Tom 21 № 4 2015

УДК 517.951

О ПРИМЕНЕНИИ МЕТОДА РЕГУЛЯРИЗАЦИИ К ПОСТРОЕНИЮ КЛАССИЧЕСКОГО РЕШЕНИЯ УРАВНЕНИЯ ПУАССОНА

Э. М. Мухамадиев, Г. Э. Гришанина, А. А. Гришанин

В работе найдены необходимые и достаточные условия существования классического решения в ограниченной плоской области для уравнения Пуассона $\Delta u=f$ с непрерывной функцией f. Эти условия в силу известных свойств гладкости обобщенной гармонической функции одновременно являются достаточными для того, чтобы все обобщенные решения уравнения Пуассона в данной области были классическими. Приведены описания частных классов функции f, удовлетворяющих условиям существования классического решения.

Ключевые слова: уравнение Пуассона; классические и обобщенные решения; гармоническая функция; непрерывная, усиленно непрерывная, равномерно усиленно непрерывная функция.

E. M. Mukhamadiev, G. E. Grishanina, A. A. Grishanin. On the application of the regularization method to the construction of a classical solution of Poisson's equation.

Necessary and sufficient conditions are found for the existence of a classical solution of Poisson's equation $\Delta u = f$ with continuous function f in a bounded planar domain. By virtue of the known smoothness properties of a generalized harmonic function, these conditions also ensure that all generalized solutions of Poisson's equation are classical in this domain. Particular classes of functions f satisfying the conditions of existence of a classical solution are described.

Keywords: Poisson's equation, classical and generalized solutions, harmonic function, continuous function, strongly continuous function, uniformly strongly continuous function.

Введение

Пусть $G\subset \mathbb{R}^2$ — ограниченная область. В области G рассмотрим уравнение Пуассона

$$\Delta u \equiv \frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = f(x,y). \tag{0.1}$$

Если f(x,y) — измеримая и ограниченная в области G функция, то интегральный оператор

$$u_0(x,y) = \frac{1}{2\pi} \iint_G f(\xi,\eta) \ln \sqrt{(x-\xi)^2 + (y-\eta)^2} d\xi d\eta$$
 (0.2)

определяет непрерывно дифференцируемое частное обобщенное решение уравнения Пуассона $[1,\ rл.\ IV]$. Ниже мы изучаем вопрос о существовании классического решения, т. е. решения, имеющего непрерывные частные производные до второго порядка включительно. Известно, что если f имеет непрерывные частные производные первого порядка или непрерывна по Гёльдеру, то уравнение (0.1) имеет классическое решение $(cm.,\ hanpumep,\ [1,\ rл.\ IV;\ 2,\ ч.\ II])$. Очевидно, непрерывность функции f в области G необходима для существования классического решения уравнения (0.1). В то же время, как показывают примеры, лишь одно условие непрерывности функции f не достаточно для существования классического решения $[3,\ c.\ 146]$. В связи с этим представляет интерес задача о выделении класса непрерывных функций в области G, для которых уравнение (0.1) имеет классическое решение.

В работе найдены необходимые условия существования классического решения в области G для уравнения Пуассона (0.1), которые являются и достаточными, если дополнительно потребовать ограниченность или суммируемость функции f(x,y) в этой области. Эти условия

в силу известных свойств гладкости обобщенной гармонической функции (см., например, [4, с. 379; 5, с. 119]) одновременно являются достаточными для того, чтобы все обобщенные решения уравнения Пуассона в данной области были классическими. Приведены описания частных классов функции f, удовлетворяющих условиям существования классического решения.

Некоторые результаты работы были анонсированы на Международной конференции, посвященной памяти В. К. Иванова [6, с. 51, 52].

1. Признак существования несобственного интеграла

Обозначим через $C^k(G)$ линейное пространство всех функций u(x,y), непрерывных в G вместе со всеми частными производными до порядка k включительно. Положим $C(G) = C^0(G)$. По области G в пространстве \mathbb{R}^3 определим ограниченную область

$$\widetilde{G} = \{(x, y, s) \colon M = (x, y) \in G, |s| < \varrho(M, \partial G)\}.$$

Пусть вещественная функция f принадлежит пространству C(G). Тогда функция

$$g(x, y, s, \varphi) = f(x + s\cos\varphi, y + s\sin\varphi) \tag{1.1}$$

определена и непрерывна на множестве $\widetilde{G} \times [0,2\pi]$ и 2π -периодична по φ . Поэтому комплекснозначная функция

$$F(x,y,r) = \int_{0}^{2\pi} g(x,y,r,\varphi) \exp(2i\varphi) d\varphi$$
 (1.2)

определена и непрерывна на \widetilde{G} , причем $F(x,y,0)\equiv 0$. Функцию $f\in C(G)$ назовем усиленно непрерывной в точке $(x,y)\in G$, если существует несобственный интеграл

$$\int_{0}^{r_{1}} F(x, y, r) \frac{dr}{r} = \lim_{\delta \to +0} \int_{\delta}^{r_{1}} F(x, y, r) \frac{dr}{r}, \quad r_{1} = \varrho(M, \partial G)/2, \quad M = (x, y), \tag{1.3}$$

усиленно непрерывной в G, если она усиленно непрерывна в каждой точке $(x,y) \in G$, и равномерно усиленно непрерывной в G, если она усиленно непрерывна в G и предельное соотношение (1.3) выполняется равномерно относительно (x,y) на каждом компакте $K \subset G$ при некотором $r_1 = r_1(K) > 0$. В последующих разделах покажем, что свойство равномерно усиленной непрерывности функции $f \in C(G)$ тесно связано со свойством существования несобственных интегралов, получаемых в результате дифференцирования функции (0.2). Очевидно, непрерывная по Гёльдеру функция является равномерно усиленно непрерывной в области G.

2. Необходимое условие существования классического решения

Следующая теорема устанавливает связь между свойством равномерной усиленной непрерывности правой части уравнения (0.2) и существованием его классического решения.

Теорема 1. Пусть функция f принадлежит пространству C(G) и уравнение Пуассона имеет классическое решение и в области G. Тогда функция f является равномерно усиленно непрерывной в G.

Доказательству теоремы предпошлем несколько вспомогательных утверждений.

Пусть функция u принадлежит пространству $C^2(G)$ и $f(x,y) = \Delta u(x,y)$. Тогда функция

$$v(x, y, r, \varphi) = u(x + r\cos\varphi, y + r\sin\varphi)$$
(2.1)

определена и непрерывна на множестве $\widetilde{G} \times [0,2\pi]$ вместе со всеми частными производными до второго порядка включительно по всем переменным (x,y,r,φ) и 2π -периодична по φ . Поэтому функция

$$U(x,y,r) = \int_{0}^{2\pi} v(x,y,r,\varphi) \exp(2i\varphi) d\varphi$$
 (2.2)

определена и непрерывна на множестве \widetilde{G} вместе со всеми частными производными до второго порядка включительно по всем переменным (x,y,r), причем $U(x,y,0)\equiv 0$.

Аналогично по функции $f = \Delta u$, принадлежащей пространству C(G), определим функции g и F равенствами (1.1) и (1.2) соответственно.

