Tom 21 № 3

УДК 517.977

ОБ АВТОМОРФИЗМАХ ДИСТАНЦИОННО РЕГУЛЯРНОГО ГРАФА С МАССИВОМ ПЕРЕСЕЧЕНИЙ $\{39,36,1;1,2,39\}^1$

И. Н. Белоусов

В работе найдены возможные автоморфизмы простых порядков и подграфы их неподвижных точек гипотетического дистанционно регулярного графа с массивом пересечений $\{39, 36, 1; 1, 2, 39\}$. Показано, что графы с массивами пересечений $\{15, 12, 1; 1, 2, 15\}$, $\{35, 32, 1; 1, 2, 35\}$ и $\{39, 36, 1; 1, 2, 39\}$ не являются вершинно симметричными

Ключевые слова: дистанционно регулярный граф, автоморфизм графа.

I. N. Belousov. On automorphisms of a distance-regular graph with intersection array {39, 36, 1; 1, 2, 39}.

Possible prime-order automorphisms and fixed-point subgraphs are found for a hypothetical distance-regular graph with intersection array $\{39, 36, 1; 1, 2, 39\}$. It is shown that graphs with intersection arrays $\{15, 12, 1; 1, 2, 15\}$, $\{35, 32, 1; 1, 2, 35\}$, and $\{39, 36, 1; 1, 2, 39\}$ are not vertex-symmetric.

Keywords: distance-regular graph, graph automorphism.

Введение

Мы рассматриваем неориентированные графы без петель и кратных ребер. Для вершины a графа Γ через $\Gamma_i(a)$ обозначим i-окрестность ее вершины, т. е. подграф, индуцированный Γ на множестве всех вершин, находящихся на расстоянии i от a. Положим $[a] = \Gamma_1(a)$, $a^{\perp} = \{a\} \cup [a]$.

Пусть Γ — граф, a,b — две вершины из Γ , число вершин в $[a] \cap [b]$ обозначается через $\mu(a,b)$ (соответственно $\lambda(a,b)$), если a,b находятся на расстоянии 2 (соответственно смежны) в Γ . Далее, индуцированный $[a] \cap [b]$ подграф называется μ -подграфом (соответственно λ -подграфом). Если Γ — граф диаметра d, то через $\Gamma_{i_1,i_2,\ldots,i_t}$, где $i_j \leq d$ для всех $j=1,\ldots,t$, обозначается граф с тем же множеством вершин, что и Γ , в котором две вершины смежны тогда и только тогда, когда они находятся на расстоянии $i \in \{i_1,i_2,\ldots,i_t\}$ в Γ .

Степенью вершины называется число вершин в ее окрестности. Граф Γ называется регулярным степени k, если степень любой вершины из Γ равна k. Граф Γ назовем реберно регулярным c параметрами (v,k,λ) , если он содержит ровно v вершин, регулярен степени k и каждое его ребро лежит ровно в λ треугольниках. Граф Γ — вполне регулярный граф c параметрами (v,k,λ,μ) , если он реберно регулярен c соответствующими параметрами и $[a] \cap [b]$ содержит ровно μ вершин для любых двух вершин a и b, находящихся на расстоянии 2 в Γ . Вполне регулярный граф диаметра 2 называется сильно регулярным графом. Если вершины u,w находятся на расстоянии i в Γ , то через $b_i(u,w)$ (соответственно $c_i(u,w)$) обозначим число вершин в пересечении $\Gamma_{i+1}(u)$ (соответственно через $\Gamma_{i-1}(u)$) c [w]. Граф Γ диаметра d называется дистанционно регулярным c массивом пересечений $\{b_0,b_1,\ldots,b_{d-1};c_1,\ldots,c_d\}$, если значения $b_i(u,w)$ и $c_i(u,w)$ не зависят от выбора вершин u и w, находящихся на расстоянии i в Γ , для любого $i=0,\ldots,d$. Положим $a_i=k-b_i-c_i$. Заметим, что для дистанционно регулярного графа b_0 — это степень графа, $c_1=1$. Граф Γ диаметра d называется дистанционно

¹Работа выполнена при поддержке РНФ, проект 14-11-00061 (теорема), при поддержке Комплексной программы фундаментальных исследований УрО РАН (проект 15-16-1-5) и в рамках проекта повышения конкурентоспособности ведущих университетов РФ (соглашение между Министерством образования и науки Российской Федерации и Уральским федеральным университетом от 27.08.2013, № 02.A03.21.0006) (следствие).

транзитивным, если для любого $i \in \{0, \dots, d\}$ и для любых двух пар вершин (u, w) и (y, z) с d(u, w) = d(y, z) = i найдется автоморфизм g графа Γ такой, что $(u^g, w^g) = (y, z)$. Для подмножества X автоморфизмов графа Γ через $\mathrm{Fix}(X)$ обозначается множество всех вершин графа Γ , неподвижных относительно любого автоморфизма из X. Далее, через $p_{ij}^l(x, y)$ обозначим число вершин в подграфе $\Gamma_i(x) \cap \Gamma_j(y)$ для вершин x и y, находящихся на расстоянии l в графе Γ . В дистанционно регулярном графе числа $p_{ij}^l(x, y)$ не зависят от выбора вершин x, y, обозначаются через p_{ij}^l и называются числами пересечений графа Γ .

В работе [1] найдены массивы пересечений дистанционно регулярных локально циклических графов с числом вершин, не большим 1000.

