_2(3,\overline{3}),H_7}$; $\Gamma_{\beta_5(2,2,3),H_6}$ и $\overline{\Gamma}_{\beta_4(1,2,3),H_{13}}$. Поэтому с точностью до изоморфизма существует лишь 78 графов реализаций симметрических 2расширений решетки Λ^2 класса I.

Д о к а з а т е л ь с т в о следствий 2 и 3. Справедливость следствий устанавливается следующим образом. Упомянутые в них изоморфизмы расширений легко усматриваются непосредственно. При помощи GAP для каждого из графов 87 реализаций из следствия 1 был построен подграф, порожденный множеством вершин, удаленных от некоторой произвольно выделенной вершины на расстояние ≤ 4. Среди полученных 87 конечных графов изоморфными оказались только те, которые соответствуют изоморфным графам, указанным в следствиях 2 и 3.

4. Комбинаторное доказательство теоремы

Доказательство теоремы основывается на леммах 1-22, некоторые из которых очевидны; их доказательства опущены. Для краткости в этих леммах насыщенные реализации симметрических 2-расширений решетки Λ^2 класса I будем называть просто реализациями.

Лемма 1. Если реализация содержит связи только типа 3, то каждая ее клетка содержит цикл либо длины 4, либо длины 6, либо длины 8.

Лемма 2. Если реализация содержит связи только типа 3 и некоторая ее клетка содержит цикл длины 4, то эта реализация эквивалетна $R_{\beta_0(3);H_{19}}$.

Лемма 3. Если реализация R содержит связи только типа 3 и все ее клетки содержат цикл длины 8, то эта реализация эквивалетна $R_{\beta_0(3);H_1}$.

Лемма 4. Пусть реализация R содержит связи только типа 3 и некоторая ее клетка содержит цикл длины 6. Тогда

(1) если при обходе этого цикла ребра, начало и конец которых лежат в одном блоке, лежат в несмежных блоках, то $R \sim R_{\beta_0(3):H_4}$;

(2) если при обходе этого цикла ребра, начало и конец которых лежат в одном блоке, лежат в смежных блоках, то $R \sim R_{\beta_0(3);H_{10}}$.

Ребра решетки Λ^2 вида $\{(i, j), (i + 1, j)\}, i, j \in \mathbb{Z}$, будем называть горизонтальными, а ребра вида $\{(i, j), (i, j + 1)\}, i, j \in \mathbb{Z}, -$ вертикальными. В соответствии с этим и связи реализаций симметрических 2-расширений решетки Λ^2 будем называть горизонтальными или вертикальными.

Лемма 5. Если реализация имеет все горизонтальные связи типа 3, а все вертикальные связи — типа 1, то она эквивалентна $R_{\beta_1(3,1);H_3}$.

Два подграфа симметрических 2-расширений решетки Λ^2 , которые вместе с каждой вершиной включают и весь блок, содержащий эту вершину, будем называть эквивалентными, если между ними существует изоморфизм, отображающий блоки в блоки.

Лемма 6. Если в некоторой клетке реализации горизонтальные связи имеют тип 3, а вертикальные связи лежат в одной орбите и имеют тип 2, то эта клетка, с точностью до эквивалентности, имеет один из двух видов, изображенных на рис. 2.

Будем говорить, что некоторая клетка K однозначно достраивается до реализации R, удовлетворяющей некоторым условиям (У), если K— конечный граф, множество вершин которого разбито на 4 двухэлементных блока: $B_{0,0}, B_{0,1}, B_{1,0}, B_{1,1}$, такой, что R— единственная, с точностью до эквивалентности, реализация, которая содержит клетку, эквивалентную K.

Подобным образом определяется, что значит, что некоторая пара клеток, имеющих общую вертикальную связь, однозначно достраивается до реализации R, удовлетворяющей некоторым условиям (У).

Лемма 7. Если реализация R соответствует $\beta_1(3,2)$ или $\beta_{1,1}(3,2)$, то либо $R \sim R_{\beta_1(3,2);H_3}$, либо $R \sim R_{\beta_1(3,\overline{2});H_3}$.

Д о к а з а т е л ь с т в о. Зафиксируем некоторую клетку данной реализации. По лемме 6 она имеет один из двух приведенных на рис. 2 видов. Легко усмотреть, что при условиях леммы первый вид однозначно достраивается до $R_{\beta_1(3,2);H_3}$, а второй вид — до $R_{\beta_1(3,\overline{2});H_3}$.

Лемма 8. Пусть реализация R имеет все горизонтальные связи типа $\overline{3}$, а все вертикальные связи типа 3. Тогда справедливы следующие утверждения.

(1) R coomsemcmsyem $\beta_1(\overline{3},3)$, u R coomsemcmsyem либо α_1 , либо α_3 .

(2) Если R соответствует α_1 , то R эквивалентна либо $R_{\beta_1(\overline{3},3);H_5}$, либо $R_{\beta_1(\overline{3},3);H_{10}}$, либо $R_{\beta_1(\overline{3},\overline{3});H_{10}}$.

(3) *ECAU* R coomeence may α_3 , mo $R \sim R_{\beta_1(\overline{3},3):H_{20}}$.

Доказательство. Пусть $R = (\Gamma, G, \sigma, \varphi)$ и B — блок σ . Тогда если g — элемент группы G, меняющий местами вершины B, то $\varphi g^{\sigma} \varphi^{-1}$ — поворот решетки Λ^2 на угол π вокруг вершины $\varphi(B)$. Отсюда легко следует, что R соответствует $\beta_1(\overline{3},3)$ и R соответствует α_1 либо α_3 .

Поскольку R соответствует $\beta_1(\overline{3},3)$, легко усмотреть, что произвольная клетка реализации R, с точностью до эквивалентности, имеет один из следующих видов, указанных на рис. 3. Отметим, что в клетках вида (a), (b) для каждого вертикального ребра количество горизонтальных ребер, инцидентных верхнему его концу, отличается от количества горизонтальных ребер, инцидентных нижнему его концу. А в клетках вида (c)–(e) эти количества совпадают.

Всевозможные (неупорядоченные) сочетания типов двух клеток решетки R, имеющих общую вертикальную связь, разместим в табл. 6 так, что левой клетке соответствует строка, а правой — столбец. Здесь для данного сочетания типов пометка "нерег." означает несовместимость с требованием регулярности графа Γ , пометка " $\neg \beta_1$ " означает несовместимость с тем,

	a_1	a_2	b_1	b_2	b_3
a_1	$R_{\beta_1(\overline{3},3);H_5}$	$\neg \beta_1$	нерег.	нерег.	нерег.
a_2		$R_{\beta_1(\overline{3},3);H_{10}}$	нерег.	нерег.	нерег.
b_1			нерег.	$\neg \beta_1$	$R_{\beta_1(\overline{3},3);H_{20}}$
b_2				$R_{\beta_1(3,\overline{3});H_{10}}$	$\neg \beta_1$
b_3					нерег.

