Tom 21 № 3

УДК 519.856

ОБ ОДНОМ ВАРИАНТЕ СИМПЛЕКС-МЕТОДА ДЛЯ ЛИНЕЙНОЙ ЗАДАЧИ ПОЛУОПРЕДЕЛЕННОГО ПРОГРАММИРОВАНИЯ 1

В. Г. Жадан

Рассматривается линейная задача полуопределенного программирования. Для ее решения предлагается вариант прямого симплекс-метода, обобщающий соответствующий метод для задач линейного программирования. Дается описание перехода из одной крайней точки допустимого множества в другую крайнюю точку.

Ключевые слова: линейная задача полуопределенного программирования, крайние точки, прямой симплекс-метол.

V. G. Zhadan. On a variant of the simplex method for a linear semidefinite programming problem.

A linear semidefinite programming problem is considered. A variant of the primal simplex method, which generalizes the corresponding method for linear programming problems, is proposed for this problem. A passage from an extreme point of the admissible set to another extreme point is described.

Keywords: linear semidefinite programming problem, extreme points, primal simplex-type method.

Введение

Теории и методам решения линейных задач оптимизации традиционно уделяется большое внимание (см., например, [1–3]). Среди них особый интерес вызывают линейные задачи полуопределенного программирования. Эти задачи условной оптимизации, представленные в канонической форме, заключаются в минимизации на конусе положительно полуопределенных симметричных матриц линейной целевой функции при линейных ограничениях типа равенства [4]. К настоящему времени предложены достаточно эффективные численные методы решения линейных задач полуопределенного программирования, обобщающие главным образом методы внутренней точки для задач линейного программирования. Гораздо меньше исследованы методы симплексного типа, и на это имеется ряд причин. Среди них одна из основных причин заключается в отсутствии полиэдральности у конуса положительно полуопределенных матриц и, как следствие, наличие бесконечного числа крайних точек у допустимого множества. Тем не менее, имеется ряд работ, в которых строятся обобщения симплекс-метода для задач полуопределенного программирования. В [5] предложено довольно универсальное обобщение симплекс-метода для задач с ограничениями, задаваемыми в форме линейных матричных неравенств. Для задач конического программирования с произвольными замкнутыми выпуклыми конусами обобщение симплекс-метода рассматривалось в [6]. Еще один вариант симплекс-метода для полуопределенного программирования, использующий конечные аппроксимации конуса положительно полуопределенных матриц, приводится в [7]. В [8] был предложен метод аффинно-масштабирующего типа, в котором допускался выход на границу допустимого множества и, следовательно, движение по его граням, а также перескок с грани на грань.

Цель настоящей работы состоит в разработке стандартной процедуры симплекс-метода, аналогичной той, которая используется в линейном программировании для перехода из одной

 $^{^{1}}$ Работа выполнена при поддержке РФФИ, грант 15-01-08259, а также при содействии Программы ведущих научных школ НШ-4640.2014.1.

крайней точки в другую. Основное внимание здесь уделяется переходу в том случае, когда количество ограничений типа равенства не может совпадать с количеством переменных в крайней точке, равному так называемому "треугольному" числу (числу элементов симметричных матриц, расположенных на диагонали и под ней).

Работа состоит из четырех разделов. В разд. 1 дается постановка задачи и приводятся условия оптимальности. В разд. 2 указываются основные сведения, касающиеся характеризации крайних точек и их невырожденности. Стандартный вариант метода в регулярном случае, когда неравенство, связывающее ранг матрицы в крайней точке и число ограничений в задаче, выполняется как равенство, рассматривается в разд. 3. В разд. 4 предлагается модификация метода, позволяющая осуществлять переход в новую крайнюю точку в нерегулярном случае.

1. Задача полуопределенного программирования и условия оптимальности

Пусть \mathbb{S}^n обозначает пространство симметричных матриц порядка n. Пусть, кроме того, \mathbb{S}^n_+ — подмножество из \mathbb{S}^n , состоящее из положительно полуопределенных матриц. Множество \mathbb{S}^n_+ является конусом в \mathbb{S}^n . Для указания на то, что матрица $M \in \mathbb{S}^n$ положительно полуопределена, будем пользоваться также неравенством $M \succeq 0$. Конус \mathbb{S}^n_+ самосопряженный, но не является полиэдральным, его размерность равняется "треугольному" числу $n_{\triangle} = n(n+1)/2$.

Скалярное произведение (по Фробениусу) между двумя квадратными матрицами M_1 и M_2 одного и того же порядка n определяется как след матрицы $M_1^T M_2$ и обозначается $M_1 \bullet M_2 = \operatorname{tr}(M_1^T M_2) = \sum_{i,j=1}^n m_1^{ij} m_2^{ij}$, где m_1^{ij} и $m_2^{ij} - (ij)$ -е элементы соответственно матриц M_1 и M_2 . Если M_1 и M_2 — две положительно полуопределенные матрицы из \mathbb{S}^n , то $M_1 \bullet M_2 \geq 0$. Более того, $M_1 \bullet M_2 = 0$ в том и только в том случае, когда $M_1 M_2 = M_2 M_1 = 0_{nn}$. Здесь и ниже 0_s — нулевой вектор, состоящий из s нулевых компонент, 0_{sl} — нулевая матрица размерности $s \times l$.