Предложение 1. Пусть Γ — дистанционно регулярный граф диаметра, большего 2, на $v \leq 1000$ вершинах. Если $\lambda = 2$ и $\mu > 1$, то верно одно из утверждений:

- (1) Γ примитивный граф с массивом пересечений $\{15,12,6;1,2,10\}$, $\{19,16,8;1,2,8\}$, $\{24,21,3;1,3,18\}$, $\{35,32,8;1,2,28\}$ или $\{51,48,8;1,4,36\}$;
- (2) Γ антиподальный граф c $\mu=2$ и массивом пересечений $\{2r+1,2r-2,1;1,2,2r+1\}$, $r\in\{3,4,\ldots,21\}\setminus\{10,16\}$ и v=2r(r+1);
- (3) Γ антиподальный граф с $\mu \geq 3$ и массивом пересечений $\{15,12,1;1,4,15\}$, $\{18,15,1;1,5,18\}$, $\{27,24,1;1,8,27\}$, $\{35,32,1;1,4,35\}$, $\{45,42,1;1,6,45\}$, $\{42,39,1;1,3,42\}$ или $\{75,72,1;1,12,75\}$.

В статье продолжено исследование реберно симметричных графов с массивами пересечений из п. (2) предложения 1. Если 2r+1 — степень простого числа, то граф существует. Более того, существует единственный реберно симметричный граф, полученный из схемы Р. Мэтона. Заметим, что 2r+1 — не степень простого числа для r=7,17,19. Случаи r=7 и r=17 рассмотрены в [2; 4]. В данной работе изучаются автоморфизмы гипотетического дистанционно регулярного графа с массивом пересечений $\{39,36,1;1,2,39\}$.

Граф Γ с массивом пересечений $\{39,36,1;1,2,39\}$ имеет v=1+39+702+18=760 вершин и спектр $39^1,\sqrt{39}^{360},-1^{39},-\sqrt{39}^{360}$.

Теорема. Пусть Γ — дистанционно регулярный граф, имеющий массив пересечений $\{39,36,1;1,2,39\}$, $G=\mathrm{Aut}(\Gamma)$, g — элемент простого порядка p из G и $\Omega=\mathrm{Fix}(g)$. Тогда $\pi(G)\subseteq\{2,3,5,13,17,19\}$ и выполняется одно из следующих утверждений:

- $(1) \ \Omega nycmoй граф и либо$
 - (i) p = 19, $\alpha_1(g) = \alpha_3(g) = 38$ u $\alpha_2(g) = 684$ unu $\alpha_3(g) = 760$, nuбо
 - (ii) $p \in \{2, 5\}$, $\alpha_3(g) = 0$, $\alpha_1(g) = 40$ $u \alpha_2(g) = 720$;
- (2) Ω лежит в антиподальном классе Γ и либо
 - (i) p = 13, $|\Omega| = 19$ u $\alpha_1(g) = 39(2r+1)$, $r\partial e \ r \leq 9$, либо
 - (ii) p = 3, $|\Omega| \in \{1, 7, 13, 19\}$ $u \alpha_1(g) = 39$;
- (3) p = 17, $\Omega \epsilon pa\phi u \kappa o c a \theta p a$, $\alpha_1(g) = 34 u \alpha_3(g) = 102$;
- (4) p = 3, Ω является 4-кликой и $\alpha_1(g) = 36$;
- (5) p = 2 u либо
 - (i) Ω объединение двух антиподальных классов, $\alpha_3(g) = 0$ и $\alpha_1(g) = 38$, либо
 - (ii) Ω объединение семи изолированных 4-клик, $\alpha_3(g) = 48$, $\alpha_1(g) = 36$.

Следствие. Графы с массивами пересечений $\{15,12,1;1,2,15\}$, $\{35,32,1;1,2,35\}$ и $\{39,36,1;1,2,39\}$ не являются вершинно симметричными.

1. Вспомогательные результаты

В этом разделе приведены результаты, используемые в доказательстве теоремы.

Лемма 1 [3, лемма 1]. Пусть O_K — кольцо целых алгебраических чисел поля K. Если d — целое число, не делящееся на квадрат простого числа, $K = \mathbf{Q}(d^{1/2})$ — соответствующее

квадратичное поле, то один из целочисленных базисов кольца O_K равен $(1, (1+d^{1/2})/2)$, если $d \equiv 1 \pmod 4$ и равен $(1, d^{1/2})$, если $d \equiv 2, 3 \pmod 4$. В случае d = 39 один из целочисленных базисов кольца O_K равен $(1, \sqrt{39})$.

 \mathcal{A} о к а з а т е л ь с т в о теоремы опирается на метод Хигмена работы с автоморфизмами дистанционно регулярного графа, представленный в третьей главе монографии Камерона [5]. При этом граф Γ рассматривается как симметричная схема отношений (X,\mathcal{R}) с d классами, где X — множество вершин графа, R_0 — отношение равенства на X и для $i \geq 1$ класс R_i состоит из пар (u,w) таких, что d(u,w)=i. Для $u\in\Gamma$ положим $k_i=|\Gamma_i(u)|$ и $v=|\Gamma|$. Классу R_i отвечает граф Γ_i на множестве вершин X, в котором вершины u,w смежны, если $(u,w)\in R_i$. Пусть A_i — матрица смежности графа Γ_i для i>0 и $A_0=I$ — единичная матрица. Тогда $A_iA_j=\sum p_{ij}^lA_k$ для чисел пересечений p_{ij}^l .

Пусть P_i — матрица, в которой на месте (j,l) стоит p_{ij}^l . Тогда собственные значения $p_1(0),\ldots,p_1(d)$ матрицы P_1 являются собственными значениями графа Γ кратностей $m_0=1,\ldots,m_d$ соответственно. Заметим, что матрица P_j является значением некоторого рационального многочлена от P_1 , поэтому упорядочение собственных значений матрицы P_1 задает порядок на множестве собственных значений матрицы P_j . Матрицы P и Q, у которых на месте (i,j) стоят $p_j(i)$ и $q_j(i)=m_jp_i(j)/k_i$ соответственно, называются первой и второй матрицей собственных значений схемы и связаны равенствами PQ=QP=vI.