Таблица б

что R соответствует $\beta_1(\overline{3},3)$, а пометка с именем реализации означает, что при условиях леммы 8 данное сочетание однозначно достраивается до указанной реализации. Справедливость утверждений табл. 6 устанавливается легко.

Лемма 9. Если реализация R соответствует $\beta_2(1,3)$, то $R \sim R_{\beta_2(1,3);H_7}$.

Лемма 10. Если реализация $R = (\Gamma, G, \sigma, \varphi)$ coomeencmeyem $\beta_2(2,3)$ и $\varphi(\operatorname{Aut}_{\sigma}(\Gamma))^{\sigma}\varphi^{-1} = H_7$, то либо $R \sim R_{\beta_2(2,3);H_7}$, либо $R \sim R_{\beta_2(\overline{2},3);H_7}$.

Д о к а з а т е л ь с т в о. Произвольная клетка K расширения R, левая и нижняя связи которой имеют тип 2, с точностью до эквивалентности, имеет один из двух видов, указанных на рис. 4. Однако второй вид невозможен, поскольку в этом случае отражение относительно побочной диагонали клетки K поточечно оставляет на месте левый нижний блок и, следовательно, в группе G нет элемента, меняющего местами вершины в этом блоке. Итак, для K реализуется первый вид.

Поскольку все клетки расширения R эквивалентны (так как орбиты группы H_7 на клетках решетки Λ^2 составляют α_1), то две клетки расширения R, имеющие общую вертикальную связь типа 2, с точностью до эквивалентности, имеют один из видов (a), (b), указанных на рис. 5. Пара клеток (a) однозначно достраивается до реализации $R_{\beta_2(2,3);H_7}$, а пара клеток (b) эквивалентна паре клеток (c) на рис. 5 и однозначно достраивается до реализации $R_{\beta_2(\overline{2},3);H_7}$.

Лемма 11. Если реализация $R = (\Gamma, G, \sigma, \varphi)$ соответствует $\beta_2(3,\overline{3})$ и $\varphi(\operatorname{Aut}_{\sigma}(\Gamma))^{\sigma}\varphi^{-1} = H_7$, то либо $R \sim R_{\beta_2(3,\overline{3}):H_7}$, либо $R \sim R_{\beta_2(3,\overline{3}):H_7}$.

Д о к а з а т е л ь с т в о. Найдем вид такой клетки K расширения R, левая и нижняя связи которой имеют тип $\overline{3}$. Поскольку группа $\operatorname{Aut}_{\sigma}(\Gamma)$ содержит отражение относительно побочной диагонали клетки K, то, с точностью до эквивалентности, возможны два вида клетки K, указанные на рис. 6. Учитывая, что все клетки расширения эквивалентны (так как орбиты группы H_7 на клетках решетки Λ^2 составляют α_1), клетка первого вида однозначно достраивается до реализации $R_{\beta_2(3,\overline{3});H_7}$, а клетка второго вида однозначно достраивается до реализации $R_{\beta_2(3',\overline{3});H_7}$.

Рис. 4

Рис. 6

Для произвольной реализации $R = (\Gamma, G, \sigma, \varphi)$ симметрического 2-расширения решетки Λ^2 и произвольного $g \in Aut(\Lambda^2)$ можно построить эквивалентную ей реализацию $g(R) := (\Gamma, G, \sigma, g\varphi)$ симметрического 2-расширения решетки Λ^2 . Будем говорить, что g(R) — это *реализация* R, преобразованная с помощью g.

Лемма 12. Если реализация R соответствует $\beta_4(2,2,3)$, a R соответствует α_2 , то $R \sim R_{\beta_4(2,2,3);H_{13}}$.

Д о к а з а т е л ь с т в о. Из леммы 6 следует, что две произвольные клетки расширения R с общей вертикальной связью имеют, с точностью до эквивалентности, один из трех видов, указанных на рис. 7. Учитывая, что R соответствует разбиение α_2 , первый вид однозначно достраивается до реализации $m_{\backslash}(R_{\beta_1(3,2);H_3})$, второй вид — до реализации $m_{\backslash}(R_{\beta_1(3,\overline{2});H_3})$, а третий вид — до реализации $R_{\beta_4(2,2,3);H_{13}}$. Но первые две реализации соответствуют α_1 , что противоречит условию леммы.

Лемма 13. Если реализация R соответствует $\beta_4(1,2,3)$ и α_2 , то либо $R \sim R_{\beta_4(1,2,3);H_{13}}$, либо $R \sim R_{\beta_4(1,\overline{2},3);H_{13}}$.

Д о к а з а т е л ь с т в о. Из леммы 6 следует, что две произвольные клетки расширения R с общей вертикальной связью имеют, с точностью до эквивалентности, один из двух видов, указанных на рис. 8. С учетом того, что R соответствует реализации α_2 , легко усмотреть, что первый вид однозначно достраивается до реализации $R_{\beta_4(1,2,3);H_{13}}$, а второй — до реализации $R_{\beta_4(1,\overline{2},3);H_{13}}$.

Лемма 14. *Не существует реализации, соответствующей* $\beta_4(3,3,2)$ *или* $\beta_5(3,3,2)$.

Д о к а з а т е л ь с т в о. Предположим, что существует реализация $R = (\Gamma, G, \sigma, \varphi)$ с указанными свойствами. Из транзитивности действия группы G на произвольном блоке реализации R следует, что все горизонтальные связи реализации R попадут в одну орбиту группы G. Это противоречит условию леммы.

Лемма 15. Если реализация R соответствует $\beta_5(2,2,3)$ и α_1 , то $R \sim R_{\beta_5(2,2,3);H_6}$.

Д о к а з а т е л ь с т в о. Легко усмотреть, что произвольная клетка расширения, с точностью до эквивалентности, имеет один из трех видов, указанных на рис. 9. Учитывая, что R соответствует разбиение α_1 , легко усмотреть, что первый вид однозначно достраивается до реализации $R_{\beta_1(3,2);H_3}$, отраженной относительно главной диагонали, второй — до реализации $R_{\beta_1(3,\overline{2});H_3}$, отраженной относительно главной диагонали, а третий — до реализации $R_{\beta_5(2,2,3);H_6}$. Но первые две реализации не удовлетворяют условиям леммы.