Рассмотрим задачу полуопределенного программирования следующего вида:

$$\min C \bullet X,$$

$$A_i \bullet X = b^i, \qquad 1 \le i \le m, \quad X \succeq 0.$$
(1.1)

Здесь все матрицы C, X и $A_i, 1 \le i \le m$, принадлежат пространству \mathbb{S}^n . Относительно матриц $A_i, 1 \le i \le m$, считаем, что они линейно независимы. Задача линейного программирования в канонической форме является частным случаем задачи (1.1), когда дополнительно требуется, чтобы все матрицы были диагональными.

Двойственной к (1.1) является задача

$$\max \langle b, u \rangle,$$

$$\sum_{i=1}^{m} u^{i} A_{i} + V = C, \quad V \succeq 0,$$
(1.2)

в которой $b=(b^1,\ldots,b^m)^T\in\mathbb{R}^m,\ V\in\mathbb{S}^n,$ угловые скобки обозначают обычное евклидово скалярное произведение в $\mathbb{R}^m.$ Ниже матрица $V=C-\sum_{i=1}^m u^iA_i$ обозначается как V(u).

Пусть \mathcal{F}_P и \mathcal{F}_D — допустимые множества в задачах (1.1) и (1.2), т.е. $\mathcal{F}_P = \mathcal{F}_A \cap \mathbb{S}^n_+$, $\mathcal{F}_A = \{X \in \mathbb{S}^n \colon A_i \bullet X = b^i, \ 1 \le i \le m\}, \ \mathcal{F}_D = \{[u,V] \in \mathbb{R}^m \times \mathbb{S}^n \colon V = V(u) \succeq 0\}.$

Предполагается, что допустимые множества \mathcal{F}_P и \mathcal{F}_D непустые и задачи (1.1) и (1.2) имеют решения. Выполнение, например, условий Слейтера для обоих множеств \mathcal{F}_P и \mathcal{F}_D , которые заключаются в существовании у них внутренних точек, гарантирует наличие решений.

Пусть X_* и $[u_*, V_*]$ — оптимальные решения соответственно задач (1.1) и (1.2), при этом обязательно $V_* = V(u_*)$ и обе симметричные положительно полуопределенные матрицы X_* и V_* коммутируют между собой. Поэтому можно указать ортогональную матрицу Q такую, что $X_* = QD(\eta_*)Q^T$ и $V_* = QD(\theta_*)Q^T$, где $D(\eta_*)$ и $D(\theta_*)$ — диагональные матрицы, на диагоналях которых расположены векторы собственных значений $\eta_* = [\eta_*^1, \ldots, \eta_*^n]$, $\theta_* = [\theta_*^1, \ldots, \theta_*^n]$ матриц X_* и V_* соответственно. Для собственных значений η_*^i и θ_*^i выполняется условие комплементарности: $\eta_*^i \geq 0$, $\theta_*^i \geq 0$ и $\eta_*^i \theta_*^i = 0$, $1 \leq i \leq n$. Если, кроме того, $\eta_*^i + \theta_*^i > 0$ для всех $1 \leq i \leq n$,

то говорят, что имеет место условие строгой комплементарностии. Подпространства в \mathbb{R}^n , которые порождаются собственными векторами матриц X_* и V_* , соответствующими ненулевым собственным значениям (фактически столбцами матрицы Q), оказываются ортогональными друг к другу, а в случае строгой комплементарности их сумма дает все пространство \mathbb{R}^n (см., например, [4]).

Обратимся теперь к условиям оптимальности для пары задач (1.1) и (1.2). Мы предположили, что их решения существуют, поэтому следующая система равенств и неравенств

$$X \bullet V = 0,$$

$$A_{i} \bullet X = b^{i}, \quad 1 \leq i \leq m,$$

$$V = C - \sum_{i=1}^{m} u^{i} A_{i},$$

$$X \succeq 0, \qquad V \succeq 0$$

$$(1.3)$$

обязательно имеет решение. При этом, как уже отмечалось, для матриц $X\succeq 0$ и $V\succeq 0$ равенство $X\bullet V=0$ возможно в том и только в том случае, когда $XV=VX=0_{nn}.$

Далее нам потребуется векторная форма представления равенств (1.3). С этой целью введем ряд обозначений, которые являются стандартными при рассмотрении линейных задач полуопределенного программирования.

Если M — квадратная матрица порядка n, то символом vec M обозначается прямая сумма ее столбцов, т. е. вектор-столбец длины n^2 , в котором последовательно один под другим располагаются столбцы матрицы M. Для симметричных матриц имеет смысл вместо вектор-столбца vec M рассматривать вектор-столбец hvec M. В него также помещаются последовательно сверху вниз столбцы матрицы M, но не полностью, а только их нижние части, начинающиеся с диагонального элемента. Аналогичным образом определяется вектор-столбец svec M. От hvec M он отличается только тем, что все элементы, не стоящие на диагонали матрицы M, при помещении в svec M умножаются на $\sqrt{2}$. Как вектор hvec M, так и вектор svec M имеют длину n_{\triangle} .