Предложение 2 [5, теорема 17.12]. Пусть u_j и w_j — левый и правый собственные векторы матрицы P_1 , отвечающие собственному значению $p_1(j)$ и имеющие первую координату 1. Тогда кратность m_j собственного значения $p_1(j)$ равна $v/\langle u_j, w_j \rangle$.

Фактически из доказательства теоремы 17.12 из [5] следует, что w_j являются столбцами матрицы P и $m_i u_j$ являются строками матрицы Q.

Подстановочное представление группы $G = \operatorname{Aut}(\Gamma)$ на вершинах графа Γ обычным образом дает матричное представление ψ группы G в $GL(v, \mathbf{C})$. Пространство \mathbf{C}^v является ортогональной прямой суммой собственных G-инвариантных подпространств W_0, \ldots, W_d матрицы смежности $A = A_1$ графа Γ . Для любого $g \in G$ матрица $\psi(g)$ перестановочна с A, поэтому подпространство W_i является $\psi(G)$ -инвариантным. Пусть χ_i — характер представления ψ_{W_i} . Тогда (см. [3, § 3.7]) для $g \in G$ получим

$$\chi_i(g) = v^{-1} \sum_{j=0}^{d} Q_{ij} \alpha_j(g),$$

где $\alpha_j(g)$ — число точек x из X таких, что $d(x,x^g)=j$. Заметим, что значения характеров являются целыми алгебраическими числами и, если правая часть выражения для $\chi_i(g)$ — число рациональное, то $\chi_i(g)$ — целое число.

Лемма 2. Пусть Γ — дистанционно регулярный граф с массивом пересечений $\{39,36,1;1,2,39\}$, $G=\operatorname{Aut}(\Gamma)$. Если $g\in G$, χ_1 — характер проекции представления ψ на подпространство размерности 360 (отвечающее собственному значению θ_1) и χ_2 — характер проекции представления ψ на подпространство размерности 39, то

$$\chi_1(g) = (18\alpha_0(g) - \alpha_3(g) + (18\alpha_1(g) - \alpha_2(g))\sqrt{39}/39)/38,$$
$$\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/19 - 1.$$

Eсли |g| = p — простое число, то $\chi_2(g)$ — 39 делится на p.

Доказательство. Имеем

$$P_1 = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 39 & 2 & 2 & 0 \\ 0 & 36 & 36 & 39 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Рассмотрим, например, $p_1(1) = \sqrt{39}$. Тогда

$$P_1 - \sqrt{39}I = \begin{pmatrix} -\sqrt{39} & 1 & 0 & 0\\ 39 & 2 - \sqrt{39} & 2 & 0\\ 0 & 36 & 36 - \sqrt{39} & 39\\ 0 & 0 & 1 & -\sqrt{39} \end{pmatrix}.$$

Если $(1,x_2,x_3,x_4)$ — вектор-строка из ядра матрицы $P_1-\sqrt{39}I$, то $x_2=1/\sqrt{39},$ $x_3=-1/(18\sqrt{39})$ и $x_4=-1/18$. Отсюда

$$Q = \begin{pmatrix} 1 & 1 & 1 & 1\\ 360 & 360/\sqrt{39} & -20/\sqrt{39} & -20\\ 39 & -1 & -1 & 39\\ 360 & -360/\sqrt{39} & 20/\sqrt{39} & -20 \end{pmatrix}.$$

Поэтому $\chi_1(g) = (18\alpha_0(g) + 18\alpha_1(g)/\sqrt{39} - \alpha_2(g)/\sqrt{39} - \alpha_3(g))/38.$

Аналогично $\chi_2(g)=(39\alpha_0(g)-\alpha_1(g)-\alpha_2(g)+39\alpha_3(g))/760$. Подставляя $\alpha_1(g)+\alpha_2(g)=760-\alpha_0(g)-\alpha_3(g)$, получим $\chi_2(g)=(\alpha_0(g)+\alpha_3(g))/19-1$.

Остальные утверждения леммы следуют из [6, лемма 2]. Лемма доказана.

2. Автоморфизмы графа с массивом пересечений {39, 36, 1; 1, 2, 39}

В этом разделе Γ — дистанционно регулярный граф с массивом пересечений $\{39,36,1;1,2,39\},~G={\rm Aut}(\Gamma),~g$ — элемент простого порядка p из $G,~\Omega={\rm Fix}(g)$ и $\alpha_i(g)=pw_i$ для i>0.

Заметим, что Γ содержит ровно 40 антиподальных классов, в каждом из которых 19 вер-

З а м е ч а н и е. Если Ω пересекает антиподальные классы K и L, то $|K \cap \Omega| = |L \cap \Omega|$.

В самом деле, вершина из $L \cap \Omega$ попадает в окрестность единственной вершины из $K \cap \Omega$, поэтому $|K \cap \Omega| \leq |L \cap \Omega|$. Симметрично $|L \cap \Omega| \leq |K \cap \Omega|$.

Лемма 3. Выполняются следующие утверждения:

- (1) если g автоморфизм Γ порядка 2,3 или 5, то $18w_1 = w_2;$
- (2) если Ω пустой граф, то либо
 - (i) $p = 19 \ u \ (\alpha_1(g), \alpha_2(g), \alpha_3(g)) \in \{(38, 684, 38), (0, 0, 760)\}, \ \text{либо}$
 - (ii) $p \in \{2, 5\}$ $u(\alpha_1(g), \alpha_2(g), \alpha_3(g)) = (40, 720, 0).$

Доказательство. Если g — элемент группы G, то значение характера для g является суммой n корней из единицы степени $|\psi(g)|$, где n — размерность представления ψ .