Лемма 1. Пусть функция и принадлежит пространству $C^2(G)$ и $f = \Delta u$. Тогда функции F и U, определенные равенствами (1.1), (1.2) и (2.1), (2.2) соответственно, удовлетворяют дифференциально-функциональному уравнению

$$r^{2} \frac{\partial^{2} U}{\partial r^{2}} + r \frac{\partial U}{\partial r} - 4U = r^{2} F(x, y, r), \quad (x, y, r) \in \widetilde{G}, \quad r \neq 0$$

$$(2.3)$$

и начальным условиям

$$U(x,y,0) \equiv 0, \quad \frac{\partial U}{\partial r}(x,y,0) \equiv 0,$$

$$\frac{\partial^2 U}{\partial r^2}(x,y,0) = \frac{\pi}{2} \left\{ \frac{\partial^2 u}{\partial x^2}(x,y) - \frac{\partial^2 u}{\partial y^2}(x,y) \right\} - i\pi \frac{\partial^2 u}{\partial y \partial x}(x,y), \quad (x,y) \in G.$$
(2.4)

Д о к а з а т е л ь с т в о. Из определения функции v имеем

$$\frac{\partial v}{\partial r} = \frac{\partial u}{\partial x}\cos\varphi + \frac{\partial u}{\partial y}\sin\varphi, \quad \frac{\partial v}{\partial \varphi} = -r\Big(\frac{\partial u}{\partial x}\sin\varphi - \frac{\partial u}{\partial y}\cos\varphi\Big),$$

$$\frac{\partial^2 v}{\partial r^2} = \frac{\partial^2 u}{\partial x^2}\cos^2\varphi + \frac{\partial^2 u}{\partial y^2}\sin^2\varphi + \frac{\partial^2 u}{\partial x\partial y}\sin2\varphi,$$

$$\frac{\partial^2 v}{\partial \varphi^2} = r^2\Big\{\frac{\partial^2 u}{\partial x^2}\sin^2\varphi + \frac{\partial^2 u}{\partial y^2}\cos^2\varphi - \frac{\partial^2 u}{\partial x\partial y}\sin2\varphi\Big\} - r\Big(\frac{\partial u}{\partial x}\cos\varphi + \frac{\partial u}{\partial y}\sin\varphi\Big).$$

Из этих равенств следует, что

$$r^{2}\frac{\partial^{2} v}{\partial r^{2}} + r\frac{\partial v}{\partial r} = r^{2}(\Delta u)(x + r\cos\varphi, y + r\sin\varphi) - \frac{\partial^{2} v}{\partial \varphi^{2}}.$$
 (2.5)

Теперь из равенства (2.5) и определений функций U и F имеем

$$r^{2} \frac{\partial^{2} U}{\partial r^{2}} + r \frac{\partial U}{\partial r} = \int_{0}^{2\pi} \left(r^{2} \frac{\partial^{2} v}{\partial r^{2}} + r \frac{\partial v}{\partial r} \right) \exp(2i\varphi) d\varphi = r^{2} F(x, y, r) - \int_{0}^{2\pi} \frac{\partial^{2} v}{\partial \varphi^{2}} \exp(2i\varphi) d\varphi.$$

Из тождества $\frac{\partial^2 v}{\partial \varphi^2} \exp(2i\varphi) = \frac{\partial}{\partial \varphi} \left\{ \left(\frac{\partial v}{\partial \varphi} - 2iv \right) \exp(2i\varphi) \right\} - 4v \exp(2i\varphi)$ и 2π -периодичности функции $(v_{\varphi} - 2iv) \exp(2i\varphi)$ по переменной φ следует

$$\int_{0}^{2\pi} \frac{\partial^{2} v}{\partial \varphi^{2}} \exp(2i\varphi) d\varphi = -4 \int_{0}^{2\pi} v(x + r\cos\varphi, y + r\sin\varphi) \exp(2i\varphi) d\varphi = -4U(x, y, r).$$

Отсюда и из (2.5) окончательно имеем $r^2 \frac{\partial^2 U}{\partial r^2} + r \frac{\partial U}{\partial r} - 4U = r^2 F(x, y, r)$, т.е. функция U удовлетворяет дифференциально-функциональному уравнению (2.3).

Первые два начальных условия (2.4) следуют из определения функции U и равенства $\frac{\partial U}{\partial r} = \int_0^{2\pi} \frac{\partial v}{\partial r} \exp(2i\varphi) d\varphi$ при r=0. Последнее равенство (2.4) следует из равенства $\frac{\partial^2 U}{\partial r^2} = \int_0^{2\pi} \frac{\partial^2 v}{\partial r^2} \exp(2i\varphi) d\varphi$ при r=0. Лемма доказана.

Лемма 2. Пусть функция и принадлежит пространству $C^2(G)$ и функция U определена равенствами (2.1), (2.2). Тогда для любого компакта $K \subset G$ существует такое $r_1 = r_1(K) > 0$, что функции

$$U(x,y,r), \quad \frac{\partial U}{\partial r}(x,y,r), \quad \frac{\partial^2 U}{\partial r^2}(x,y,r)$$

равномерно непрерывны на множестве $K \times [0, r_1]$.

Д о к а з а т е л ь с т в о. Пусть $K \subset G$ — компактное множество. Положим $r_1 = \varrho(K,\partial G)/2 > 0$. Функция $v(x,y,r,\varphi)$, определенная равенством (2.1), на замкнутом множестве $K \times [0,r_1] \times [0,2\pi]$ имеет непрерывные (следовательно, по теореме Кантора, равномерно непрерывные) частные производные до второго порядка включительно по всем переменным (x,y,r,φ) . Поэтому функция U, определенная равенством (2.2), на замкнутом множестве $K \times [0,r_1]$ имеет равномерно непрерывные частные производные до второго порядка включительно по всем переменным (x,y,r). Лемма доказана.

Д о к а з а т е л ь с т в о теоремы 1. Пусть функция $f \in C(G)$ и уравнение (0.2) имеет классическое решение $u \in C^2(G)$. Согласно лемме 1 функции F и U, определенные равенствами (1.1), (1.2) и (2.1), (2.2) соответственно, удовлетворяют дифференциально-функциональному уравнению (2.3), которое перепишем в виде

$$r^{-1}F(x,y,r) = \frac{\partial}{\partial r} \left\{ r^{-1} \frac{\partial U}{\partial r} + \frac{2U}{r^2} \right\}, \quad (x,y,r) \in \widetilde{G}, \quad r \neq 0.$$
 (2.6)

Пусть $K \subset G$ — компактное множество и $r_1 = \varrho(K, \partial G)/2 > 0$. Интегрируя обе части равенства (2.6) по отрезку $[\delta, r_1]$, имеем

$$\int_{\delta}^{r_1} F(x, y, r) \frac{dr}{r} = \left\{ r^{-1} \frac{\partial U}{\partial r} + \frac{2U}{r^2} \right\}_{\delta}^{r_1}, \quad (x, y) \in K.$$
 (2.7)

Так как

$$U(x, y, 0) = 0,$$
 $\frac{\partial U}{\partial r}(x, y, 0) = 0,$

то имеют место равенства

$$U(x,y,\delta) = \int_{0}^{\delta} (\delta - r) \frac{\partial^{2} U}{\partial r^{2}}(x,y,r) dr = \delta^{2} \int_{0}^{1} (1 - s) \frac{\partial^{2} U}{\partial r^{2}}(x,y,\delta s) ds,$$
$$\frac{\partial U}{\partial r}(x,y,\delta) = \int_{0}^{\delta} \frac{\partial^{2} U}{\partial r^{2}}(x,y,r) dr = \delta \int_{0}^{1} \frac{\partial^{2} U}{\partial r^{2}}(x,y,\delta s) ds.$$

Из этих представлений следует, что функция

$$\left\{r^{-1}\frac{\partial U}{\partial r} + \frac{2U}{r^2}\right\}_{\delta}^{r_1} = r_1^{-1}\frac{\partial U}{\partial r}(x,y,r_1) + \frac{2U(x,y,r_1)}{r_1^2} - \delta^{-1}\frac{\partial U}{\partial r}(x,y,\delta) - \frac{2U(x,y,\delta)}{\delta^2}$$

согласно лемме 2 при $\delta \to 0$ сходится равномерно на компакте K к функции

$$r_1^{-1}\frac{\partial U}{\partial r}(x,y,r_1) + \frac{2U(x,y,r_1)}{r_1^2} - 2\frac{\partial^2 U}{\partial r^2}(x,y,0).$$

В силу равенства (2.7) это означает, что несобственный интеграл (1.3) сходится равномерно по $(x,y) \in K$ и

$$\int_{0}^{r_{1}} F(x,y,r) \frac{dr}{r} = r_{1}^{-1} \frac{\partial U}{\partial r}(x,y,r_{1}) + \frac{2U(x,y,r_{1})}{r_{1}^{2}} - 2\frac{\partial^{2} U}{\partial r^{2}}(x,y,0),$$

т. е. функция f является равномерно усиленно непрерывной в G.