Для перехода от вектора vec M к вектору hvec M и для обратного перехода используются элиминационные и дуплицирующие (0,1)-матрицы (см. [9]). Элиминационная матрица \mathcal{L}_n для каждой квадратной матрицы M порядка n совершает преобразование \mathcal{L}_n vec M = hvec M. Напротив, дуплицирующая матрица \mathcal{D}_n для каждой симметричной матрицы M порядка n осуществляет обратное преобразование \mathcal{D}_n hvec M = vec M. Матрица \mathcal{L}_n имеет размерность $n_{\triangle} \times n^2$, матрица \mathcal{D}_n — размерность $n^2 \times n_{\triangle}$. Обе матрицы \mathcal{L}_n и \mathcal{D}_n являются матрицами полного ранга, равного n_{\triangle} . Матрица \mathcal{L}_n полуортогональная, т. е. $\mathcal{L}_n\mathcal{L}_n^T = I_{n_{\triangle}}$. Кроме того, $\mathcal{L}_n\mathcal{D}_n = I_{n_{\triangle}}$.

Пусть E_n — квадратная матрица порядка n, все элементы которой равны единице. Пусть, кроме того, D_2 — диагональная матрица порядка n_{\triangle} , на диагонали которой располагается вектор svec E_n . Наряду с матрицами \mathcal{L}_n и \mathcal{D}_n в дальнейшем будем пользоваться также матрицами $\widetilde{\mathcal{L}}_n = D_2 \mathcal{L}_n$ и $\widetilde{\mathcal{D}}_n = \mathcal{D}_n D_2^{-1}$.

Таким образом, для симметричной матрицы M порядка n, как можно проверить, svec $M = \widetilde{\mathcal{L}}_n$ vec M, vec $M = \widetilde{\mathcal{D}}_n$ svec M. Скалярное произведение $M_1 \bullet M_2$ между двумя матрицами M_1 и M_2 из \mathbb{S}^n в этом случае записывается как обычное скалярное произведение в пространстве $\mathbb{R}^{n_{\triangle}}$, а именно, $M_1 \bullet M_2 = \langle \text{svec } M_1, \text{svec } M_2 \rangle$.

Проводя векторизацию равенств, входящих в условия оптимальности (1.3), получаем

$$\langle \operatorname{svec} X, \operatorname{svec} V \rangle = 0, \quad \mathcal{A}_{svec} \operatorname{svec} X = b, \quad \operatorname{svec} V = \operatorname{svec} C - \mathcal{A}_{svec}^T u.$$
 (1.4)

Здесь через \mathcal{A}_{svec} обозначена матрица размерности $m \times n_{\triangle}$ со строками svec $A_i, 1 \leq i \leq m$.

Разные способы решения системы (1.4), дополненные требованиями положительной полуопределенности матриц X и V, приводят к разным численным методам решения задач (1.1) и (1.2). Ниже будет рассмотрен один из таких способов, который можно трактовать как обобщение симплекс-метода для решения задач линейного программирования.

120

2. Крайние точки допустимого множества

Итерационный процесс в симплекс-методе строится с использованием *крайних точек* допустимого множества \mathcal{F}_P . В связи с этим поясним сначала, в чем состоит характеризация крайних точек $X \in \mathcal{F}_P$ и, в частности, невырожденных крайних точек (см., например, [4]).

Допустимое множество \mathcal{F}_P есть пересечение конуса \mathbb{S}^n_+ с аффинным множеством \mathcal{F}_A . Так как оба этих множества выпуклые, то *грани множества* \mathcal{F}_P являются пересечениями граней конуса \mathbb{S}^n_+ и множества \mathcal{F}_A . Грани конуса \mathbb{S}^n_+ тесно связаны с подпространствами \mathcal{L} пространства \mathbb{R}^n , а именно, \mathcal{G} есть грань \mathbb{S}^n_+ тогда и только тогда, когда $\mathcal{G} = \mathcal{G}(\mathcal{L}) = \{M \in \mathbb{S}^n_+ : \mathcal{R}(M) \subseteq \mathcal{L}\}$. Здесь $\mathcal{R}(M)$ обозначает пространство столбцов матрицы M. Если размерность \mathcal{L} равна r, то rank $X \leq r$ для всех элементов X из $\mathcal{G}(\mathcal{L})$, а размерность $\mathcal{G}(\mathcal{L})$ равняется r_{\triangle} . Сама матрица X может быть представлена в виде: $X = Q\Lambda Q^T$, где Q — матрица полного ранга размерности $n \times r$ и $\Lambda \in \mathbb{S}^r_+$. Для всех матриц $X \in \mathcal{G}(\mathcal{L})$ матрица Q одна и та же. *Сопряженная грань* $\mathcal{G}^*(\mathcal{L})$ к грани $\mathcal{G}(\mathcal{L})$ определяется как грань, соответствующая ортогональному подпространству \mathcal{L}^\perp , т. е. $\mathcal{G}^*(\mathcal{L}) = \mathcal{G}(\mathcal{L}^\perp)$.

Рассмотрим далее понятие минимальной грани конуса \mathbb{S}^n_+ , содержащей точку X. Для точки $X \in \mathbb{S}^n_+$ она определяется как $\mathcal{G}_{\min}(X;\mathbb{S}^n_+) = \{Y \in \mathbb{S}^n_+ : \mathcal{R}(Y) \subseteq \mathcal{R}(X)\}$. Таким образом, если матрица $X \in \mathbb{S}^n_+$ имеет ранг r, то грань $\mathcal{G}_{\min}(X;\mathbb{S}^n_+)$ изоморфна конусу \mathbb{S}^r_+ и, следовательно, имеет размерность r_{\triangle} . Сопряженная грань $\mathcal{G}^*_{\min}(X;\mathbb{S}^n_+)$ изоморфна конусу \mathbb{S}^{n-r}_+ и имеет размерность $(n-r)_{\triangle}$.