Заметим, что корни из единицы степени 2, 3 имеют рациональные вещественные части. Если |g|=2,3, то значение характера — вещественное число, поэтому оно является целым. В случае |g|=5 можно воспользоваться формулами $\cos 2\pi/5=(\sqrt{5}-1)/4$ и $\cos 4\pi/5=-(\sqrt{5}+1)/4$.

Таким образом, если g — автоморфизм графа Γ порядка 2,3 или 5, то из леммы 2 следует, что $18w_1=w_2$.

Пусть Ω — пустой граф. Так как $760 = 2^3 \cdot 5 \cdot 19$, то p = 19, 5 или 2.

Пусть p=19. Тогда $\chi_1(g)=(\sqrt{39}(18w_1-w_2)/39-w_3)/2$ и $\chi_2(g)=w_3-1$. По лемме 2 число $\chi_2(g)-39=w_3-40$ делится на 19, поэтому $w_3=2,21$ или 40. В силу леммы 1 пара $(1,\sqrt{39})$ образует целочисленный базис кольца алгебраических целых чисел поля $\mathbf{Q}(\sqrt{39})$. Поэтому $w_3=2$ или 40. В первом случае имеем $w_1+w_2=38,\ \chi_1(g)=\sqrt{39}(18w_1-w_2)/78-1=19\sqrt{39}(w_1-2)/78-1$, и отсюда $\alpha_1(g)=\alpha_3(g)=38,\ \alpha_2(g)=19\cdot 36=684$. Во втором случае $\alpha_3(g)=760$, и элемент g оставляет инвариантным каждый антиподальный класс графа Γ .

Если p=2,5 и $\alpha_3(g)\neq 0$, то g фиксирует вершину в соответствующем антиподальном классе, противоречие.

Если p=5, то $\alpha_1(g)=5w_1,\ \alpha_2(g)=5\cdot 18w_1$ и $5w_1+5\cdot 18w_1=760.$ Отсюда $\alpha_1(g)=40,$ $\alpha_2(g)=720.$

В случае p=2 имеем $\alpha_1(g)=2w_1,$ $\alpha_2(g)=2\cdot 18w_1$ и $2w_1+2\cdot 18w_1=760.$ Отсюда $\alpha_1(g)=40,$ $\alpha_2(g)=720.$

Лемма доказана.

В леммах 4–6 предполагается, что Ω содержит вершину a. Заметим, что если $a,b\in\Omega$ и p>2, то $[a]\cap[b]\subset\Omega$, поэтому $\lambda_\Omega=\mu_\Omega=2$.

Лемма 4. Выполняются следующие утверждения:

- (1) если $p \neq 2, 3, 13$, то Ω содержит по вершине из [a], $\Gamma_2(a)$ и $\Gamma_3(a)$;
- (2) ecnu p > 17, $mo \Gamma_3(a) \subset \Omega$.

Доказательство. Если $p \neq 2, 3, 13$, то p не делит $|\Gamma_i(a)|$, поэтому Ω содержит по вершине из [a], $\Gamma_2(a)$ и $\Gamma_3(a)$.

Для любой вершины a из Ω подграф $\Gamma_3(a)$ является g-допустимым, и в случае p>17 имеем $\Gamma_3(a)\subset\Omega$.

Лемма доказана.

Лемма 5. Если p > 2, то выполняется одно из утверждений:

- (1) Ω лежит в антиподальном классе графа Γ , $\alpha_3(g) = 17 |\Omega|$ и либо
 - (i) $p=3, |\Omega| \in \{1,7,13,19\}$ и $\alpha_1(g)=39$, либо
 - (ii) p = 13, $|\Omega| = 19$, $\alpha_3(g) = 0$ u $\alpha_1(g) = 39(2l+1)$, $\partial e l \leq 9$;
- (2) p = 17, $\Omega \epsilon pa\phi u \kappa o c a \theta p a$, $\alpha_1(g) = 34 u \alpha_3(g) = 102$;
- (3) p = 3, Ω является 4-кликой и $\alpha_1(g) = 36$.

Доказательство. Пусть p>2. Допустим, что Ω содержит [a]. Тогда вершина $u\in\Gamma_2(a)$ лежит в $[a_i]\cap[a_j]$ для некоторых вершин a_i,a_j из [a], поэтому $u\in\Omega$. Отсюда $\Gamma_2(a)\subset\Omega$ и $\Gamma=\Omega$, противоречие.

Кроме того, в окрестности каждой вершины из $\Gamma-\Omega$ имеется не более одной вершины из $\Omega.$

Пусть p > 17. Тогда $|\Omega| = 19t$, где t — число антиподальных классов, попадающих в Ω , Ω — регулярный граф степени t-1 и p делит 40-t. Число ребер между Ω и $\Gamma - \Omega$ не меньше 19t(39-t), но не больше (760-19t), поэтому t=1. Отсюда $|\Omega| = 19$ и p делит 39, противоречие.

Пусть теперь $p \leq 17$ и Γ содержит t>0 антиподальных классов, пересекающих Ω по s вершинам. Тогда Ω — регулярный граф степени t-1.

Рассмотрим множество вершин U, лежащих в антиподальных классах, не пересекающих Ω . Каждая вершина из U смежна в среднем с st(40-t)/(760-19t)=st/19 вершинами из Ω , поэтому $st=|\Omega|\leq 19$.