Теорема доказана.

Используя рассуждения, приведенные при доказательстве теоремы 1, можно получить более общее условие равномерной усиленной непрерывности правой части уравнения (0.1). А именно справедлива

Теорема 2. Пусть в любой области $G_0, \overline{G_0} \subset G$ уравнение Пуассона (0.1) имеет классическое решение. Тогда функция f является равномерно усиленно непрерывной в G.

Из этой теоремы вытекает следующее

Следствие 1. Если непрерывная функция f не является усиленно непрерывной в некоторой точке (x_0, y_0) области G, то уравнение (0.1) не имеет классического решения в любой окрестности этой точки, содержащейся в G.

3. Достаточное условие существования классического решения

Теорема 3. Пусть функция f усиленно непрерывна в области G и принадлежит пространству $L_1(G)$. Тогда функция $u_0(x,y)$ в G непрерывна вместе со всеми частными производными первого и второго порядка u, следовательно, является классическим решением уравнения Пуассона (0.1).

Доказательство теоремы 3 основано на нескольких вспомогательных утверждениях.

Пусть функция f непрерывна и суммируема в области G. Рассмотрим функцию, определенную на всей плоскости \mathbb{R}^2 интегральным оператором

$$u_{\delta}(x,y) = \frac{1}{2\pi} \iint_{G} f(\xi,\eta) \ln \sqrt{(x-\xi)^{2} + (y-\eta)^{2} + \delta^{2}} d\xi d\eta.$$
 (3.1)

При $\delta>0$ подынтегральная функция имеет производные по параметрам x и y любого порядка. Обозначим $r_{\delta}=\sqrt{(x-\xi)^2+(y-\eta)^2+\delta^2},\ r=\sqrt{(x-\xi)^2+(y-\eta)^2}.$ Вычислим производные логарифмической функции по x и y:

$$\frac{\partial \ln r_{\delta}}{\partial x} = \frac{x - \xi}{r_{\delta}^{2}}, \quad \frac{\partial \ln r_{\delta}}{\partial y} = \frac{y - \eta}{r_{\delta}^{2}}, \quad \frac{\partial^{2} \ln r_{\delta}}{\partial x^{2}} = \frac{(y - \eta)^{2} - (x - \xi)^{2}}{r_{\delta}^{4}} + \frac{\delta^{2}}{r_{\delta}^{4}};$$

$$\frac{\partial^{2} \ln r_{\delta}}{\partial y^{2}} = \frac{(x - \xi)^{2} - (y - \eta)^{2}}{r_{\delta}^{4}} + \frac{\delta^{2}}{r_{\delta}^{4}}, \quad \frac{\partial^{2} \ln r_{\delta}}{\partial x \partial y} = -\frac{2(x - \xi)(y - \eta)}{r_{\delta}^{4}}.$$
(3.2)

В силу теоремы Лебега и принадлежности f к $L_1(G)$ функция $u_{\delta}, \delta > 0$, бесконечно дифференцируема на всей плоскости и мы можем поменять порядок интегрирования и дифференцирования, занося дифференцирование под знак интеграла. В частности, получим следующие формулы:

$$\frac{\partial^{i+j} u_{\delta}}{\partial x^{i} \partial y^{j}} = \frac{1}{2\pi} \iint_{G} f(\xi, \eta) \frac{\partial^{i+j} \ln r_{\delta}}{\partial x^{i} \partial y^{j}} d\xi d\eta, \quad i+j=0,1,2, \quad (x,y) \in \mathbb{R}^{2}.$$
(3.3)

При $\delta = 0$ формула (3.1) переходит в формулу Пуассона (0.2) и в условиях непрерывности и суммируемости функции f определяет непрерывную функцию $u_0(x,y)$ в открытом множестве $\mathbb{R}^2 \setminus \partial G$. Наряду с функцией $u_0(x,y)$ рассмотрим функции

$$u_{0,1}(x,y) = \frac{1}{2\pi} \iint\limits_{G} f(\xi,\eta) \frac{\partial \ln r}{\partial x} d\xi d\eta, \quad u_{0,2}(x,y) = \frac{1}{2\pi} \iint\limits_{G} f(\xi,\eta) \frac{\partial \ln r}{\partial y} d\xi d\eta,$$

которые определены в открытом множестве $\mathbb{R}^2 \setminus \partial G$ в силу непрерывности функции f и слабой сингулярности ядра интегральных операторов.

Заметим, что функции $u_0, u_{0,1}, u_{0,2}$ непрерывны в открытом множестве $\mathbb{R}^2 \setminus \bar{G}$ и функция u_0 в этом множестве имеет непрерывные частные производные первого порядка, причем $\partial u_0/\partial x$, $\partial u_0/\partial y$. Эти утверждения также следуют из теоремы Лебега о предельном переходе под знаком интеграла. Докажем следующее утверждение.

Утверждение 1. Пусть функция f непрерывна в области G и принадлежит пространству $L_1(G)$. Тогда справедливы равенства

$$\lim_{\delta \to 0} u_{\delta} = u_{0}, \quad \lim_{\delta \to 0} \frac{\partial u_{\delta}}{\partial x} = u_{0,1}, \quad \lim_{\delta \to 0} \frac{\partial u_{\delta}}{\partial y} = u_{0,2}$$

равномерно на любом компакте $K \subset G$.

Доказательство. Сначала рассмотрим случай, когда функция f ограничена в области $G: |f(x,y)| \leq M$. Обозначим через R диаметр области G, а через U((x,y),R) — круг радиуса R с центром в точке (x,y). Докажем, что равенство $\lim_{\delta \to 0} u_{\delta} = u_{0}$ выполняется равномерно на G. Действительно, так как

$$u_{\delta} - u_0 = \frac{1}{2\pi} \iint_G f(\xi, \eta) \ln \frac{r_{\delta}}{r} d\xi d\eta,$$

то имеем

$$\begin{split} |u_{\delta} - u_{0}| &\leq \frac{1}{4\pi} M \iint_{G} \ln \left(\frac{r_{\delta}^{2}}{r^{2}} \right) d\xi d\eta \leq \frac{1}{4\pi} M \iint_{U((x,y),R)} \ln \left(\frac{r_{\delta}^{2}}{r^{2}} \right) d\xi d\eta \\ &= \frac{M}{4} (R^{2} + \delta^{2}) \{ \ln[R^{2} + \delta^{2}] - 1 \} - \frac{M}{4} R^{2} \{ \ln R^{2} - 1 \}. \end{split}$$

Отсюда следует, что при δ , стремящемся к нулю, функция u_{δ} равномерно сходится к u_{0} . Для доказательства сходимости производных из равенств (3.2) и (3.3) имеем

$$\left| \frac{\partial u_{\delta}}{\partial x} - u_{0,1} \right| = \frac{1}{2\pi} \left| \iint_{G} f(\xi, \eta)(x - \xi)(r_{\delta}^{-2} - r^{-2}) d\xi d\eta \right|$$

$$\leq \frac{M}{2\pi} \iint\limits_{U((x,y),R)} |x-\xi| (r^{-2}-r_{\delta}^{-2}) d\xi d\eta| = \frac{2M}{\pi} \int\limits_{0}^{R} \frac{\delta^2}{\rho^2+\delta^2} d\rho = \frac{2M\delta}{\pi} \arctan\left(\frac{R}{\delta}\right).$$

Эта оценка доказывает равномерную сходимость производных функции u_{δ} по переменной x. Аналогично доказывается сходимость производных по y. Утверждение 1 в случае, когда функция f ограничена, доказано.