Если теперь от конуса \mathbb{S}^n_+ перейти к допустимому множеству \mathcal{F}_P , то получаем, что минимальная грань для точки $X \in \mathcal{F}_P$ относительно множества \mathcal{F}_P уже определяется как $\mathcal{G}_{\min}(X;\mathcal{F}_P) = \mathcal{G}_{\min}(X;\mathbb{S}^n_+) \cap \mathcal{F}_A = \{Y \in \mathcal{F}_P \colon \mathcal{R}(Y) \subseteq \mathcal{R}(X)\}.$

Пусть r есть ранг матрицы $X \in \mathcal{F}_P$ и $X = QQ^T$, где Q — матрица полного ранга размерности $n \times r$. Положим $A_i^Q = Q^T A_i Q$. Размерность грани $\mathcal{G}_{\min}(X; \mathcal{F}_P)$ равна величине

$$\dim \mathcal{G}_{\min}(X; \mathcal{F}_P) = r_{\triangle} - \operatorname{rank}[A_1^Q, \dots, A_m^Q]. \tag{2.1}$$

Точка X является крайней точкой множества \mathcal{F}_P , если размерность грани $\mathcal{G}_{\min}(X;\mathcal{F}_P)$ нулевая. Согласно (2.1) матрица $X \in \mathcal{F}_P$ ранга r является крайней точкой множества \mathcal{F}_P тогда и только тогда, когда $\operatorname{rank}[A_1^Q,\ldots,A_m^Q] = r_{\triangle}$. Для линейно независимых матриц A_1,A_2,\ldots,A_m данное равенство может выполняться только в случае, когда $r_{\triangle} \leq m$.

В принципе может оказаться так, что количество ограничений типа равенства m не совпадает ни с одним "треугольным" числом. В этом случае для крайней точки $X \in \mathcal{F}_P$ ранга r неравенство $r_{\triangle} \leq m$ может выполняться только как строгое, т.е. $r_{\triangle} < m$. Такую крайнюю точку будем называть neperynaphoй. В отличие от нее крайняя точка $X \in \mathcal{F}_P$ ранга r, когда $r_{\triangle} = m$, называется perynaphoù.

Возьмем произвольную матрицу X из допустимого множества \mathcal{F}_P ранга r. Предположим далее, что для X имеет место разложение

$$X = Q \operatorname{Diag}(\eta^1, \dots, \eta^r, 0, \dots, 0) Q^T, \tag{2.2}$$

где Q — ортогональная матрица порядка n и $\eta^i>0,\ 1\leq i\leq r$. Касательное подпространство к \mathbb{S}^n_+ в X (точнее, к подпространству из \mathbb{S}^n матриц ранга r, для которых справедливо (2.2)) имеет следующий вид [10]: $\mathcal{T}_X=\left\{Q\left[\begin{array}{cc} G & F \\ F^T & 0 \end{array}\right]Q^T\colon G\in\mathbb{S}^r,\ F\in\mathbb{R}^{r\times(n-r)}\right\}$. Размерность \mathcal{T}_X определяется рангом матрицы X и равняется $\dim\mathcal{T}_X=r_\triangle+r(n-r)=n_\triangle-(n-r)_\triangle$.

О п р е д е л е н и е 1 [11]. Точка $X \in \mathcal{F}_P$ называется невырожденной, если $\mathcal{T}_X + \mathcal{N}_A = \mathbb{S}^n$, где \mathcal{N}_A — подпространство в \mathbb{S}^n , параллельное аффинному множеству \mathcal{F}_A .

Размерность \mathcal{N}_A в силу сделанного предположения о линейной независимости матриц A_i , $1 \leq i \leq m$, равна $n_{\triangle} - m$. Так как dim $\mathbb{S}^n = n_{\triangle}$, то равенство $\mathcal{T}_X + \mathcal{N}_A = \mathbb{S}^n$ имеет место только тогда, когда dim \mathcal{T}_X + dim $\mathcal{N}_A \geq n_{\triangle}$. Таким образом, чтобы крайняя точка $X \in \mathcal{F}_P$ была

невырожденной, должны выполняться следующие соотношения между рангом r матрицы X, размерностью пространства \mathbb{R}^n и количеством ограничений типа равенства, а именно, $r_{\triangle} \leq m \leq n_{\triangle} - (n-r)_{\triangle}$.

Пусть Q_B и Q_N — подматрицы ортогональной матрицы Q из (2.2), состоящие соответственно из первых r и последующих n-r столбцов. Для того, чтобы точка $X \in \mathcal{F}_P$ была невырожденной [11], необходимо и достаточно, чтобы матрицы $\begin{bmatrix} Q_B^T A_i Q_B & Q_B^T A_i Q_N \\ Q_N^T A_i Q_B & 0_{(n-r)(n-r)} \end{bmatrix}$, $1 \le i \le m$, были линейно независимы.

О пределение 2. Точка $X \in \mathcal{F}_P$, имеющая разложение (2.2), называется сильно невырожденной, если матрицы $Q_B^T A_i Q_B$, $1 \le i \le m$, линейно независимы.

Из вышесказанного следует, что любая сильно невырожденная точка X заведомо будет невырожденной в обычном смысле.