Заметим, что если Ω содержит изолированную вершину, то Ω лежит в антиподальном классе графа Γ и либо p=3 и $|\Omega|\in\{1,4,7,10,13,16,19\}$, либо p=13 и $|\Omega|\in\{6,19\}$. В любом случае $\alpha_3(g)=19-|\Omega|$. Далее, $\chi_1(g)=(|\Omega|-1)/2+(18\alpha_1(g)-\alpha_2(g))\sqrt{39}/(39\cdot 38)$, ввиду леммы 1 число $|\Omega|$ нечетно, $\alpha_1(g)+\alpha_2(g)=741$ и $18\alpha_1(g)-\alpha_2(g)=19(\alpha_1(g)-39)$ делится на $38\cdot 39$. Отсюда либо p=3 и $\alpha_1(g)=39$, либо p=13 и $\alpha_1(g)=39(2l+1)$, где $l\leq 9$.

Если t>1, то Ω является (k'+1)-кликой или связным вполне регулярным графом с параметрами (v',k',2,2) и $1+k'+(k'-3)k'/2\leq 19$. Поэтому $k'\in\{3,5,6\}$.

В случае k'=6 число p делит 33, поэтому $p \in \{3,11\}$ и p делит 19-s. Далее, пара ($|\Omega|,s$) равна (16, 1) и подграф Ω является кликой, противоречие.

В случае k'=5 число p делит 34, поэтому p=17. Далее, Ω — локально 5-угольный граф, поэтому Ω — граф икосаэдра, t=6, s=2 и $\alpha_3(g)=102$. Так как $\alpha_1(g)-34$ делится на 78, то $\alpha_1(g)=34$.

В случае k'=3 граф Ω является 4-кликой и p=3. Далее, $\alpha_2(g)=18\alpha_1(g)$ и $\alpha_1(g)=36$. Лемма доказана.

Лемма 6. Если p = 2, то либо

- (i) Ω объединение двух антиподальных классов, $\alpha_3(g) = 0$ и $\alpha_1(g) = 38$, либо
- (ii) Ω является объединением семи изолированных 4-клик, $\alpha_3(g)=48$ и $\alpha_1(g)=36$.

Д о к а з а т е л ь с т в о. Пусть p=2 и Γ содержит t>0 антиподальных классов, пересекающих Ω по s вершинам. Тогда Ω — регулярный граф степени t-1, число $|\Omega|$ четно, любой антиподальный класс пересекает Ω по s=2j+1 вершинам, $j\leq 9$ и t четно. Пусть K — антиподальный класс, содержащий вершину a. Тогда $K\cap\Omega=\{a,a_2,\ldots,a_s\}$. Если $d(u,u^g)\leq 2$ для некоторой вершины $u\in\Gamma-\Omega$, то [u] содержит 0 или 2 вершины из Ω .

Как и выше, доказывается, что $|\Omega| = st \le 38$; кроме того, $|\Gamma_2(a) \cap \Omega| = (s-1)(t-1)$. В случае s=1 граф Ω является t-кликой, поэтому $t \le 4$. Противоречие с тем, что $[a] - \Omega$ содержит по крайней мере 18 пар вершин вида $\{u, u^g\}$, смежных с вершинами из $\Omega - a^{\perp}$.

Пусть s>1 и x — число изолированных вершин в $\Omega(a)$. Тогда Ω содержит вершину a,t-1 вершин из $\Omega(a), \ (x\ (t-2)+(t-1-x)(t-4))/2$ вершин c из $\Omega_2(a),$ для которых $[c]\cap [a]\subset \Omega,$ (39-3x-(t-1-x))/2 вершин из $\Omega_2(a),$ смежных c парами вершин из $[a]-\Omega$ и s-1 вершин из $\Omega_3(a)$. Поэтому $1+(t-1)+(x\ (t-2)+(t-1-x)(t-4))/2+(39-3x-(t-1-x))/2+(s-1)\leq 38,$ $s\leq 19-(t-2)^2/2$ и $t\in\{2,4,6\}.$

Далее, число вершин в $\Gamma_2(a) \cap \Omega$, с одной стороны, равно (x(t-2)+(t-1-x)(t-4))/2+(39-3x-(t-1-x))/2, а с другой стороны, равно (s-1)(t-1). Поэтому (2s-t+3)(t-1)=39 и $(t,s) \in \{(2,19),(4,7)\}$.

Пусть (t,s)=(2,19). Тогда Ω является объединением 19 изолированных ребер, $\alpha_3(g)=0$ и $\alpha_1(g)=38$.

Пусть (t,s)=(4,7). Тогда Ω — регулярный граф степени 3 и связная компонента Δ графа Ω является графом $K_{4,4}$ с удаленным максимальным паросочетанием или 4-кликой. В первом случае $t\geq 8$, противоречие. Поэтому Ω является объединением семи изолированных 4-клик, $\alpha_3(g)=12\cdot 4=48$ и $\alpha_1(g)=36$.

Лемма доказана.

Из лемм 3-6 следует теорема.

3. Граф с массивом пересечений $\{39, 36, 1; 1, 2, 39\}$ не является вершинно симметричным

Сначала приведем одну лемму об абелевых накрытиях клик.

Лемма 7 [7, теорема 2.5]. Пусть Γ — дистанционно регулярный граф с массивом пересечений $\{k,\mu(r-1),1;1,\mu,k\}$, K — абелева подгруппа из $\mathrm{Aut}(\Gamma)$, транзитивная на каждом антиподальном классе и p — простой делитель r. Тогда p делит k+1, и в случае $k=r\mu+1$ число r — степень 2.

До конца раздела предполагается, что Γ является дистанционно регулярным графом с массивом пересечений $\{39, 36, 1; 1, 2, 39\}$ и $G = \operatorname{Aut}(\Gamma)$ действует транзитивно на множестве вершин графа Γ . По лемме 7 группа G не содержит абелевых подгрупп, действующих транзитивно на каждом антиподальном классе. Ввиду теоремы имеем $\{2, 5, 19\} \subseteq \pi(G) \subseteq \{2, 3, 5, 13, 17, 19\}$.