Лемма 16. Если реализация R соответствует $\beta_5(1,2,3)$ и α_1 , то либо $R \sim R_{\beta_5(1,2,3);H_6}$ либо $R \sim R_{\beta_5(1,\overline{2},3);H_6}$.

Доказательство. Легко усмотреть, что произвольная клетка реализации R, с точностью до эквивалентности, имеет один из двух видов, указанных на рис. 10. Учитывая, что расширение R соответствует α_1 , легко усмотреть, что первый вид однозначно достраивается до реализации $R_{\beta_5(1,2,3);H_6}$, а второй — до реализации $R_{\beta_5(1,\overline{2},3);H_6}$.

Лемма 17. Если реализация R соответствует $\beta_{0.1}(4)$, то $R \sim R_{\beta_{0,1}(4);H_{27}}$.

Лемма 18. Если реализация R соответствует $\beta_{0,2}(4)$, то $R \sim R_{\beta_{0,2}(4);H_{29}}$.

Лемма 19. Если реализация R соответствует $\beta_{0,3}(4)$, то $R \sim R_{\beta_{0,3}(4);H_{31}}$.

Лемма 20. Если реализация R соответствует $\beta_3(3,1)$, то $R \sim R_{\beta_3(3,1):H_{23}}$.

Лемма 21. Если реализация R соответствует $\beta_3(2,3)$, то либо $R \sim R_{\beta_3(2,3);H_{23}}$, либо $R \sim R_{\beta_3(\overline{2},3);H_{23}}$.

Д о к а з а т е л ь с т в о. H_{23} — единственная группа, имеющая на ребрах решетки Λ^2 разбиение на орбиты β_3 . Следовательно, реализация R соответствует α_4 . Зафиксируем произвольную клетку расширения R. По лемме 6 она имеет один из двух возможных видов, изображенных на рис. 2. Легко видеть, что при условиях леммы первый из них однозначно достраивается до реализации $R_{\beta_3(2,3);H_{23}}$, а второй — до реализации $R_{\beta_3(\overline{2},3);H_{23}}$.

Лемма 22. Если реализация R соответствует $\beta_3(3,\overline{3})$, то либо $R \sim R_{\beta_3(3,\overline{3});H_{23}}$, либо $R \sim R_{\beta_3(3',\overline{3});H_{23}}$.

Доказательство. H_{23} — единственная группа, имеющая на ребрах решетки Λ^2 разбиение на орбиты β_3 . Следовательно, R соответствует α_4 .

Произвольная клетка реализации R, горизонтальные связи которой имеют тип $\overline{3}$, а вертикальные — тип 3, с точностью до эквивалентности, имеет один из следующих двух видов, показанных на рис. 11. Учитывая, что R соответствует α_4 , легко усмотреть, что при условиях леммы клетка первого вида однозначно достраивается до реализации $R_{\beta_3(3,\overline{3});H_{23}}$, а клетка второго вида — до реализации $R_{\beta_3(3',\overline{3});H_{23}}$.

Д о к а з а т е л ь с т в о теоремы осуществляется путем перебора всех возможных комбинаций $\beta(\tau_1, \ldots, \tau_s)$ (см. разд. 2), в которых среди τ_1, \ldots, τ_s существует $\tau_i \notin \{1, 2, \overline{2}\}$. В первом столбце табл. 7 перечисляются такие комбинации, за тем исключением что при наличии нескольких эквивалентных комбинаций (см. разд. 2) в таблицу помещалась только одна из них. Во втором столбце приводятся обозначения соответствующих реализаций (или символ "-", если они не существуют). В третьем столбце приводятся аргументы, обосновывающие соответствие между первым и вторым столбцами. При этом "част. доп." означает, что все реализации, соответствующие комбинации из данной строки, являются частично дополнительными к реализациям, соответствующим комбинации из предыдущей строки (т. е. получаются из них с помощью последовательности преобразований частичного дополнения); а "нерег." означает, что данная комбинация приводит к отсутствию регулярности у соответствующих ей расширений. В некоторых строках первого столбца таблицы в комбинациях вместо конкретных типов связей стоят переменные $\tau, \tilde{\tau}$. Это означает что утверждения этих строк выполняются для любых значений $\tau, \tilde{\tau} \in \{1, 2, 3, \overline{3}\}.$