Ниже предполагается, что крайние точки $X \in \mathcal{F}_P$ сильно невырожденные. Кроме того, если они нерегулярные, то их ранг r удовлетворяет условию $r_{\triangle} > m - r$. В этом случае будем говорить, что задача (1.1) является сильно невырожденной и вполне регулярной.

3. Итерация метода в регулярном случае

Пусть задана начальная крайняя точка $X_0 \in \mathcal{F}_P$ и строится последовательность крайних точек $\{X_k\}$, причем таким образом, что соответствующие значения целевой функции в задаче (1.1) монотонно убывают от итерации к итерации.

Предположим, что $X \in \mathcal{F}_P$ — текущая крайняя точка ранга r < n, для которой справедливо представление (2.2). Для дальнейшего изложения его удобнее переписать в виде

$$X = Q_B D(\eta_B) Q_B^T. (3.1)$$

Здесь по-прежнему Q_B — подматрица ортогональной матрицы Q, состоящая из первых r столбцов, $\eta_B = [\eta^1, \dots, \eta^r]$. Считаем сначала для простоты, что X является регулярной крайней точкой, причем сильно невырожденной.

Пусть X не является оптимальным решением и нам желательно перейти в новую крайнюю точку \bar{X} с меньшим значением целевой функции. Опишем этот переход, следуя идеологии симплекс-метода, применяемого для решения задач линейного программирования в канонической форме. Воспользуемся для этого условиями оптимальности (1.3) и (1.4), с помощью которых можно найти вектор двойственных переменных $u \in \mathbb{R}^m$ и вычислить слабую двойственную переменную (двойственную невязку) V = V(u).

Из свойств функции следа для произведения матриц получаем $X \bullet V = (Q_B D(\eta_B) Q_B^T) \bullet V = \operatorname{tr} (Q_B D(\eta_B) Q_B^T V) = \operatorname{tr} (D(\eta_B) V^{Q_B}) = D(\eta_B) \bullet V^{Q_B}$, где введено обозначение $V^{Q_B} = Q_B^T V Q_B$. Отсюда видно, что равенство $X \bullet V = 0$ заведомо выполняется для матрицы V такой, что $V^{Q_B} = 0_{rr}$.

Введем дополнительные обозначения $A_i^{Q_B} = Q_B^T A_i Q_B \in \mathbb{S}^r$. Пусть $\mathcal{A}^{Q_B}_{svec} - (m \times r_{\triangle})$ -матрица, строками которой являются векторы svec $(A_i^{Q_B})$, $1 \leq i \leq m$. Тогда равенство $V^{Q_B} = 0_{rr}$ сводится к следующей системе m уравнений относительно m-мерного вектора u:

$$\operatorname{svec} V^{Q_B} = \operatorname{svec} C^{Q_B} - (\mathcal{A}_{svec}^{Q_B})^T u = 0_{r_{\triangle}}, \tag{3.2}$$

где $C^{Q_B} = Q_B^T C Q_B$. Так как, по предположению, точка X регулярная, то система (3.2) есть система m уравнений относительно m переменных. Если точка X сильно невырожденная, то квадратная матрица $\mathcal{A}^{Q_B}_{svec}$ неособая, и, разрешая систему (3.2), получаем

$$u = \left(\left(\mathcal{A}_{svec}^{Q_B} \right)^T \right)^{-1} \operatorname{svec} C^{Q_B}. \tag{3.3}$$

В случае, когда матрица V=V(u) положительно полуопределенная, X вместе с [u,V] являются решениями соответственно задач (1.1) и (1.2). Предположим далее, что V не есть

положительно полуопределенная матрица, т. е. среди ее собственных значений имеются отрицательные. Заметим, что матрица V подобна матрице $V^Q = Q^T V Q$ и, следовательно, имеет те же самые собственные значения, что и матрица V^Q . Но V^Q есть матрица окаймления, так как у нее левый верхний блок нулевой. Поэтому в том случае, когда внедиагональные блоки V^Q ненулевые, обязательно у V^Q , а стало быть и у V имеются отрицательные собственные значения [9].

Рассмотрим разложение матрицы $V = HD(\theta)H^T$, где H — ортогональная матрица, θ — вектор собственных значений V. Пусть h_j обозначает j-й столбец матрицы H (собственный вектор матрицы V). Тогда V можно также записать в виде $V = \sum_{j=1}^{n} \theta^j h_j h_j^T$.

Предположим, что θ^k — отрицательное собственное значение V и ему соответствует собственный вектор h_k . В этом случае $V^{h_k} = h_k^T V h_k = \theta^k < 0$ или в другой записи

$$V^{h_k} = C^{h_k} - \langle u, \mathcal{A}^{h_k} \rangle = \theta^k < 0. \tag{3.4}$$

Здесь введены величина $C^{h_k} = h_k^T C h_k$ и m-мерный вектор \mathcal{A}^{h_k} с компонентами $h_k^T A_i h_k$, $1 \le i \le m$. Имеет место следующее свойство вектора h_k .

Утверждение 1. Вектор h_k не принадлежит подпространству $\mathcal{L}(Q_B)$, порожденному столбиами матрицы Q_B .