Лемма 8. Выполняются следующие утверждения:

- (1) если f элемент порядка 19 из G и g элемент простого порядка p<19 из $C_G(f)$, то $|g|=2,\ \Omega$ объединение двух антиподальных классов, $\alpha_3(g)=0$ и $\alpha_1(g)=38$;
 - (2) $S(G) = O_2(G)$;
 - (3) цоколь \bar{T} группы $\bar{G} = G/S(G)$ изоморфен $L_2(19)$ или J_3 .

Д о к а з а т е л ь с т в о. Пусть f — элемент порядка 19 из G, g — элемент простого порядка p<19 из $C_G(f)$. Ввиду теоремы из действия f на Ω следует, что либо p=13, $|\Omega|=19$ и $\alpha_1(g)=39(2l+1)$, где $l\leq 9$, либо p=2, Ω — объединение двух антиподальных классов, $\alpha_3(g)=0$ и $\alpha_1(g)=38$. В первом случае имеем l=9 и каждая $\langle g \rangle$ -орбита длины 19 является кликой, противоречие.

Из утверждения (1) следует равенство $S(G) = O_2(G)$.

Пусть \bar{T} — цоколь группы $\bar{G}=G/S(G)$. По [8, табл. 1] группа \bar{T} изоморфна группе $L_2(19)$ порядка $2^23^25\cdot 19$ или группе J_3 порядка $2^73^55\cdot 17\cdot 19$.

Лемма доказана.

Завершим д о к а з а т е л ь с т в о следствия в случае массива $\{39, 36, 1; 1, 2, 39\}$. По [9] группа J_3 не содержит подгрупп индекса, делящего 760. В случае $L_2(19)$ подгруппа \bar{T}_a содержится в диэдральной подгруппе порядка 18 и для антиподального класса F подгруппа $\bar{T}_{\{F\}}$ является расширением группы порядка 19 с помощью циклической группы порядка 9. Отсюда $S(G)_a$ — группа порядка 2 и $|S(G):S(G)_a|$ делит 8. Противоречие с действием \bar{T} на S(G).

4. Графы с массивами пересечений $\{15,12,1;1,2,15\}$ и $\{35,32,1;1,2,35\}$ не являются вершинно симметричными

Пусть Γ — дистанционно регулярный граф, имеющий массив пересечений $\{15,12,1;1,2,15\}$, $G=\operatorname{Aut}(\Gamma),\ g$ — элемент из G простого порядка p и $\Omega=\operatorname{Fix}(g)$. Пусть F — антиподальный класс графа Γ , содержащий вершину a. В [2, теорема[2, 3] доказано, что $\pi(G)\subseteq\{2,3,5,7\}$ и выполняется одно из следующих утверждений:

- (1) Ω пустой граф и либо
 - (i) $p=7,\ \alpha_1(g)=14t$ и $\alpha_3(g)=14$ или $\alpha_3(g)=112,$ либо
 - (ii) p = 2, $\alpha_3(g) = 0$ и $\alpha_1(g) = 16$;
- (2) $|\Omega| = 1$, p = 3, $\alpha_1(g) = 15$ и $\alpha_3(g) = 6$;
- (3) Ω антиподальный класс, $p \in \{3, 5\}$, $\alpha_1(g) = 15$ и $\alpha_3(g) = 0$;
- (4) Ω является 4-кликой, $p=3,\ \alpha_1(g)=12$ и $\alpha_3(g)=24;$
- (5) p = 2, Ω объединение двух антиподальных классов, $\alpha_3(g) = 0$ и $\alpha_1(g) = 14$.

Лемма 9. Пусть G действует транзитивно на множестве вершин графа Γ . Тогда выполняются следующие утверждения:

- (1) если f элемент порядка 7 из G, g элемент простого порядка p < 7 из $C_G(f)$, то |g| = 2, Ω объединение двух антиподальных классов, $\alpha_3(g) = 0$, $\alpha_1(g) = 14$ и $|C_G(f)| = 14$;
 - (2) $S(G) = O_2(G)$;
 - (3) цоколь G/S(G) изоморфен $L_2(7)$.

Д о к а з а т е л ь с т в о. Пусть f — элемент порядка 7 из G, g — элемент простого порядка p<7 из $C_G(f)$. Ввиду [2, теорема] из действия f на Ω следует, что либо p=3,5 и Ω — антиподальный класс, либо p=2 и Ω — объединение двух антиподальных классов. Но в случаях p=3,5 имеем $\alpha_1(g)=15$, противоречие. Если V — подгруппа порядка 4 из $C_G(f)$, содержащая g, и $U=\{u\in\Gamma\mid d(u,u^g)=1\}$, то |U|=14 и некоторая инволюция $h\in V$ фиксирует 2 вершины из U и переставляет антиподальные классы из Ω . В этом случае $U=\mathrm{Fix}(h)=\{u\in\Gamma\mid d(u,u^{gh})=1\}$. Аналогично $W=\{w\in\Gamma\mid d(w,w^h)=1\}$ совпадает с $\mathrm{Fix}(gh)$. Противоречие с тем, что $U=\{u\in\Gamma\mid d(u,u^{gh})=1\}=W$.

Пусть \bar{T} — цоколь группы $\bar{G} = G/O_2(G)$. Если $|\bar{T}| = 7$, то $|\bar{G}|$ не делится на 8, причем f принадлежит ядру действия G на множестве антиподальных классов, противоречие с утверждением (1). Итак, $S(G) = O_2(G)$.