Konfunana	Dea wurde wurde	Ofeenenaure
<i>Сомоинация</i>	Геализации	торание
$\rho_0(3)$	$\kappa_{\beta_0(3),H_1},\kappa_{\beta_0(3),H_4},\kappa_{\beta_0(3),H_{19}}$	Леммы 1, 2 , 3 , 4
$\beta_0(3)$	$R_{\beta_0(\overline{3}),H_1}, R_{\beta_0(\overline{3}),H_4}, R_{\beta_0(\overline{3}),H_{19}}$	част. доп.
$\beta_{0,1}(3)$	-	леммы 1, 2, 4, 3
$\beta_{0,1}(3)$	-	част. доп.
$\beta_{0,1}(4)$	$R_{eta_{0,1}(4),H_{27}}$	лемма 17
$\beta_{0,2}(\underline{3})$	-	леммы 1, 2, 4, 3
$\beta_{0,2}(\overline{3})$	-	част. доп.
$\beta_{0,2}(4)$	$R_{eta_{0,2}(4),H_{29}}$	лемма 18
$\beta_{0,3}(3)$	_	леммы 1, 2, 4, 3
$\beta_{0,3}(\overline{3})$	-	част. доп.
$\beta_{0,3}(4)$	$R_{\beta_{0,3}(4),H_{31}}$	лемма 19
$\beta_1(1,3)$	$\frac{R_{\beta_1(3,1)} + R_{\beta_2(3,1)}}{R_{\beta_1(3,1)} + R_{\beta_2(3,1)}}$	лемма 5
$\beta_1(1,\overline{3})$	$R_{\beta_1(\overline{2},1),H_2}$	част. доп.
$\beta_1(2,3)$	B_{α} (2.2) H B_{α} (2.5) H	лемма 7
$\beta_1(2,3)$ $\beta_1(2,\overline{3})$	B - B - B - B	част поп
$\beta_1(2, 3)$ $\beta_2(2, 2)$	$\mu_{\beta_1(3,2);H_3}, \mu_{\beta_1(3,2);H_3}$	$4ac1. \pm 0.1.$
$-\frac{p_1(3,3)}{2}$	$-\underline{-}_{\mathcal{D}} - \underline{-}_{\mathcal{D}} \underline$	Леммы 1, $2, 4, 5$
$\beta_1(\overline{3},3)$	$R_{\beta_1(\overline{3},3);H_5}, R_{\beta_1(\overline{3},3);H_{10}},$	лемма 8
	$R_{\underline{\beta}_{1}(\underline{3},\overline{3});\underline{H}_{10}}, R_{\underline{\beta}_{1}(\underline{3},\underline{3});\underline{H}_{20}}$	
$eta_1(\overline{3},\overline{3})$	$R_{eta_1(\overline{3},\overline{3}),H_{10}}$	част. доп. к $eta_1(3,3)$
$eta_{1,1}(1,3)$	-	лемма 5
$\beta_{1,1}(1,\overline{3})$	-	част. доп.
$\beta_{1,1}(1,4)$	-	нерег.
$\beta_{1,1}(2,3)$	-	лемма 7
$\beta_{1,1}(2,\overline{3})$	-	част. доп.
$\beta_{1,1}(2,4)$	-	нерег.
$\beta_{1,1}(3,3)$	-	леммы 1, 2, 4, 3
$\beta_{1,1}(3,4)$	-	нерег.
$\beta_{1,1}(\overline{3},3)$	-	лемма 8
$\beta_{1,1}(\overline{3},\overline{3})$	-	част. доп. к $\beta_{1,1}(3,3)$
$\beta_{1,1}(\overline{3},4)$	-	нерег.
$\beta_2(1,3)$	$R_{\beta_2(1,3):H_7}$	лемма 9
$\beta_2(1,\overline{3})$	$R_{2}(1,3), R_{7}$	част. доп.
$\beta_2(2,3)$	$B_{2}(1,3);H_{7}$	лемма 10
$\beta_2(2,3)$ $\beta_2(2,\overline{3})$	B = B = -	
$\rho_2(2,3)$	$\mu_{\beta_2(2,3);H_7}, \ \mu_{\beta_2(2,3);H_7}$	част. доп.
$\rho_2(\mathbf{a},\mathbf{a})$	- D D	Леммы 1, $2, 4, 5$
$p_2(3,3)$	$R_{\beta_2(3,\overline{3});H_7}, R_{\beta_2(3',\overline{3});H_7}$	лемма 11
$\beta_2(3,3)$	-	част. доп.
$\beta_3(3,1)$	$R_{eta_3(3,1);H_{23}}$	лемма 20
$eta_3(3,1)$	$R_{eta_{3}(\overline{3},1);H_{23}}$	част. доп.
$\beta_3(2,3)$	$R_{eta_3(2,3);H_{23}},R_{eta_3(\overline{2},3);H_{23}}$	лемма 21
$\beta_3(2,\overline{3})$	$R_{\beta_3(2,\overline{3});H_{23}}, R_{\beta_3(\overline{2},\overline{3});H_{23}}$	част. доп.
$eta_3(3,3)$	-	леммы 1, 2, 4, 3
$\beta_3(3,\overline{3})$	$R_{\beta_3(3,\overline{3}):H_{23}}, R_{\beta_2(3',\overline{3}):H_{23}}$	лемма 22
$\beta_3(\overline{3},\overline{3})$	-	част. доп.
$\beta_4(1,1,3)$	_	лемма 5
$\beta_4(1,1,\overline{3})$	-	част. доп.

Комбинация	Реализации	Обоснование
$\beta_4(1,2,3)$	$R_{\beta_4(1,2,3);H_{13}}, R_{\beta_4(1,\overline{2},3);H_{13}}$	лемма 13
$\beta_4(1,2,\overline{3})$	$R_{\beta_4(1,2,\overline{3});H_{13}}, R_{\beta_4(1,\overline{2},\overline{3});H_{13}}$	част. доп.
$eta_4(1,3, au)$	-	нерег.
$eta_4(1,\overline{3}, au)$	-	част. доп.
$eta_4(2,2,3)$	$R_{eta_4(2,2,3);H_{13}}$	лемма 12
$\beta_4(2,2,\overline{3})$	$R_{eta_4(2,2,\overline{3});H_{13}}$	част. доп.
$eta_4(2,3, au)$	-	нерег.
$\beta_4(2,\overline{3}, au)$	-	част. доп.
$eta_4(3,3,1)$	-	лемма 5
$eta_4(3,3,2)$	-	лемма 14
$eta_4(3,3,3)$	-	леммы 1, 2, 4, 3
$eta_4(3,3,\overline{3})$	-	лемма 8(1)
$eta_4(3,\overline{3}, au)$	-	нерег.
$eta_4(\overline{3}, au, ilde{ au})$	-	част. доп. к $eta_4(3, au, ilde{ au})$
$eta_5(1,1,3)$	-	лемма 5
$eta_5(1,1,\overline{3})$	-	част. доп.
$eta_5(1,2,3)$	$R_{eta_5(1,2,3);H_6},R_{eta_5(1,\overline{2},3);H_6}$	лемма 16
$\beta_5(1,2,\overline{3})$	$R_{\beta_5(1,2,\overline{3});H_6}, R_{\beta_5(1,\overline{2},\overline{3});H_6}$	част. доп.
$eta_5(1,3, au)$	-	нерег.
$eta_5(1,\overline{3}, au)$	-	част. доп.
$eta_5(2,2,3)$	$R_{eta_5(2,2,3);H_6}$	лемма 15
$\beta_5(2,2,\overline{3})$	$R_{\beta_5(2,2,\overline{3});H_6}$	част. доп.
$eta_5(2,3, au)$	-	нерег.
$\beta_5(2,\overline{3}, au)$	-	част. доп.
$eta_5(3,3,1)$	-	лемма 5
$eta_5(3,3,2)$	-	лемма 14
$eta_5(3,3,3)$	-	леммы 1, 2, 4, 3
$eta_5(3,3,\overline{3})$	-	лемма 8(1)
$eta_5(3,\overline{3}, au)$	-	нерег.
$\beta_5(\overline{3}, au, ilde{ au})$	_	част. доп. к $eta_5(3, au, ilde{ au})$

Таблица 7 (окончание)

Таким образом, мы доказали, что любая реализация симметрических 2-расширений решетки Λ^2 класса I эквивалентна некоторой реализации из второго столбца табл. 7. А последние реализации есть в точности реализации из табл. 5. □

5. Доказательство теоремы, использующее компьютерную реализацию алгоритмов

В этом разделе будет дано другое доказательство теоремы, которое основано на компьютерной реализации подхода, предложенного в [3], и условно называемого координатизацией симметрических расширений графов. Благодаря ему удается получить новое короткое описание реализаций симметрических 2-расширений решетки Λ^2 класса I, которое используется нами для получения в разд. 6 эквивалентных им кристаллографических реализаций. Кроме того, этот подход представляется более перспективным для описания реализаций симметрических 2-расширений решетки Λ^d в случае d > 2.