Д о к а з а т е л ь с т в о от противного. В самом деле, если допустить, что $h_k = Q_B z$ для некоторого ненулевого вектора $z \in \mathbb{R}^r$, то должно выполняться равенство $Vh_k = VQ_B z = \theta^k Q_B z$. Отсюда после умножения этого равенства слева на матрицу Q_B^T получаем $V^{Q_B} z = \theta^k z$, что невозможно, поскольку матрица V^{Q_B} нулевая.

Утверждение доказано.

Воспользуемся матрицей единичного ранга $h_k h_k^T$ и перейдем в новую точку \bar{X} , полагая

$$\bar{X} = X + \alpha \Delta X, \quad \Delta X = Q_B \Delta Z Q_B^T + h_k h_k^T,$$
 (3.5)

где α — некоторый положительный шаг, $\Delta Z \in \mathbb{S}^r$. Подберем матрицу ΔZ так, чтобы

$$A_i \bullet Q_B \Delta Z Q_B^T + A_i \bullet h_k h_k^T = 0, \quad 1 \le i \le m. \tag{3.6}$$

Тогда новая точка \bar{X} удовлетворяет ограничениям типа равенства в задаче (1.1).

Так как у матриц M_1M_2 и M_2M_1 один и тот же след, то (3.6) можно переписать как

$$(A_i^{Q_B}) \bullet \Delta Z + h_k^T A_i h_k = 0, \quad 1 \le i \le m. \tag{3.7}$$

Если от матриц перейти к соответствующим векторам, то данная система принимает вид

$$\mathcal{A}_{svec}^{Q_B}$$
 svec $\Delta Z + \mathcal{A}^{h_k} = 0_m$. (3.8)

Разрешая систему (3.8) относительно вектора svec Z, получаем

$$\operatorname{svec} \Delta Z = -(\mathcal{A}_{svec}^{Q_B})^{-1} \mathcal{A}^{h_k}. \tag{3.9}$$

Вычислим $C \bullet \Delta X$. Имеем согласно (3.5) $C \bullet \Delta X = C^{Q_B} \bullet \Delta Z + C^{h_k}$. Примем также во внимание (3.4). Тогда после перехода к векторной записи и подстановки вектора (3.9) получаем

$$C \bullet \Delta X = \langle \operatorname{svec} C^{Q_B}, \operatorname{svec} \Delta Z \rangle + C^{h_{j_k}} = -\langle \operatorname{svec} C^{Q_B}, (\mathcal{A}^{Q_B}_{svec})^{-1} \mathcal{A}^{h_k} \rangle + C^{h_k}$$
$$= -\langle ((\mathcal{A}^{Q_B}_{svec})^T)^{-1} \operatorname{svec} C^{Q_B}, \mathcal{A}^{h_k} \rangle + C^{h_k} = C^{h_k} - \langle u, \mathcal{A}^{h_k} \rangle = \theta^k < 0. \tag{3.10}$$

Следовательно, вдоль направления ΔX целевая функция в задаче (1.1) убывает. Таким образом, матрицу $\mathcal{A}^{Q_B}_{svec}$ в данном случае можно рассматривать как матрицу базиса, а матрицу Q_B

и вектор η_B — как *базисную пару переменных* (базисные наборы, состоящие, соответственно, из собственных векторов и собственных значений).

Для перехода в новую базисную пару (новую крайнюю точку) надо еще определить шаг перемещения $\alpha>0$. Обозначим $\bar{X}(\alpha)=X+\alpha\Delta X$. При перемещении вдоль ΔX с шагом $\alpha>0$ матрица $\bar{X}(\alpha)$ принимает вид $\bar{X}(\alpha)=X+\alpha\Delta X=Q_B\left[D(\eta_B)+\alpha\Delta Z\right]Q_B^T+\alpha h_k h_k^T$. Поскольку матрица единичного ранга $h_k h_k^T$ положительно полуопределенная, то максимально возможный шаг $\bar{\alpha}$, при котором матрица $\bar{X}(\alpha)$ остается положительно полуопределенной, определится из условия, когда у матрицы $M(\alpha)=D(\eta_B)+\alpha\Delta Z$ впервые появляется отрицательное собственное значение.

Пусть P — невырожденная матрица порядка r, с помощью которой обе матрицы $D(\eta_B)$ и ΔZ приводятся к диагональныму виду одновременно, а именно, $D(\eta_B) = PP^T$, $\Delta Z = PD(\lambda)P^T$. Поэтому $M(\alpha) = P[D(\bar{e}) + \alpha D(\lambda)]P^T$, где $\bar{e} - r$ -мерный вектор со всеми компонентами, равными единице. Отсюда видно, что выбор $\bar{\alpha}$ зависит от максимальной по модулю отрицательной компоненты вектора λ . Предположим, что это будет компонента λ_* . Тогда $\bar{\alpha} = -\lambda_*^{-1}$. В случае, когда $\lambda \geq 0_r$, задача (1.1) не имеет решения, так как в силу (3.10) $C \bullet \bar{X}(\alpha) \to -\infty$ при $\alpha \to +\infty$. При этом $\bar{X}(\alpha) \in \mathcal{F}_P$.

Если собственный вектор h_k матрицы V(u) принадлежит грани $\mathcal{G}^*_{\min}(X_k; \mathbb{S}^n_+)$, сопряженной к минимальной грани $\mathcal{G}_{\min}(X_k; \mathbb{S}^n_+)$, то $Q_B^T h_k = 0_r$, и фактически вектор h_k можно рассматривать как один из столбцов матрицы Q_N . В этом случае из базисного набора собственных векторов Q_B мы исключаем какой-то вектор и вводим новый собственный вектор из Q_N .