Пусть \bar{T} — цоколь группы $\bar{G} = G/S(G)$. Заметим, что $\{2,7\} \subseteq \pi(G) \subseteq \{2,3,5,7\}$ и |G| не делится на 25 и на 49. Если $|\bar{T}|$ не делится на 7, то по [8, табл. 1] группа \bar{T} изоморфна A_5 , A_6 или $U_4(2)$, противоречие с действием элемента порядка 7 на \bar{T} .

Значит, $|\bar{T}|$ делится на 7 и по [8, табл. 1] группа \bar{T} изоморфна $L_2(7)$, $L_2(8)$, $U_3(3)$, A_7 , $L_3(4)$, A_8 , A_9 , $U_4(3)$ или $Sp_6(2)$. Так как $|\bar{T}:\bar{T}_a|$ делит $16\cdot 7$, и для антиподального класса F число $|\bar{T}:\bar{T}_{\{F\}}|$ делит 16, то $\bar{T}\cong L_2(7)$, $\bar{T}_a=Z_3$ и $\bar{T}_{\{F\}}=Z_7.Z_3$. Лемма доказана.

Завершим д о к а з а т е л ь с т в о следствия в случае массива $\{15, 12, 1; 1, 2, 15\}$. По лемме 9 либо группа G изоморфна $PGL_2(7)$, причем элемент f порядка 7 из $G_{\{F\}}$ действует без неподвижных точек на $S(G)_{\{F\}}$, либо $|S(G):S(G)_a|=|S(G):S(G)_{\{F\}}|=2$.

В последнем случае S(G) — элементарная абелева 2-группа. Покажем, что порядок группы $S(G)_F$ делит 2. В противном случае найдутся две инволюции $g,h \in S(G)_F$, каждая из которых фиксирует точно 2 антиподальных класса. Отсюда $\Omega = \mathrm{Fix}(h)$, противоречие с действием группы $\langle g,h \rangle$ на $U = \{u \in \Gamma \mid d(u,u^g)=1\}$. Ввиду [2, теорема] имеем $S(G)_F = S(G)_{\{F\}}$, поэтому $S(G) = \langle z \rangle$ — группа порядка 2. Ввиду леммы 9 инволюция z фиксирует два антиподальных класса, противоречие с тем, что z поточечно фиксирует Γ .

Итак, $G \cong PGL_2(7)$, $T_a = Z_3$ поточечно фиксирует 4-клику, $T_{\{F\}} = Z_7.Z_3$ и любая инволюция из G действует без неподвижных точек на Γ . Компьютерные вычисления в GAP [10] показывают, что не существует дистанционно регулярного графа степени 15 с описанными свойствами.

Пусть Γ — дистанционно регулярный граф, имеющий массив пересечений $\{35,32,1;1,2,35\}$, $G=\operatorname{Aut}(\Gamma),\ g$ — элемент из G простого порядка p и $\Omega=\operatorname{Fix}(g)$. Пусть F — антиподальный класс графа Γ , содержащий вершину a. В [4, теорема 1] доказано, что $\pi(G)\subseteq\{2,3,5,7,17\}$ и выполняется одно из следующих утверждений:

- (1) Ω пустой граф и либо
 - (i) p=17, $\alpha_1(g)=\alpha_3(g)=34$ и $\alpha_2(g)=544$ или $\alpha_3(g)=612$, либо
 - (ii) $p = 2, 3, \alpha_3(g) = 0$ и $\alpha_1(g) = 36$;
- (2) Ω лежит в антиподальном классе, p = 7 и $|\Omega| = 3, 17$ или p = 5 и $|\Omega| = 7, 17$;
- (3) p = 3,5 и Ω граф икосаэдра;
- (4) $p=2, \Omega$ объединение двух антиподальных классов, $\alpha_3(g)=0$ и $\alpha_1(g)=34$.

Лемма 10. Пусть G действует транзитивно на множестве вершин графа Γ . Тогда выполняются следующие утверждения:

- (1) если f элемент порядка 17 из G, g элемент простого порядка p < 17 из $C_G(f)$, то |g| = 2, Ω объединение двух антиподальных классов, $\alpha_3(g) = 0$, $\alpha_1(g) = 34$ и $|C_G(f)| = 34$;
 - (2) $S(G) = O_2(G);$
 - (3) цоколь группы G/S(G) изоморфен $L_2(17)$.

Д о к а з а т е л ь с т в о. Пусть f — элемент порядка 17 из G, g — элемент простого порядка p < 7 из $C_G(f)$. Ввиду [4, теорема 1] из действия f на Ω следует, что либо p = 2,3 и Ω — пустой граф, либо p = 5,7 и Ω — антиподальный класс, либо p = 2 и Ω — объединение двух антиподальных классов. Но если p = 2,3 и Ω — пустой граф, имеем $\alpha_1(g) = 36$, а если p = 5,7 и Ω — антиподальный класс, имеем $\alpha_1(g) = 35,35 \cdot 17$. В последнем случае любая $\langle g \rangle$ -орбита длины 7 является кликой. В любом случае получаем противоречие.

Если V — подгруппа порядка 4 из $C_G(f)$, содержащая g, и $U = \{u \in \Gamma \mid d(u, u^g) = 1\}$, то |U| = 34 и некоторая инволюция $h \in V$ фиксирует 2 вершины из U и переставляет антиподальные классы из Ω . В этом случае $U = \mathrm{Fix}(h) = \{u \in \Gamma \mid d(u, u^{gh}) = 1\}$. Аналогично $W = \{w \in \Gamma \mid d(w, w^h) = 1\}$ совпадает с $\mathrm{Fix}(gh)$. Противоречие с тем, что $U = \{u \in \Gamma \mid d(u, u^{gh}) = 1\} = W$.