Рассмотрим общий случай, когда непрерывная функция f принадлежит пространству $L_1(G)$. Пусть K — компактное подмножество области G. Выберем открытое множество G_1 , содержащее компакт K и такое, что $\bar{G}_1 \subset G$. Функцию $u_{\delta}, \delta \geq 0$ представим как сумму двух функций $u_{\delta} = u_{1,\delta} + u_{2,\delta}$, где $u_{1,\delta}$ и $u_{2,\delta}$ соответствуют интегрированию по множеству G_1 и по дополнению $G \setminus G_1$. Очевидно, функции $u_{2,\delta}$ и $u_{2,0}$ бесконечно дифференцируемы в G_1 , и поэтому $u_{2,\delta}$

равномерно сходятся к $u_{2,0}$ вместе со всеми частными производными на компакте K при $\delta \to 0$. Равномерная сходимость на компакте K функции $u_{1,\delta}$ к $u_{1,0}$ вместе с частными производными первого порядка следует из ограниченности непрерывной функции f на замкнутом множестве \bar{G}_1 и приведенного выше доказательства утверждения 1 для ограниченной функции f. Утверждение доказано.

Следствие 2. В условиях утверждения 1 функция $u_0(x,y)$ имеет непрерывные производные $\partial u_0(x,y)/\partial x, \partial u_0(x,y)/\partial y$ в области G, причем справедливы равенства

$$\frac{\partial u_0(x,y)}{\partial x} = u_{0,1}(x,y), \quad \frac{\partial u_0(x,y)}{\partial y} = u_{0,2}(x,y).$$

Утверждение 2. Если f(x,y) непрерывна и суммируема в G, то для $f_{\delta} \equiv \Delta u_{\delta}$ выполняется равенство

$$\lim_{\delta \to 0} f_{\delta}(x, y) = f(x, y)$$

равномерно на каждом компакте $K \subset G$.

Доказательство. Пусть K — компактное подмножество области G. По $\varepsilon>0$ выберем такое $\rho,\ 0<\rho<\rho_1/2,$ где $\rho_1=\varrho(K,\partial G)/2,$ что имеет место неравенство

$$|f(x,y) - f(\xi,\eta)| < \varepsilon$$
, если $(x,y) \in K$, и $(x-\xi)^2 + (y-\eta)^2 < \rho^2$.

Пусть теперь $G_1 = U((x,y), \rho)$ — круг радиуса ρ с центром в точке $(x,y) \in K$, $G_2 = \{M = (\xi, \eta) \in G : \varrho(M, \partial G) < \rho_1\}$.

Так как в силу равенств (3.2) и (3.3)

$$f_{\delta} \equiv \Delta u_{\delta} = \frac{1}{2\pi} \iint_{G} f(\xi, \eta) \left[\frac{(y - \eta)^{2} - (x - \xi)^{2}}{r_{\delta}^{4}} + \frac{\delta^{2}}{r_{\delta}^{4}} + \frac{(x - \xi)^{2} - (y - \eta)^{2}}{r_{\delta}^{4}} + \frac{\delta^{2}}{r_{\delta}^{4}} \right] d\xi d\eta$$
$$= \frac{1}{\pi} \iint_{G_{1}} f(\xi, \eta) \frac{\delta^{2}}{r_{\delta}^{4}} d\xi d\eta + \frac{1}{\pi} \iint_{G \setminus G_{1}} f(\xi, \eta) \frac{\delta^{2}}{r_{\delta}^{4}} d\xi d\eta,$$

ТО

$$f_{\delta} - f = \frac{1}{\pi} \iint_{G_1} \left(f(\xi, \eta) - f(x, y) \right) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta + \frac{1}{\pi} \iint_{G \setminus G_1} f(\xi, \eta) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta - \frac{1}{\pi} \iint_{\mathbb{R}^2 \setminus G_1} f(x, y) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta.$$
(3.4)

Здесь мы воспользовались тождеством

$$\iint_{\mathbb{R}^2} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta \equiv \pi, \quad \delta > 0.$$
 (3.5)

В силу ограниченности непрерывной функции f на замкнутом множестве имеем $|f(x,y)| \le N, (x,y) \in \overline{G_2}$. Поэтому справедлива оценка

$$\frac{1}{\pi} \left| \iint_{G \setminus G_1} f(\xi, \eta) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta \right| \leq \frac{1}{\pi} \left| \iint_{G_2 \setminus G_1} f(\xi, \eta) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta \right| + \frac{1}{\pi} \left| \iint_{G \setminus G_2} f(\xi, \eta) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta \right| \\
\leq \frac{N}{\pi} \iint_{\mathbb{R}^2 \setminus G_1} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta + \frac{\delta^2}{\pi (\rho_1^2 + \delta^2)^2} \iint_{G} |f(\xi, \eta)| d\xi d\eta.$$

Из этой оценки, представления (3.4) и тождества (3.5) следует оценка

$$|f_{\delta}(x,y) - f(x,y)| < \frac{\varepsilon}{\pi} \iint_{G_1} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta + \frac{N}{\pi} \iint_{\mathbb{R}^2 \setminus G_1} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta + \frac{\delta^2}{\pi (\rho_1^2 + \delta^2)^2} \iint_{G} |f(\xi,\eta)| d\xi d\eta$$

$$+ \frac{N}{\pi} \iint_{\mathbb{R}^2 \setminus G_1} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta < \varepsilon + \frac{\delta^2}{\pi (\rho_1^2 + \delta^2)^2} \iint_{G} |f(\xi,\eta)| d\xi d\eta + \frac{2N}{\pi} \iint_{\mathbb{R}^2 \setminus G_1} \frac{\delta^2}{r_{\delta}^4} d\xi d\eta$$

$$= \varepsilon + \frac{\delta^2}{\pi (\rho_1^2 + \delta^2)^2} \iint_{G} |f(\xi,\eta)| d\xi d\eta + \frac{2N\delta^2}{\rho^2 + \delta^2}.$$

Таким образом, если число $\delta > 0$ настолько мало, что имеет место неравенство

$$\frac{\delta^2}{\pi(\rho_1^2 + \delta^2)^2} \iint_G |f(\xi, \eta)| d\xi d\eta + \frac{2N\delta^2}{\rho^2 + \delta^2} < \varepsilon,$$

то для любой точки $(x,y) \in K$ справедливо неравенство $|f_{\delta}(x,y) - f(x,y)| < 2\varepsilon$. Что и требовалось доказать.

Теперь перейдем к основному этапу доказательства теоремы 3.

Утверждение 3. Пусть функция f равномерно усиленно непрерывна в области G и принадлежит пространству $L_1(G)$. Тогда функция u_0 имеет непрерывные частные производные второго порядка, причем

$$\lim_{\delta \to 0} \frac{\partial^2 u_{\delta}}{\partial x^2} = \frac{\partial^2 u_0}{\partial x^2}, \quad \lim_{\delta \to 0} \frac{\partial^2 u_{\delta}}{\partial x \partial y} = \frac{\partial^2 u_0}{\partial x \partial y}, \quad \lim_{\delta \to 0} \frac{\partial^2 u_{\delta}}{\partial y^2} = \frac{\partial^2 u_0}{\partial y^2}$$
(3.6)

равномерно на каждом компактном подмножестве области G.