4. Итерация метода в нерегулярном случае

Предположим теперь, что точка X является нерегулярной, т.е. $r_{\triangle} < m$, и пусть, для определенности, $m = r_{\triangle} + p$, где p < r. В этом случае система уравнений (3.2) относительно вектора u оказывается недоопределенной и поэтому может иметь целое множество решений.

Считаем по-прежнему, что точка X является сильно невырожденной. Тогда матрица $\mathcal{A}^{Q_B}_{svec}$ имеет полный ранг, равный r_{\wedge} , и общее решение системы (3.2) можно записать как

$$u = \mathcal{A}_{svec}^{Q_B} [(\mathcal{A}_{svec}^{Q_B})^T \mathcal{A}_{svec}^{Q_B}]^{-1} \operatorname{svec} C^{Q_B} + \tilde{u}, \tag{4.1}$$

где \tilde{u} — некоторый m-мерный вектор, принадлежащий нуль-пространству матрицы $(\mathcal{A}^{Q_B}_{svec})^T$. Возьмем в качестве u нормальное решение

$$u = (\mathcal{A}_{svec}^{Q_B})[(\mathcal{A}_{svec}^{Q_B})^T (\mathcal{A}_{svec}^{Q_B})]^{-1} \operatorname{svec} C^{Q_B}, \tag{4.2}$$

т. е. в (4.1) полагаем $\tilde{u} = 0_m$. Среди всех возможных решений оно будет иметь минимальную норму. Снова определим V = V(u). Пусть θ^k — отрицательное собственное значение матрицы V, ему соответствует собственный вектор h_k , входящий в число столбцов ортогональной матрицы H. Как и прежде, вектор h_k не принадлежит линейному подпространству $\mathcal{L}(Q_B)$.

Формула (3.5), задающая приращение ΔX , в данном случае оказывается неприемлемой, поскольку система (3.8) для определения вектора svec Z становится переопределенной и может иметь решение лишь в том случае, когда вектор \mathcal{A}^{h_k} лежит в пространстве столбцов матрицы $\mathcal{A}^{Q_B}_{svec}$ или, другими словами, принадлежит нуль-пространству матрицы $(\mathcal{A}^{Q_B}_{svec})^T$.

Для устранения этого недостатка изменим подход к выбору матрицы ΔX , а именно, будем теперь строить ΔX в виде

$$\Delta X = [Q_B h_k] \begin{bmatrix} \Delta Z & w \\ w^T & 1 \end{bmatrix} [Q_B h_k]^T, \tag{4.3}$$

где $\Delta Z \in \mathbb{S}^r$ и $w \in \mathbb{R}^r$. Отметим, что данное направление ΔX переходит в направление из (3.5), если положить $w = 0_r$.

Выберем w следующим образом:

$$w = 1/2 \widetilde{W} y, \quad \widetilde{W} = [\widetilde{w}_1, \dots, \ \widetilde{w}_p], \tag{4.4}$$

где все столбцы $\tilde{w}_j \in \mathbb{R}^r, \ 1 \leq j \leq p$, матрицы \widetilde{W} — линейно независимы, $y \in \mathbb{R}^p$. Кроме того, потребуем, чтобы векторы $q_{w_j} = Q_B \tilde{w}_j, \ 1 \leq j \leq p$, были ортогональны вектору h_k , т. е.

$$\langle h_k, q_{w_i} \rangle = \langle Q_B^T h_k, \tilde{w}_i \rangle = 0, \quad 1 \le j \le p.$$
 (4.5)

Все векторы $q_{w_j}, 1 \leq j \leq p$, принадлежат подпространству $\mathcal{L}(Q_B)$. Вектор $q_y = Q_B \widetilde{W} y$ также принадлежит этому подпространству, и, согласно (4.5), $h_k^T q_y = 0$. Теперь вместо (3.7) имеем $A_i^{Q_B} \bullet \Delta Z + 2 \langle Q_B^T A_i h_k, w \rangle + h_k^T A_i h_k = 0, \ 1 \leq i \leq m$, или после подстановки вектора w из (4.4)

$$A_i^{Q_B} \bullet \Delta Z + \langle Q_B^T A_i h_k, \widetilde{W} y \rangle + h_k^T A_i h_k = 0, \quad 1 \le i \le m.$$
 (4.6)

Второе слагаемое в (4.6) можно переписать также в виде: $\langle Q_B^T A_i h_k, \widetilde{W} y \rangle = \langle h_k, A_i Q_B \widetilde{W} y \rangle$. Пусть \mathcal{B} — матрица размерности $m \times p$, у которой (i,j)-й элемент равняется $h_k^T A_i q_{w_j}$, $1 \le i \le m, 1 \le j \le p$. Другими словами, i-я строка этой матрицы равняется вектору $h_k^T A_i Q_B \widetilde{W}$. Тогда, объединяя все уравнения (4.6) в единую систему, получаем

$$\mathcal{A}_{svec}^{Q_B}$$
 svec $\Delta Z + \mathcal{B}y + \mathcal{A}^{h_k} = 0_m$. (4.7)

Система (4.7) является системой m уравнений относительно m переменных, а именно, векторов svec $\Delta Z \in \mathbb{R}^{r_{\triangle}}$ и $y \in \mathbb{R}^{p}$.