Пусть H — группа и L — ее подгруппа. Пусть, кроме того, \mathcal{P} — некоторое множество двухэлементных подмножеств множества H/L всех левых смежных классов H по L вида $\{L, gL\}$, $g \in H$. Тогда через $\Gamma_{H,L,\mathcal{P}}$ обозначается граф с множеством вершин H/L и множеством ребер $\{g(P): P \in \mathcal{P}, g \in H\}$. При этом $\lambda_{H/L}(H)$, где $\lambda_{H/L}$ — действие группы H на H/L левыми сдвигами, является вершинно-транзитивной группой автоморфизмов графа $\Gamma_{H,L,\mathcal{P}}$.

Пусть теперь H — вершинно-транзитивная группа автоморфизмов решетки $\Lambda^2, K = H_{(0,0)}$ — стабилизатор вершины (0,0) в H и L — подгруппа индекса 2 в K. Тогда

$$\sigma_{H,K,L} := \{\lambda_{H/L}(g)(K/L) : g \in H\}$$

есть система импримитивности группы $\lambda_{H/L}(H)$ на H/L. Через $\tilde{\varphi}_{H,K,L}$ обозначим взаимнооднозначное отображение $\sigma_{H,K,L}$ на $V(\Lambda^2)$ такое, что $\tilde{\varphi}_{H,K,L}(\lambda_{H/L}(g)(K/L)) = g(0,0)$ для всех $g \in H$. Четверка ($\Gamma_{H,L,\mathcal{P}}, \lambda_{H/L}(H), \sigma_{H,K,L}, \tilde{\varphi}_{H,K,L}$) является реализацией симметрического 2расширения решетки Λ^2 , которую мы будем для краткости обозначать через $R_{H,L,\mathcal{P}}$.

Следующее предложение является конкретизацией [3, предложение 8], необходимой для наших целей.

Предложение. Пусть $(\Gamma, G, \sigma, \varphi)$ — такая реализация насыщенного симметрического 2расширения решетки Λ^2 , что ядро индуцированного действия $G \mapsto G^{\sigma}$ единично. Обозначим через H вершинно-транзитивную подгруппу $\varphi G^{\sigma} \varphi^{-1}$ группы $\operatorname{Aut}(\Gamma)$. Пусть, далее, $K = H_{(0,0)}$ $u h_1, h_2, h_3, h_4$ — такой набор элементов группы H, что вершины $h_j(0,0), j \in \{1,\ldots,4\}$, составляют множество $\{(1,0), (-1,0), (0,1), (0,-1)\}$. Тогда для некоторой подгруппы L индекса 2 группы K и произвольного $g \in K \setminus L$ найдутся такие подмножества $P_j, j \in \{1,\ldots,4\}$, множества $\{1,g\}$, что для $\mathcal{P} := \{\{L,gL\}\} \cup \{\{L,h_jgL\} : j \in \{1,\ldots,4\}, g \in P_j\}$ выполняется $(\Gamma, G, \sigma, \varphi) \sim R_{H,L,\mathcal{P}}$.

На основе этого предложения был реализован следующий алгоритм, который генерирует все, с точностью до эквивалентности, насыщенные реализации симметрических 2-расширений решетки Λ^2 .

Алгоритм 1. Генерация всех насыщенных реализаций симметрических 2-расширений решетки Λ^2 .

В ы х о д: Список реализаций $R_{H_i,L_i,\mathcal{P}_i}, i = 1, ..., n.$

О п и с а н и е. Перебираем всевозможные группы H из **H**_I. Для каждой из них полагаем $K = H_{(0,0)}$ и выбираем элементы $h_1, \ldots, h_4 \in H$ такие, что $\{h_1(0,0), \ldots, h_4(0,0)\} = \{(1,0), (-1,0), (0,1), (0,-1)\}$. Перебираем всевозможные подгруппы L группы K индекса 2. Для каждой из них выбираем $g \in K$, такой что $K = L \cup gL$. Перебираем всевозможные подмножества N множества $\{h_1L, \ldots, h_4L, h_1gL, \ldots, h_4gL\}$ такие, что N инвариантно относительно левых сдвигов на элементы из L и если $hL \in N$, то и $h^{-1}L \in N$. Для каждого такого множества N полагаем $\mathcal{P} = \{\{L, gL\} \cup \{\{L, L_1\} : L_1 \in N\}\}$ и строим граф $\Gamma_{H,L,\mathcal{P}}$. Если между блоком $\{L, gL\}$ и блоками $\{h_jL, h_jgL\}, j = 1, \ldots, 4$, имеются связи типа, отличного от 1 и 4, то реализация $(\Gamma_{H,L,\mathcal{P}}, \lambda_{H/L}(H), \sigma_{H,K,L}, \tilde{\varphi}_{H,K,L})$ относится к типу I и мы записываем ее в выходной список.

Пусть $R_{H_i,L_i,\mathcal{P}_i}$, i = 1, 2, - две из сгенерированных при помощи алгоритма 1 реализации. Опишем алгоритм, позволяющий определить, являются ли они эквивалентными. Положим $K_i = (H_i)_{(0,0)}$ для i = 1, 2. Множества смежных классов H_1/K_1 и H_2/K_2 естественным образом отождествляются с решеткой Λ^2 . Если расширения эквивалентны, то между ними существует изоморфизм ψ , сохраняющий блоки и, следовательно, индуцирующий некоторый автоморфизм $g \in \operatorname{Aut}(\Lambda^2)$. Из вершинной симметричности расширения $\Gamma_{H_2,L_2,\mathcal{P}_2}$ следует, что ψ можно домножить на некоторый автоморфизм расширения $\Gamma_{H_2,L_2,\mathcal{P}_2}$, сохраняющий блоки и, так что получающийся изоморфизм между $\Gamma_{H_1,L_1,\mathcal{P}_1}$ и $\Gamma_{H_2,L_2,\mathcal{P}_2}$, сохраняющий блоки из восьми возможных значений. Нижеописанный алгоритм 2 позволяет определить эквивалентность реализаций $R_{H_i,L_i,\mathcal{P}_i}$, i = 1, 2 на эквивалентность нужно перебрать всевозможные $\hat{g} \in \operatorname{Aut}(\Lambda^2)_{(0,0)}$ и для каждого \hat{g} сопоставить при помощи алгоритма 2 реализацию $R_{H_1,L_1,\mathcal{P}_1}$ и реализацию $\hat{g}^{-1}(R_{H_2,L_2,\mathcal{P}_2})$.