До к а з а т е л ь с т в о. Для доказательства выполнения равенства (3.6) равномерно на каждом компактном подмножестве области G достаточно установить выполнение равенства (3.6) равномерно в некоторой окрестности каждой точки области G. Пусть $M=(x_0,y_0)$ — произвольная точка области G и $0<3d\leq \varrho(M,\partial G)$ — расстояние от этой точки до границы ∂G области G. Обозначим через $G_1=U(M,2d)$ круг радиуса 2d с центром в точке M.

Рассмотрим комплекснозначную функцию

$$\frac{\partial^2 u_{\delta}}{\partial x^2} + i \frac{\partial^2 u_{\delta}}{\partial x \partial y} = \frac{1}{2\pi} \iint_G f(\xi, \eta) \left(\frac{\partial^2 \ln r_{\delta}}{\partial x^2} + i \frac{\partial^2 \ln r_{\delta}}{\partial x \partial y} \right) d\xi d\eta. \tag{3.7}$$

Очевидно, что если она сходится к некоторой функции равномерно по (x,y) из некоторого множества, то каждое слагаемое равномерно сходится на этом множестве, так как u_{δ} — вещественная функция. Так как

$$\frac{\partial^2 \ln r_{\delta}}{\partial x^2} + i \frac{\partial^2 \ln r_{\delta}}{\partial x \partial y} = -\frac{((x - \xi) + i(y - \eta))^2}{r_{\delta}^4} + \frac{\delta^2}{r_{\delta}^4},$$

то имеем равенство

$$\frac{\partial^2 u_{\delta}}{\partial x^2} + i \frac{\partial^2 u_{\delta}}{\partial x \partial y} = h_{\delta}(x, y) + g_{\delta}(x, y) + \frac{1}{2} f_{\delta}(x, y), \tag{3.8}$$

где

$$h_{\delta}(x,y) = -\frac{1}{2\pi} \iint_{G_1} f(\xi,\eta) \frac{((x-\xi)+i(y-\eta))^2}{r_{\delta}^4} d\xi d\eta,$$

$$g_{\delta}(x,y) = -\frac{1}{2\pi} \iint_{G \setminus G_1} f(\xi,\eta) \frac{((x-\xi) + i(y-\eta))^2}{r_{\delta}^4} d\xi d\eta, \quad f_{\delta}(x,y) = \frac{1}{\pi} \iint_{G} f(\xi,\eta) \frac{\delta^2}{r_{\delta}^4} d\xi d\eta.$$

Функция $g_{\delta}(x,y)$ при $\delta \to 0$ в круге U(M,d) равномерно сходится к функции

$$g_0(x,y) = -\frac{1}{2\pi} \iint_{G \setminus G_1} f(\xi,\eta) \frac{((x-\xi)+i(y-\eta))^2}{r^4} d\xi d\eta,$$

а функция $f_{\delta}(x,y)$ в силу утверждения 1- к функции f(x,y).

Следовательно, для существования у функции (3.7) равномерного предела при $\delta \to 0$ достаточно установить существование равномерного предела у функции $h_{\delta}(x,y)$. Переходя к полярным координатам, имеем

$$h_{\delta}(x,y) = -\frac{1}{2\pi} \iint_{G_1} f(\xi,\eta) \frac{((x-\xi)+i(y-\eta))^2}{r_{\delta}^4} d\xi d\eta = \begin{cases} \xi = x + \rho \cos \varphi, \\ \eta = y + \rho \sin \varphi \end{cases}$$

$$= -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{R(\varphi)} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^2 (\cos \varphi + i \sin \varphi)^2}{(\rho^2 + \delta^2)^2} \rho d\rho d\varphi$$

$$= -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{R(\varphi)} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^2 \exp(2i\varphi)}{(\rho^2 + \delta^2)^2} \rho d\rho d\varphi$$

$$= -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{d} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^2 \exp(2i\varphi)}{(\rho^2 + \delta^2)^2} \rho d\rho d\varphi$$

$$-\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{R(\varphi)} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^2 \exp(2i\varphi)}{(\rho^2 + \delta^2)^2} \rho d\rho d\varphi.$$

Здесь

$$R(\varphi) = R(x, y, \varphi) = (x_0 - x)\cos\varphi + (y_0 - y)\sin\varphi + \sqrt{4d^2 - ((x_0 - x)\sin\varphi - (y_0 - y)\cos\varphi)^2}$$

— гладкая функция аргументов (x, y, φ) и $R(\varphi) \ge d$ при $(x, y) \in U(M, d)$. Таким образом, для функции h_δ имеем представление

$$h_{\delta}(x,y) = -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{d} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^{2} \exp(2i\varphi)}{(\rho^{2} + \delta^{2})^{2}} \rho d\rho d\varphi$$
$$-\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{R(\varphi)} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\rho^{2} \exp(2i\varphi)}{(\rho^{2} + \delta^{2})^{2}} \rho d\rho d\varphi.$$

Второе слагаемое в правой части этого равенства при $\delta \to 0$ сходится равномерно по $(x,y) \in U(M,d)$ к функции

$$h_{0,2}(x,y) = -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{d}^{R(\varphi)} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \frac{\exp(2i\varphi)}{\rho} d\rho d\varphi.$$

Первое слагаемое, изменив порядок интегрирования, запишем в виде

$$h_{\delta,1}(x,y) = -\frac{1}{2\pi} \int_0^d \left[\frac{\rho^3}{(\rho^2 + \delta^2)^2} \int_0^{2\pi} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \exp(2i\varphi) d\varphi \right] d\rho.$$

По условию функция

$$I(\rho) = I(x, y, \rho) = \int_{0}^{\rho} \frac{1}{s} \int_{0}^{2\pi} f(x + s\cos\varphi, y + s\sin\varphi) \exp(2i\varphi) d\varphi ds$$

определена на множестве $U(M,d) \times [0,d]$ и

$$\frac{\partial I}{\partial \rho} = \frac{1}{\rho} \int_{0}^{2\pi} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \exp(2i\varphi) d\varphi, \quad (x, y) \in U(M, 2d), \quad 0 < \rho < d.$$

Поэтому, производя интегрирование по частям, для функции $h_{\delta,1}$ имеем

$$h_{\delta,1}(x,y) = -\frac{1}{2\pi} \int_{0}^{d} \left[\frac{\rho^{3}}{(\rho^{2} + \delta^{2})^{2}} \int_{0}^{2\pi} f(x + \rho \cos \varphi, y + \rho \sin \varphi) \exp(2i\varphi) d\varphi \right] d\rho$$
$$= -\frac{1}{2\pi} \int_{0}^{d} \frac{\rho^{4}}{(\rho^{2} + \delta^{2})^{2}} \frac{\partial I}{\partial \rho} d\rho = -\frac{1}{2\pi} \frac{d^{4}}{(d^{2} + \delta^{2})^{2}} I(d) + \frac{1}{2\pi} \int_{0}^{d} \frac{4\rho^{3} \delta^{2}}{(\rho^{2} + \delta^{2})^{3}} I(\rho) d\rho.$$

Отсюда следует, что если интеграл

$$\int_{0}^{d} \frac{4\rho^3 \delta^2}{(\rho^2 + \delta^2)^3} I(\rho) d\rho \tag{3.9}$$

при $\delta \to 0$ в круге U(M,d) равномерно стремится к нулю, то при $\delta \to 0$ функция $h_{\delta,1}$ равномерно в этом круге стремится к функции

$$-\frac{1}{2\pi}I(x,y,d) = h_{0,1}(x,y) = -\frac{1}{2\pi} \int_{0}^{d} \frac{1}{s} \int_{0}^{2\pi} f(x + s\cos\varphi, y + s\sin\varphi) \exp(2i\varphi) d\varphi ds.$$