Пусть $R=O_3(G)\neq 1$. Тогда $|R:R_a|=9$ и для любого элемента g порядка 3 из R_a подграф Ω является графом икосаэдра. По [4, лемма 5] имеем $\alpha_1(g)=30$ и $\alpha_3(g)=90$. Если R_a содержит элементарную абелеву группу $\langle g,h\rangle$ порядка 9, то h фиксирует по крайней мере 3 вершины из $U=\{u\in\Gamma\mid d(u,u^g)=1\}$. С другой стороны, из действия h на $\Omega(a)$ следует, что $\Omega=\mathrm{Fix}(h)$, противоречие. Итак, $|R_a|$ делит 3, противоречие с действием элемента порядка 17 из G на R.

Пусть \bar{T} — цоколь группы $\bar{G}=G/O_2(G)$. Если $|\bar{T}|=17$, то получим противоречие с утверждением (1). Итак, $S(G)=O_2(G)$.

Пусть \bar{T} — цоколь группы $\bar{G} = G/S(G)$. Заметим, что $\{2,3,17\} \subseteq \pi(G) \subseteq \{2,3,5,7,17\}$ и |G| не делится на 49. Если $|\bar{T}|$ не делится на 17, то получим противоречие с действием элемента порядка 17 на \bar{T} .

Значит, $|\bar{T}|$ делится на 17 и ввиду [8, табл. 1] группа \bar{T} изоморфна $L_2(17)$, $L_2(16)$, $Sp_4(4)$, $\Omega_8^-(2)$, $L_4(4)$ или $Sp_8(2)$. Так как по [9] группа \bar{T} содержит максимальную подгруппу индекса, делящего $36 \cdot 17$, то \bar{T} изоморфна $L_2(17)$, \bar{T}_a — циклическая группа порядка, делящего 8, и $|S(G):S(G)_a|\cdot (16/|\bar{T}_a|)=4$.

Лемма доказана.

Завершим д о к а з а т е л ь с т в о следствия в случае массива $\{35, 32, 1; 1, 2, 35\}$. По лемме 10 либо группа G изоморфна $L_2(17)$ или $PGL_2(17)$, причем элемент f порядка 17 из $G_{\{F\}}$ действует без неподвижных точек на $S(G)_{\{F\}}$, либо $|S(G):S(G)_a|=|S(G):S(G)_{\{F\}}|=2$.

В последнем случае S(G) — элементарная абелева 2-группа. Покажем, что порядок группы $S(G)_F$ делит 2. В противном случае найдутся две инволюции $g,h \in S(G)_F$, каждая из которых фиксирует точно 2 антиподальных класса. Отсюда $\Omega = \mathrm{Fix}(h)$, противоречие с действием группы $\langle g,h \rangle$ на $U = \{u \in \Gamma \mid d(u,u^g)=1\}$. Ввиду [4, теорема 1] имеем $S(G)_F = S(G)_{\{F\}}$, поэтому $S(G) = \langle z \rangle$ — группа порядка 2. Ввиду леммы 10 инволюция z фиксирует два антиподальных класса, противоречие с тем, что z поточечно фиксирует Γ .

Итак, либо $G\cong L_2(17),\ T_a\cong Z_4$ и $T_{\{F\}}\cong Z_{17}.Z_4$, либо $G\cong PGL_2(17),\ T_a\cong Z_8$ и $T_{\{F\}}\cong Z_{17}.Z_8$. Противоречие с тем, что для инволюции $g\in T_a$ подграф Ω — объединение двух антиподальных классов и $\alpha_1(g)=34$.

Следствие доказано.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Буриченко В.П., Махнев А.А.** О вполне регулярных локально циклических графах // Современные проблемы математики: тез. 42-й Всерос. молод. конф. / ИММ УрО РАН. Екатеринбург, 2011. С. 11-14.
- 2. **Буриченко В.П., Махнев А.А.** Об автоморфизмах дистанционно регулярного графа с массивом пересечений {15,12,1;1,2,15} // Докл. АН. 2012. Т. 445, № 4. С. 375–379.
- 3. **Махнев А.А., Падучих** Д.В. Об автоморфизмах дистанционно регулярного графа с массивом пересечений {24, 21, 3; 1, 3, 18} // Докл. АН. 2011. Т. 441, № 1. С. 14–18.
- 4. **Циовкина Л.Ю.** Автоморфизмы графа с массивом пересечений $\{35,32,1;1,2,35\}$ // Сиб. электрон. мат. изв. 2012. Т. 9. С. 285–293.
- 5. Cameron P.J. Permutation groups. London Math. Soc. Student Texts № 45. Cambridge: Cambridge Univ. Press, 1999. 220 p.
- 6. **Гаврилюк А.Л., Махнев А.А.**Об автоморфизмах дистанционно регулярного графа с массивом пересечений {56, 45, 1; 1, 9, 56} // Докл. АН. 2010. Т. 432, № 5. С. 583–587.
- 7. Godsil C.D., Liebler R.A., Praeger C.E. Antipodal distance transitive covers of complete graphs // Europ. J. Comb. 1998. Vol. 19, no. 4. P. 455–478.
- 8. **Zavarnitsine A.V.** Finite simple groups with narrow prime spectrum // Siberian Electr. Math. Rep. 2009. Vol. 6. P. 1–12.
- 9. Atlas of finite groups / J.H.Conway [et al.]. Oxford: Clarendon Press, 1985. 252 p.
- 10. **The GAP Group,** GAP Groups, Algorithms, and Programming. Version 4.7.8. 2015. URL: http://www.gap-system.org .

Белоусов Иван Николаевич

Поступила 11.03.2015

канд. физ.-мат. наук, старший науч. сотрудник Институт математики и механики им. Н. Н. Красовского УрО РАН, Уральский федеральный университет им. Б. Н. Ельцина e-mail: i belousov@mail.ru