Алгоритм 2. Проверка двух реализаций на эквивалентность в предположении $\hat{g} = 1$.

Реализации $R_{H_i,L_i,\mathcal{P}_i} = (\Gamma_{H_i,L_i,\mathcal{P}_i}, G_i, \sigma_i, \varphi_i), i = 1, 2.$ Вход:

В ы х о л: Заключение об их эквивалентности или неэквивалентности.

О п и с а н и е. Пусть (n_1, n_2) — лексикографически минимальная пара положительных целых чисел, такая что обе реализации удовлетворяют условию $[n_1, n_2]$ -периодичности.

Пусть F_i , i = 1, 2, - подграф в $\Gamma_{H_i,L_i,\mathcal{P}_i}$, порожденный множеством вершин $\varphi_i^{-1}(0,0) \cup \varphi_i^{-1}(1,0) \cup \ldots \cup \varphi_i^{-1}(n_1-1,0) \cup \varphi_i^{-1}(0,1) \cup \varphi_i^{-1}(1,1) \cup \ldots \cup \varphi_i^{-1}(n_1-1,1) \cup \ldots \cup \varphi_i^{-1}(0,n_2-1) \cup \varphi_i^{-1}(1,n_2-1) \cup \ldots \cup \varphi_i^{-1}(n_1-1,n_2-1)$ решетки Λ^2 . Сопоставляя блоки $\varphi_1^{-1}(k,l)$ и $\varphi_2^{-1}(k,l)$ для всех $k \in \{0, ..., n_1\}, l \in \{0, ..., n_2\}$, можно построить $2^{n_1 n_2}$ соответствий вершин подграфов F₁ и F₂. Если среди них найдется соответствие, задающее изоморфизм подграфов F₁ и F₂ с дополнительным согласованием на границе, благодаря которому это соответствие по периодичности продолжается до изоморфизма графов $\Gamma_{H_i,L_i,\mathcal{P}_i}$, i = 1, 2, то данные реализации эквивалентны, а если не найдется, то неэквивалентны. Перебор $2^{n_1n_2}$ соответствий вершин подграфов убыстряется за счет использования перебора с возвратом.

Список реализаций, сгенерированный при помощи алгоритма 1 и прореженный с помощью алгоритма 2, содержит 49 реализаций. При прореживании из любых двух эквивалентных реализаций, у которых группы H_i сравнимы по включению, выбиралась реализация с большей группой. Благодаря этому реализации в получившемся списке являются максимальными. Ниже приводится легко получаемое сопоставление реализаций из табл. 5 с реализациями из этого списка. Для краткости обозначим $x = t_x, \bar{x} = t_x^{-1}, y = t_y, \bar{y} = t_y^{-1}, r = r_{\frac{\pi}{2}}, \bar{r} = r_{-\frac{\pi}{2}}.$ Кроме того, вместо обозначения $R_{H,L,\mathcal{P}}$ будем использовать обозначение $R_{H,L,X}$, где $X \subset H$, $\mathcal{P} = \{\{L, hL\} : h \in X\}\}$