Докажем равномерную сходимость интеграла (3.9) к нулю в круге U(M,d) при $\delta \to 0$. В силу равномерной усиленной непрерывности функции f по $\varepsilon > 0$ можно выбрать $\sigma > 0$ такое, что

$$|I(x,y,\rho)|<\varepsilon,\quad (x,y)\in U(M,d),\quad 0<\rho<\sigma.$$

В силу неравенств

$$\int_{\sigma}^{d} \frac{4\rho^{3}\delta^{2}}{(\rho^{2} + \delta^{2})^{3}} d\rho = \int_{\sigma/\delta}^{d/\delta} \frac{4s^{3}}{(s^{2} + 1)^{3}} ds < \int_{\sigma/\delta}^{\infty} \frac{4s^{3}}{(s^{2} + 1)^{3}} ds$$

по числу σ выберем $\delta_0 > 0$ настолько малым, что справедливо неравенство

$$\int_{0}^{d} \frac{4\rho^{3}\delta^{2}}{(\rho^{2} + \delta^{2})^{3}} d\rho < \varepsilon, \quad 0 < \delta < \delta_{0}.$$

Из этих оценок имеем $\left|\int_0^d \frac{4\rho^3\delta^2}{(\rho^2+\delta^2)^3}I(\rho)d\rho\right| \leq \varepsilon+N\varepsilon, \ (x,y)\in U(M,d), \ 0<\delta<\delta_0,$ где $|I(x,y,\rho)|\leq N, \ (x,y)\in U(M,d), \ 0<\rho\leq d.$ Здесь мы использовали неравенство

$$\int_{0}^{\sigma} \frac{4\rho^{3}\delta^{2}}{(\rho^{2} + \delta^{2})^{3}} d\rho = \int_{0}^{\sigma/\delta} \frac{4s^{3}}{(s^{2} + 1)^{3}} ds < \int_{0}^{\infty} \frac{4s^{3}}{(s^{2} + 1)^{3}} ds = 1.$$

Равномерная сходимость интеграла (3.9) к нулю в круге U(M,d) при $\delta \to 0$ доказана. Тем самым мы доказали, что функция h_{δ} равномерно сходится в этом круге к функции

$$h_0(x,y) = h_{0,1}(x,y) + h_{0,2}(x,y) = -\frac{1}{2\pi} \int_0^d \frac{1}{s} \int_0^{2\pi} f(x + s\cos\varphi, y + s\sin\varphi) \exp(2i\varphi) d\varphi ds$$
$$-\frac{1}{2\pi} \int_0^{2\pi} \int_0^{R(\varphi)} f(x + \rho\cos\varphi, y + \rho\sin\varphi) \frac{\exp(2i\varphi)}{\rho} d\rho d\varphi,$$

а функция (3.7) равномерно сходится к функции $h_0(x,y) + g_0(x,y) + 1/2 f(x,y)$. Отсюда и из утверждений 1, 2 следует, что функция u_0 имеет все частные производные второго порядка, и справедливы равенства

$$\frac{\partial^{2} u_{0}}{\partial x^{2}} = \Re \left[h_{0}(x, y) + g_{0}(x, y) \right] + \frac{1}{2} f(x, y), \quad \frac{\partial^{2} u_{0}}{\partial y^{2}} = -\Re \left[h_{0}(x, y) + g_{0}(x, y) \right] + \frac{1}{2} f(x, y),
\frac{\partial^{2} u_{0}}{\partial x \partial y} = \Im \left[h_{0}(x, y) + g_{0}(x, y) \right], \quad (x, y) \in U(M, d).$$
(3.10)

Утверждение 3 доказано.

З а м е ч а н и е. В равенствах (3.10) положим $(x,y)=(x_0,y_0)$. Тогда $R(\varphi)=R(x_0,y_0,\varphi)\equiv 2d$, поэтому функцию h_0 в точке (x_0,y_0) можно переписать в виде

$$h_0(x_0, y_0) = -\frac{1}{2\pi} \int_0^{2d} \int_0^{2\pi} f(x_0 + s\cos\varphi, y_0 + s\sin\varphi) \exp(2i\varphi) d\varphi ds.$$

4. Регулярность обобщенных решений уравнения Пуассона

Приведем некоторые понятия, связанные с определением обобщенного решения уравнения Пуассона (см., например, [4, с. 379; 5, с. 119)]. Пусть D(G) — пространство основных в области G функций, а D'(G)-пространство всех линейных непрерывных функционалов на пространстве основных функций D(G), т. е. пространство обобщенных в области G функций. Каждая локально интегрируемая в области G функция f формулой

$$(f, \psi) = \iint_G f(\xi, \eta) \psi(\xi, \eta) d\xi d\eta, \quad \psi \in D(G)$$

определяет непрерывный в D(G) функционал — регулярную обобщенную функцию из пространства D'(G). В частности, каждая непрерывная функция из пространства C(G) является регулярной обобщенной функцией. Пусть f — произвольная обобщенная функция. Обобщенную функцию $v \in D'(G)$ называют обобщенным решением уравнения Пуассона $\Delta u = f$, если она удовлетворяет равенству $(v, \Delta \psi) = (f, \psi)$ для любой функции $\psi \in D(G)$. В частности, если f = 0, то уравнение Пуассона называют уравнением Лапласа. Классическое решение уравнения Лапласа в области G называют гармонической функцией, а решение уравнения Лапласа

из пространства D'(G) называют обобщенной гармонической функцией. Следующее важное утверждение определяет структуру множества обобщенных гармонических в области G функций (см., например, [4, с. 379; 2, с. 119]).

Утверждение 4. Всякая обобщенная гармоническая функция в области G является также гармонической функцией в этой области.

Утверждение 4 вместе с вышеприведенными результатами позволяет установить следующую теорему.

Теорема 4. Пусть непрерывная в области G функция f усиленно непрерывна в этой области. Тогда каждое обобщенное решение уравнения Пуассона (0.1) в области G является классическим решением в этой области.

Д о к а з а т е л ь с т в о. Пусть $v \in D'(G)$ — обобщенное решение уравнения (0.1). Выберем последовательность областей G_k , удовлетворяющих условиям $G_k \subset \overline{G_k} \subset G_{k+1} \subset G$, k = 1, 2, ... и $G = \bigcup_k G_k$. Согласно теореме 3 функция

$$u_k(x,y) = \frac{1}{2\pi} \iint_{G_k} f(\xi,\eta) \ln \sqrt{(x-\xi)^2 + (y-\eta)^2} d\xi d\eta$$

является классическим решением уравнения (0.1) в области G_k . Очевидно, $v-u_k$ принадлежит пространству $D'(G_k)$ и является обобщенной гармонической функцией в области G_k . В силу теоремы 4 обобщенная функция $v-u_k$ совпадает с некоторой гармонической в области G_k функцией v_k , т. е. $(v-u_k,\psi)=(v_k,\psi)$ для любой функции $\psi\in D(G_k)$. Отсюда следует, что для дважды непрерывно дифференцируемых в области G_k функций u_k+v_k , $u_{k+1}+v_{k+1}$ справедливо равенство $(u_k+v_k,\psi)=(u_{k+1}+v_{k+1},\psi)$ для любой функции $\psi\in D(G_k)$. В силу леммы Дюбуа-Реймон функции u_k+v_k , $u_{k+1}+v_{k+1}$ тождественны на множестве G_k . Поэтому функция $\overline{v}(x,y)=u_k(x,y)+v_k(x,y)$, $(x,y)\in G_k$ корректно определена на всей области G_k , является классическим решением уравнения (0.1) и определяет регулярную обобщенную функцию в области G_k . Поэтому функция v_k совпадает с классическим решением v_k уравнения v_k для любой функции v_k совпадает с классическим решением v_k уравнения v_k для любой функции v_k обобщенная функции v_k для любой функции v_k для любой функции v_k для любой функции v_k обобщенная функция v_k является регулярной и совпадает с классическим решением v_k уравнения v_k для добой функции v_k для добой функции v_k для дравнения v_k уравнения v_k для добой функции v_k для дравнением v_k уравнения v_k уравнения v_k для добой функции v_k для дравнением v_k уравнения v_k для добой функции v_k для дравнением v_k уравнения v_k уравнения v_k уравнения v_k уравнения v_k уравнения v_k уравнением v_k уравнения v_k уравнением v_k уравнени

5. Примеры и приложения

Теорема 5. Пусть функция $f(x,y) \equiv f_0(x)$, где $f_0(x)$ — непрерывная на интервале (a,b) функция. Тогда уравнение (0.1) имеет классическое решение в любой области $G \subset (a,b) \times \mathbb{R}$.

Доказательство этой теоремы следует из того, что функция

$$u(x,y) \equiv \int_{x_0}^{x} (x-s)f_0(s)ds, \quad x_0, \ x \in (a,b),$$

является классическим решением уравнения (0.1) при $f(x,y) \equiv f_0(x)$. Отсюда и из теоремы 1 получаем

Следствие 3. *Если функция* $f(x,y) \equiv f(x)$, то для функции

$$F(x, y, r) = \int_{0}^{2\pi} f(x + r\cos\varphi) \exp(2i\varphi)d\varphi$$

существует несобственный интеграл

$$\int_{0}^{r_1} F(x, y, r) \frac{dr}{r} = \lim_{\delta \to 0} \int_{\delta}^{r_1} F(x, y, r) \frac{dr}{r}.$$

Теорема 6. Пусть непрерывная функция f(x,y) удовлетворяет условию Гёльдера по направлению y, m.e.

$$|f(x,y_1) - f(x,y_2)| \le K |y_1 - y_2|^{\alpha}, \quad 0 < \alpha < 1, \quad (x,y_1), \ (x,y_2) \in G.$$

Tогда функция f(x,y) является равномерно усиленно непрерывной в области G.

Доказательство. Функцию

$$F(x, y, r) = \int_{0}^{2\pi} f(x + r\cos\varphi, y + r\sin\varphi)e^{2i\varphi}d\varphi$$

представим в виде $F(x,y,r) = F_1(x,y,r) + F_2(x,y,r)$, где

$$F_1(x, y, r) = \int_{0}^{2\pi} f(x + r\cos\varphi, y)e^{2i\varphi}d\varphi, \quad F_2(x, y, r) = F(x, y, r) - F_1(x, y, r).$$

Пусть $K\subset G$ — компактное множество. Положим $r_1=\rho(K,\partial G)/2>0$. В силу тождества

$$\frac{1}{r} \int_{0}^{2\pi} \int_{0}^{x+r\cos\varphi} f(s,y)e^{i\varphi} ds d\varphi = i \int_{0}^{2\pi} f(x+r\cos\varphi,y)\sin\varphi e^{i\varphi} d\varphi, \quad 0 < r \le r_1,$$
 (5.1)

для функции $F_1(x, y, r)$ справедливо представление

$$\frac{1}{r}F_1(x,y,r) = \frac{d}{dr} \left\{ \frac{1}{r} \int_0^{2\pi} \int_0^{x+r\cos\varphi} f(s,y) e^{i\varphi} \, ds \, d\varphi \right\}.$$

Интегрируя это равенство по отрезку $[\delta, r_1], \ 0 < \delta < r_1,$ в силу (5.1) получим

$$\int_{\delta}^{r_1} F_1(x, y, r) \frac{dr}{r} = i \int_{0}^{2\pi} f(x + r_1 \cos \varphi, y) \sin \varphi e^{i\varphi} d\varphi - i \int_{0}^{2\pi} f(x + \delta \cos \varphi, y) \sin \varphi e^{i\varphi} d\varphi.$$
 (5.2)

Оценим функцию $F_2(x, y, r)$:

$$|F_2(x,y,r)| \le \int_0^{2\pi} |f(x+r\cos\varphi,y+r\sin\varphi) - f(x+r\cos\varphi,y)| \, d\varphi \le K \int_0^{2\pi} |\sin\varphi| r^\alpha d\varphi = 4Kr^\alpha.$$

$$(5.3)$$

Из равенства (5.2) и оценки (5.3) следует, что равномерно на компакте K существует

$$\int_{0}^{r_{1}} F(x,y,r) \frac{dr}{r} = \lim_{\delta \to +0} \int_{s}^{r_{1}} F(x,y,r) \frac{dr}{r} = \int_{0}^{r_{1}} F_{1}(x,y,r) \frac{dr}{r} + \int_{0}^{r_{1}} F_{2}(x,y,r) \frac{dr}{r}.$$

Теорема доказана.

Будем говорить, что на множестве $M\subset G$ функция удовлетворяет условию Гёльдера с показателем $\alpha>0$ по направлению $\overrightarrow{n}=(\cos\beta,\sin\beta),$ если

$$|f(x+h\cos\beta,y+h\sin\beta)-f(x,y)|\leq C|h|^{\alpha},\quad (x,y),\quad (x+h\cos\beta,y+h\sin\beta)\in M,\quad C=\mathrm{const.}$$

Доказанную теорему можно обобщить в следующей форме.

Теорема 7. Пусть непрерывная функция f(x,y)) в некоторой окрестности каждой точки (x_0,y_0) области G удовлетворяет условию Гёльдера c показателем $\alpha>0$ по фиксированному направлению $\overrightarrow{n}=(\cos\beta,\sin\beta)$, где $\alpha>0$, \overrightarrow{n} зависят от точки (x_0,y_0) . Тогда функция f(x,y) является усиленно непрерывной в области G.

Отсюда и из теоремы 3 следует

Теорема 8. Если непрерывная функция f(x,y), принадлежит пространству Лебега L(G) и в некоторой окрестности каждой точки удовлетворяет условию Гёльдера по некоторому направлению, то уравнение Пуассона (0.1) в области G имеет классическое решение.

Теорема 9. Пусть непрерывная в круге $\{(x,y)\colon x^2+y^2\leq r_0\}$ функция f(x,y) допускает представление

$$f(x,y) = \sum_{|k| \le N} f_k(r) \exp(ik\phi), \quad x = r\cos\phi, \quad y = r\sin\phi.$$

Тогда уравнение (0.1) имеет классическое решение в круге $\{(x,y)\colon x^2+y^2< r_0\}$ тогда и только тогда, когда функции $f_2(r)$ и $f_{-2}(r)$ такие, что существуют несобственные интегралы

$$\int_{0}^{r_0} \frac{f_{\pm 2}(r)}{r} dr = \lim_{\delta \to 0} \int_{\delta}^{r_0} \frac{f_{\pm 2}(r)}{r} dr.$$

Сначала докажем вспомогательные утверждения.

Легко показать, что для функции

$$v(x,y) = v_k(r) \exp(ik\phi), \quad x = r\cos\phi, \quad y = r\sin\phi,$$

где функция $v_k(r)$ имеет непрерывные производные при r>0, справедливы равенства:

$$\begin{split} &\frac{\partial v}{\partial x} = (xrv_k' - ikyv_k) \frac{\exp(ik\phi)}{r^2}, \\ &\frac{\partial v}{\partial y} = (yrv_k' + ikxv_k) \frac{\exp(ik\phi)}{r^2}, \\ &\frac{\partial^2 v}{\partial x^2} = \left[x^2r^2v_k'' + yr(y - 2ikx)v_k' - ky(ky - 2ix)v_k \right] \frac{\exp(ik\phi)}{r^4}, \\ &\frac{\partial^2 v}{\partial x \partial y} = \left[xyr^2v_k'' + ir(kx^2 - ky^2 + ixy)v_k' + k(kxy - ix^2 + iy^2)v_k \right] \frac{\exp(ik\phi)}{r^4}, \\ &\frac{\partial^2 v}{\partial y^2} = \left[y^2r^2v_k'' + xr(x + 2iky)v_k' - kx(kx + 2iy)v_k \right] \frac{\exp(ik\phi)}{r^4}. \end{split}$$

Из приведенных выше формул вытекает следующая лемма.