$R_{\beta_0(3),H_1} \sim R_{H_1,\langle r \rangle,\{m_{\backslash},x,\bar{x}\}},$	$R_{eta_0(ar{3}),H_1} \sim R_{H_1,\langle r angle,\{m_ar{\lambda},xm_ar{\lambda},ar{x}m_ar{\lambda},y,ym_ar{\lambda},ar{y},ar{y}m_ar{\lambda}\}},$
$R_{eta_0(3),H_4} \sim R_{H_4,\langle r_\pi angle,\{m_{ar{\lambda}},xm_{ar{\lambda}},ym_{ar{\lambda}}\}},$	$R_{\beta_0(\bar{3}),H_4} \sim R_{H_4,\langle r_\pi\rangle,\{m_{\backslash},x,\bar{x}m_{\backslash},\bar{x},y,\bar{y}m_{\backslash},\bar{y}\}},$
$R_{\beta_0(3),H_{19}} \sim R_{H_{19},\langle r_\pi \rangle,\{m_{\backslash},xm_{ m },ym_{ m -}\}},$	$R_{\beta_0(\bar{3}),H_{19}} \sim R_{H_{19},\langle r_\pi\rangle,\{m_{\backslash},x\bar{r},\bar{x}m_{ },\bar{x}\bar{r},yr,\bar{y}m_{-},\bar{y}r\}},$
$R_{\beta_{0.1}(4),H_{27}} \sim R_{H_{27},\langle m\rangle,\{m_ ,xm_/,xm_{\backslash},ym_{\backslash},\bar{y}m_/\}},$	$R_{\beta_{0.2}(4),H_{29}} \sim R_{H_{29},1,\{m_{\backslash},xm_{\backslash},y,ym_{\backslash},\bar{y}\}},$
$R_{\beta_{0.3}(4),H_{31}} \sim R_{H_{31},1,\{m_{/},\bar{x}\bar{r},yr,ym_{ },\bar{y}m_{ }\}},$	$R_{\beta_1(3,1),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{\parallel},xm_{\parallel},y,ym_{\parallel},\bar{y},\bar{y}m_{\parallel}\}},$
$R_{\beta_1(\bar{3},1),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{\parallel},x,\bar{x}m_{\parallel},\bar{x},y,ym_{\parallel},\bar{y},\bar{y}m_{\parallel}\}},$	$R_{\beta_1(3,2),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{\ },xm_{\ },y,\bar{y}\}},$
$R_{\beta_1(\bar{3},2),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{\parallel},x,\bar{x}m_{\parallel},\bar{x},y,\bar{y}\}},$	$R_{\beta_1(3,\bar{2}),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{\parallel},xm_{\parallel},ym_{\parallel},\bar{y}m_{\parallel}\}},$
$R_{\beta_1(\bar{3},\bar{2}),H_3} \sim R_{H_3,\langle r_\pi \rangle,\{m_{ },x,\bar{x}m_{ },\bar{x},ym_{ },\bar{y}m_{ }\}},$	$R_{\beta_1(\bar{3},3),H_5} \sim R_{H_5,1,\{r_\pi,x,\bar{x}r_\pi,\bar{x},yr_\pi\}},$
$R_{\beta_1(3,3),H_{10}} \sim R_{H_{10},1,\{r_\pi,xr_\pi,\bar{y}m\}},$	$R_{\beta_1(\bar{3},3),H_{10}} \sim R_{H_{10},1,\{r_\pi,x,\bar{x}r_\pi,\bar{x},\bar{y}m\}},$
$R_{\beta_1(3,\bar{3}),H_{10}} \sim R_{H_{10},1,\{r_{\pi},xr_{\pi},ym_{-},ym_{ },\bar{y}m_{ }\}},$	$R_{\beta_1(\bar{3},\bar{3}),H_{10}} \sim R_{H_{10},1,\{r_\pi,x,\bar{x}r_\pi,\bar{x},ym,ym_ ,\bar{y}m_ \}},$
$R_{\beta_1(\bar{3},3),H_{20}} \sim R_{H_{20},1,\{r_\pi,xm,\bar{x}m_\parallel,\bar{x}m,ym\}},$	$R_{\beta_2(1,3),H_7} \sim R_{H_7,1,\{m_/,xr_\pi,xm_ackslash,ar{x}r_\pi,yr_\pi,ym_ackslash\}},$
$R_{\beta_2(1,\bar{3}),H_7} \sim R_{H_7,1,\{m_/,xr_\pi,xm_\backslash,\bar{x}m_\backslash,yr_\pi,ym_\backslash,\bar{y}r_\pi,\bar{y}m_\backslash\}},$	$R_{\beta_2(2,3),H_7} \sim R_{H_7,1,\{m_/,xr_\pi,\bar{x}r_\pi,yr_\pi\}},$
$R_{\beta_2(\bar{2},3),H_7} \sim R_{H_7,1,\{m_/,xm_{\backslash},\bar{x}r_{\pi},ym_{\backslash}\}},$	$R_{\beta_2(2,\bar{3}),H_7} \sim R_{H_7,1,\{m_/,xr_\pi,\bar{x}m_ackslash,yr_\pi,\bar{y}r_\pi,\bar{y}m_ackslash\}},$
$R_{eta_2(ar 2,ar 3),H_7} \sim R_{H_7,1,\{m_/,xm_ackslash,ar xm_ackslash,ym_ackslash,ar ym_ackslash,ar ym_ackslash,a$	$R_{\beta_2(3,\bar{3}),H_7} \sim R_{H_7,1,\{m_/,xr_\pi,\bar{x}m_\setminus,\bar{y}r_\pi,\bar{y}m_\setminus\}},$
$R_{\beta_2(3',\bar{3}),H_7} \sim R_{H_7,1,\{m_/,\bar{x}m_{\backslash},yr_{\pi},\bar{y}r_{\pi},\bar{y}m_{\backslash}\}},$	$R_{\beta_3(3,1),H_{23}} \sim R_{H_{23},1,\{m_/,xm_ ,\bar{x}m_ ,\bar{x}r,\bar{y}m,\bar{y}\bar{r}\}},$
$R_{\beta_3(\bar{3},1),H_{23}} \sim R_{H_{23},1,\{m_/,xr,\bar{x}m_ ,\bar{x}r,ym,y\bar{r},\bar{y}m,\bar{y}\bar{r}\}},$	$R_{\beta_3(2,3),H_{23}} \sim R_{H_{23},1,\{m_/,xm_\ ,\bar{x}m_\ ,ym\}},$
$R_{\beta_3(\bar{2},3),H_{23}} \sim R_{H_{23},1,\{m_/,xr,\bar{x}m_ ,y\bar{r}\}},$	$R_{\beta_3(2,\bar{3}),H_{23}} \sim R_{H_{23},1,\{m_/,xm_ ,\bar{x}r,ym,\bar{y}m,\bar{y}\bar{r}\}},$
$R_{\beta_3(\bar{2},\bar{3}),H_{23}} \sim R_{H_{23},1,\{m_/,xr,\bar{x}r,y\bar{r},\bar{y}m,\bar{y}\bar{r}\}},$	$R_{\beta_3(3,\bar{3}),H_{23}} \sim R_{H_{23},1,\{m_/,xm_ ,\bar{x}m_ ,\bar{x}r,\bar{y}\bar{r}\}},$
$R_{\beta_3(3',\bar{3}),H_{23}} \sim R_{H_{23},1,\{m_/,\bar{x}m_ ,\bar{x}r,ym,\bar{y}\bar{r}\}},$	$R_{\beta_4(1,2,3),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,xr_\pi,\bar{x}m_ ,ym\}},$
$R_{\beta_4(1,2,\bar{3}),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,xr_\pi,\bar{x}m_ ,y,\bar{y}m,\bar{y}\}},$	$R_{\beta_4(1,\bar{2},3),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,xr_\pi,\bar{x}r_\pi,ym\}},$
$R_{\beta_4(1,\bar{2},\bar{3}),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,xr_\pi,\bar{x}r_\pi,y,\bar{y}m,\bar{y}\}},$	$R_{\beta_4(2,2,3),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,\bar{x}r_\pi,ym\}},$
$R_{\beta_4(2,2,\bar{3}),H_{13}} \sim R_{H_{13},1,\{m,xm_ ,\bar{x}r_\pi,y,\bar{y}m,\bar{y}\}},$	$R_{\beta_5(1,2,3),H_6} \sim R_{H_6,1,\{m,xr_\pi,xm_\parallel,\bar{x}m_\parallel,yr_\pi\}},$
$R_{\beta_5(1,2,\bar{3}),H_6} \sim R_{H_6,1,\{m,xr_\pi,xm_\parallel,\bar{x}m_\parallel,ym_\parallel,\bar{y}r_\pi,\bar{y}m_\parallel\}},$	$R_{\beta_5(1,\bar{2},3),H_6} \sim R_{H_6,1,\{m,xr_\pi,xm_\parallel,\bar{x}r_\pi,yr_\pi\}},$
$R_{\beta_5(1,\bar{2},\bar{3}),H_6} \sim R_{H_6,1,\{m,xr_\pi,xm_ ,\bar{x}r_\pi,ym_ ,\bar{y}r_\pi,\bar{y}m_ \}},$	$R_{\beta_5(2,2,3),H_6} \sim R_{H_6,1,\{m,xm_\ ,\bar{x}r_\pi,yr_\pi\}},$
$R_{\beta_5(2,2,\bar{3}),H_6} \sim R_{H_6,1,\{m,xm_ ,\bar{x}r_\pi,ym_ ,\bar{y}r_\pi,\bar{y}m_ \}}.$	
Отсюда следует справедливость теоремы.	

Отсюда следует справедливость теоремы.