Лемма 3. Функция

$$v(x,y) = \sum_{|k| \le N} v_k(r) \exp(ik\phi), \quad x = r\cos\phi, \quad y = r\sin\phi$$

в круге $\{(x,y): x^2+y^2 \le r_0^2\}$: а) непрерывна тогда и только тогда, когда функции $v_k(r)$, $|k| \le N$ непрерывны на отрезке $[0,r_0]$, причем $v_k(0)=0$ при $k \ne 0$; b) имеет непрерывные частные производные до второго порядка включительно, если функции $v_k(r)$ на отрезке $[0,r_0]$ дважды непрерывно дифференцируемы, причем $v_k(0)=v_k'(0)=v_k''(0)=0$ при $k\ne 0$.

Лемма 4. Пусть непрерывная в замкнутом круге $\{(x,y)\colon x^2+y^2\leq r_0^2\}$ функция имеет представление $f(x,y)=f_k(r)\exp(ik\phi),\ k\in Z.$ Тогда уравнение Пуассона (0.1) в круге $\{(x,y)\colon x^2+y^2< r_0^2\}$ имеет классическое решение при любом $k,\ |k|\neq 2,\ a$ при |k|=2 необходимым и достаточным условием существования классического решения является сходимость несобственного интеграла

$$\int_{0}^{r_0} f_k(r) \frac{dr}{r} = \lim_{\delta \to 0} \int_{\delta}^{r_0} f_k(r) \frac{dr}{r}.$$
(5.4)

Д о к а з а т е л ь с т в о. Рассмотрим случай $k \geq 0$. Случай k < 0 рассматривается аналогично. Будем искать решение уравнения Пуассона в виде $v(r,\phi) = v_k(r) \exp(ik\phi)$. Уравнение Пуассона в полярных координатах имеет вид

$$\frac{1}{r}\frac{\partial v}{\partial r}\left(r\frac{\partial v}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 v}{\partial \phi^2} = f_k(r)\exp(ik\phi).$$

Отсюда для функции $v_k(r)$ имеем

$$r^{2}v_{k}'' + rv_{k}' - k^{2}v_{k} = r^{2}f_{k}(r), \quad r > 0.$$

$$(5.5)$$

Отметим, что в силу непрерывности функции f(x,y) функция $f_k(r)$ непрерывна на отрезке $[o,r_0]$, причем $f_k(0)=0$ при $k\neq 0$ (лемма 4). Нас интересуют решения $v_k(r)$ уравнения (5.5), которые имеют непрерывное продолжение в точке r=0 вместе со всеми производными до второго порядка включительно, причем

$$\lim_{r \to 0} v_k(r) = \lim_{r \to 0} v_k'(r) = \lim_{r \to 0} v_k''(r) = 0,$$
(5.6)

если $k \neq 0$.

Соответствующее однородное уравнение $r^2v_k'' + rv_k' - k^2v_k = 0$ является уравнением Эйлера. Используя метод вариации постоянных, получим общее решение неоднородного уравнения (5.5):

$$v_0 = \ln r \int_0^r \rho f_0(\rho) d\rho - \int_0^r \rho \ln \rho f_0(\rho) d\rho + C_1 + C_2 \ln r,$$
 если $k = 0$,

$$v_k = \frac{r^k}{2k} \int_{r_0}^r \rho^{1-k} f_k(\rho) d\rho + C_1 r^k - \frac{r^{-k}}{2k} \int_{r_0}^r \rho^{1+k} f_k(\rho) d\rho + C_2 r^{-k}, \quad \text{если} \quad k \neq 0.$$

Из этих представлений общего решения уравнения (5.5), правила Лопиталя, непрерывности функции $f_k(r)$ и условия $f_k(0)=0$ при $k\neq 0$ следует, что решения, которые имеют непрерывное продолжение в точке r=0 вместе со всеми производными до второго порядка включительно, имеют вид

$$v_0 = \ln r \int_0^r \rho f_0(\rho) d\rho - \int_0^r \rho \ln \rho f_0(\rho) d\rho + C_1, \quad \text{если} \quad k = 0,$$

$$v_k = \frac{r^k}{2k} \int_0^r \rho^{1-k} f_k(\rho) d\rho - \frac{r^{-k}}{2k} \int_0^r \rho^{1+k} f_k(\rho) d\rho, \quad \text{если} \quad k = 1,$$

$$v_k = \frac{r^k}{2k} \int_0^r \rho^{1-k} f_k(\rho) d\rho + C_1 r^k - \frac{r^{-k}}{2k} \int_0^r \rho^{1+k} f_k(\rho) d\rho, \quad \text{если} \quad k > 2.$$

Теперь рассмотрим случай k=2. Пусть функция $f_2(r)$ удовлетворяет условию (5.4). Тогда частное решение уравнения (5.5)

$$v_2 = \frac{r^2}{4} \int_0^r \rho^{-1} f_2(\rho) d\rho - \frac{r^{-2}}{4} \int_0^r \rho^3 f_2(\rho) d\rho$$

удовлетворяет начальным условиям (5.6).

Обратно, пусть уравнение (5.5) при k=2 имеет решение $v_2(r)$, удовлетворяющее условиям (5.6). Из тождества

$$\frac{f_2(r)}{r} \equiv \frac{d}{dr} \left\{ \frac{v_2'}{r} + \frac{2v_2}{r^2} \right\}, \quad r \in (0, r_0),$$

следует

$$\int_{\delta}^{r_0} f_2(r) \frac{dr}{r} \equiv \frac{v'(r_0)}{r_0} + \frac{2v(r_0)}{r_0^2} - \frac{v'(\delta)}{\delta} + \frac{2v(\delta)}{\delta^2}, \quad \delta \in (0, r_0),$$

которое в силу

$$\lim_{r \to 0} \frac{v_2(r)}{r^2} = \lim_{r \to 0} \frac{v_2'(r)}{2r} = \frac{1}{2} \lim_{r \to 0} v_2''(r) = 0$$

доказывает существование несобственного интеграла (5.4) при k=2. Лемма 4 доказана.

Доказательство теоремы 9 следует из приведенных выше лемм 3 и 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 735 с.
- 2. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными. М.: Мир, 1966. 351 с.
- 3. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1983 с.
- 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1976. 527 с.
- 5. Олейник О.А. Лекции об уравнениях с частными производными. М.: БИНОМ, 2005. 260 с.
- 6. Мухамадиев Э.М., Гришанина Г.Э. О применении метода регуляризации к построению классического решения уравнения Пуассона // Алгоритмический анализ неустойчивых задач: тез. докл. Междунар. конф., посвящен. памяти В. К. Иванова (Екатеринбург, 31 октября – 5 ноября 2011 г.) / ИММ УрО РАН. Екатеринбург, 2011. С. 51–52.

Мухамадиев Эргашбой

Поступила 12.01.2015

д-р физ.-мат. наук, профессор

Вологодский государственный университет

e-mail: emuhamadiev@rambler.ru

Гришанина Гульнара Эргашевна

канд. физ.-мат. наук

доцент кафедры высшей математики

университет "Дубна" e-mail: anora66@mail.ru

Гришанин Александр Андреевич

аспирант фак. ВМК МГУ им. М. Ломоносова