Кристаллографические реализации симметрических 2-расширений решетки Λ^2 класса I

 $R_{\beta_1(3,3),H_{10}}$

Таблица 8 (окончание)

6. Кристаллографические реализации

При естественном вложении решетки Λ^2 в евклидову аффинную плоскость каждая группа автоморфизмов $H \leq \operatorname{Aut}(\Lambda^2)$ индуцируется единственной кристаллографической группой этой плоскости, которую мы будем обозначать через \tilde{H} . Изображения реализаций, приведенные в табл. 5, не являются инвариантными относительно соответствующих кристаллографических групп \tilde{H}_i . Цель данного раздела — построить для них другие изображения, которые уже будут инвариантны относительно соответствующих кристаллографических групп \tilde{H}_i .

Реализация ($\Gamma, G, \sigma, \varphi$) симметрического 2-расширения решетки Λ^2 называется кристаллографической (см. [5]), если:

(1) $V(\Gamma)$ — орбита некоторой кристаллографической группы евклидовой аффинной плоскости, индуцирующей на $V(\Gamma)$ группу G;

(2) отображение φ сопоставляет каждому блоку его барицентр на евклидовой аффинной плоскости;

(3) для любой точки p из $V(\Gamma)$ расстояние от нее до барицентра содержащего ее блока системы σ меньше, чем расстояние от нее до любой вершины из $V(\Gamma)$, не лежащей в этом блоке.

Для реализации, заданной в виде ($\Gamma_{H,L,\mathcal{P}}, \lambda_{H/L}(H), \sigma_{H,K,L}, \tilde{\varphi}_{H,K,L}$), естественный способ построения эквивалентной ей кристаллографической реализации заключается в следующем. На расстоянии $\varepsilon \in (0, 1/2)$ от точки (0,0) на плоскости выбираем точку p, неподвижную относительно L и не являющуюся неподвижной относительно $K = H_{(0,0)}$. Кристаллографическая реализация получается из ($\Gamma_{H,L,\mathcal{P}}, \lambda_{H/L}(H), \sigma_{H,K,L}, \tilde{\varphi}_{H,K,L}$) путем замены каждой вершины gLграфа $\Gamma_{H,L,\mathcal{P}}$ вершиной $\tilde{g}(p)$.

Заметим, что этот способ не всегда осуществим из-за невозможности, вообще говоря, выбрать точку p с требуемыми свойствами (примером такой реализации служит $R_{H_1,\langle r_{\frac{\pi}{2}}\rangle,\{m_{\backslash},x,\bar{x}\}}$). Однако всегда удается подобрать эквивалентную реализацию, для которой выбрать точку pуже можно (в данном примере можно взять реализацию $R_{H_{29},1,\{m_{\backslash},x,\bar{x}\}}$, см. первый фрагмент табл. 8).

В табл. 8 приведены кристаллографические реализации, эквивалентные реализациям, изображенным в табл. 5. При этом изоморфизм, посредством которого осуществляется эквивалентность, переводит вершины, изображенные левыми нижними точками в каждом блоке в табл. 5, в вершины, изображенные жирными точками в табл. 8. Кристаллографические реализации из табл. 8 получены описанным выше способом при $\varepsilon = 1/4$ из реализаций, приведенных в конце разд. 5, за исключением следующих пяти реализаций, которые были заменены эквивалентными им реализациями:

$$\begin{split} R_{H_1,\langle r_{\lambda},\{m_{\backslash},x,\bar{x}\}} \sim R_{H_{29},1,\{m_{\backslash},x,\bar{x}\}}, \\ R_{H_4,\langle r_{\pi}\rangle,\{m_{\backslash},xm_{\backslash},ym_{\backslash}\}} \sim R_{H_4,\langle m_{/}\rangle,\{m_{\backslash},xm_{\backslash},ym_{\backslash}\}}, \\ R_{H_{19},\langle r_{\pi}\rangle,\{m_{\backslash},xm_{|},ym_{-}\}} \sim R_{H_{19},\langle m_{/}\rangle,\{m_{\backslash},xm_{|},ym_{-}\}}, \\ R_{H_3,\langle r_{\pi}\rangle,\{m_{|},xm_{|},y,ym_{|},\bar{y},\bar{y}m_{|}\}} \sim R_{H_3,\langle m_{-}\rangle,\{m_{|},xm_{|},y,ym_{|},\bar{y},\bar{y}m_{|}\}} \\ R_{H_3,\langle r_{\pi}\rangle,\{m_{|},xm_{|},y,\bar{y}\}} \sim R_{H_3,\langle m_{-}\rangle,\{m_{|},xm_{|},y,\bar{y}\}}. \end{split}$$

Отметим, что в табл. 8 приведены только 21 насыщенная кристаллогрфическая реализация симметрических 2-расширений решетки Λ^2 класса I, эквивалентные 21 реализации изображенной в табл. 5. Кристаллографические реализации, эквивалентные остальным 28 реализациям из табл. 5, получаются из кристаллографических реализаций, приведенных в табл. 8, с помощью преобразований частичного дополнения, естественным образом соответствующих преобразованиям частичного дополнения, указанным в табл. 5.

Авторы благодарны В.И. Трофимову за полезное обсуждение результатов настоящей статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Trofimov V.I. Symmetrical extensions of graphs and some other topics in graph theory related with group theory // Тр. Ин-та математики и механики УрО РАН. 2011. Т. 17, № 4. С. 316–320.
- 2. Неганова Е.А., Трофимов В.И. Симметрические расширения графов// Изв. РАН. Сер. математическая. 2014. Т. 78, № 4. С. 175–206.
- 3. **Трофимов В.И.** Конечность числа симметрических 2-расширений *d*-мерной решетки и сходных с ней графов // Тр. Ин-та математики и механики УрО РАН. 2013. Т. 19, № 3. С. 290–303.

- 4. Симметрические расширения графов и некоторые их приложения: доклад (14.09.2015) [e-resource] / В. И. Трофимов. URL: http://www.imm.uran.ru/C13/Видео/default.aspx .
- 5. **Трофимов В.И.** Несколько замечаний о симметрических расширениях графов // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20, № 2. С. 284–293.
- 6. GAP Groups, Algorithms, and Programming. Ver. 4.4.12: [e-resource]. 2008. URL: http://www.gap-system.org .

Коновальчик Елена Александровна Поступила 1.10.2016 канд. физ.-мат. наук науч. сотрудник Институт математики и механики им. Н. Н. Красовского УрО РАН старший преподаватель Магнитогорский государственный технический университет им. Г. И. Носова e-mail: nega-le@yandex.ru Костоусов Кирилл Викторович канд. физ.-мат. наук науч. сотрудник Институт математики и механики им. Н. Н. Красовского УрО РАН доцент Уральский федеральный университет им. Б. Н. Ельцина kkostousov@gmail.com