Возьмем далее $(r_{\triangle} \times m)$ -матрицу $(\mathcal{A}^{Q_B}_{svec})^T$ и $(p \times m)$ -матрицу \widetilde{U} , строками которой являются линейно независимые векторы $\widetilde{u}_1, \dots, \widetilde{u}_p$ из нуль-пространства матрицы $(\mathcal{A}^{Q_B}_{svec})^T$. Составим из них квадратную матрицу $\mathcal{P} = \left[\begin{array}{c} (\mathcal{A}^{Q_B}_{svec})^T \\ \widetilde{U} \end{array} \right]$. Данная матрица неособая, ее строки порождают пространство \mathbb{R}^m .

Пусть W обозначает квадратную неособую матрицу $W = (\mathcal{A}^{Q_B}_{svec})^T \mathcal{A}^{Q_B}_{svec}$ порядка r_{\triangle} . После умножения системы (4.7) слева на матрицу \mathcal{P} приходим к эквивалентной системе, которая распадается на две подсистемы

$$W\operatorname{svec}\Delta Z + (\mathcal{A}_{svec}^{Q_B})^T [\mathcal{B}y + \mathcal{A}^{h_k}] = 0_{r_{\triangle}}, \tag{4.8}$$

$$\widetilde{U}[\mathcal{B}y + \mathcal{A}^{h_k}] = 0_p. \tag{4.9}$$

Из первой подсистемы (4.8) находим

$$\operatorname{svec} \Delta Z = -\mathcal{W}^{-1} (\mathcal{A}_{svec}^{Q_B})^T [\mathcal{B}y + \mathcal{A}^{h_k}]. \tag{4.10}$$

Утверждение 2. Пусть $\mathcal{R}(\mathcal{B})$ и $\mathcal{R}(\mathcal{A}^{Q_B}_{svec})$ — пространства столбцов матриц \mathcal{B} и $\mathcal{A}^{Q_B}_{svec}$ соответственно. Пусть, кроме того, $\mathcal{R}(\mathcal{B}) \cap \mathcal{R}(\mathcal{A}^{Q_B}_{svec}) = \varnothing$. Тогда матрица $\widetilde{U}\mathcal{B}$ неособая.

 \mathcal{J} о к а з а т е л ь с т в о. Покажем, что однородная система уравнений $\widetilde{U}\mathcal{B}y=0_p$ имеет только тривиальное решение $y=0_p$. Допустим противное, что существует ненулевой вектор $y\in\mathbb{R}^p$, удовлетворяющий этой системе. Из-за того, что \mathcal{B} — матрица полного ранга, следует принадлежность ненулевого вектора $z=\mathcal{B}y$ нуль-пространству матрицы \widetilde{U} , которое совпадает с пространством столбцов матрицы $\mathcal{A}^{Q_B}_{svec}$. Мы пришли к противоречию.

Утверждение доказано.

Принимая во внимание утверждение 2 и разрешая вторую подсистему (4.9), получаем $y = -(\widetilde{U}\mathcal{B})^{-1}\widetilde{U}\mathcal{A}^{h_k}$. Для сокращения записи положим $\widetilde{\mathcal{B}} = \mathcal{B}(\widetilde{U}\mathcal{B})^{-1}\widetilde{U}$. После подстановки найденного y в выражение (4.10) для svec ΔZ приходим к

$$\operatorname{svec} \Delta Z = \mathcal{W}^{-1} (\mathcal{A}_{svec}^{Q_B})^T [\widetilde{\mathcal{B}} - I_m] \mathcal{A}^{h_k}. \tag{4.11}$$

Найдем теперь изменение значения целевой функции вдоль направления ΔX .

Утверждение 3. Матрица ΔX является направлением убывания целевой функции в задаче (1.1), причем $C \bullet \Delta X = \theta^k$.

Доказательство. Имеем $C \bullet \Delta X = \begin{bmatrix} Q_B^T C Q_B & Q_B^T C h_k \\ h_k^T C Q_B & h_k^T C h_k \end{bmatrix} \bullet \begin{bmatrix} \Delta Z & w \\ w^T & 1 \end{bmatrix}$. Таким образом, при $C^{Q_B h_k} = Q_B^T C h_k$ получим

$$C \bullet \Delta X = \langle \operatorname{svec} C^{Q_B}, \operatorname{svec} \Delta Z \rangle + 2 \langle C^{Q_B h_k}, w \rangle + C^{h_k}.$$
 (4.12)

Вычислим отдельно первое и второе слагаемые в правой части (4.12). Для первого слагаемого получаем

$$\langle \operatorname{svec} C^{Q_B}, \operatorname{svec} \Delta Z \rangle = \langle \operatorname{svec} C^{Q_B}, \mathcal{W}^{-1} (\mathcal{A}_{svec}^{Q_B})^T \left[\widetilde{\mathcal{B}} - I_m \right] \mathcal{A}^{h_k} \rangle$$
$$= \langle \mathcal{A}_{svec}^{Q_B} \mathcal{W}^{-1} \operatorname{svec} C^{Q_B}, \left[\widetilde{\mathcal{B}} - I_m \right] \mathcal{A}^{h_k} \rangle = \langle u, \left[\widetilde{\mathcal{B}} - I_m \right] \mathcal{A}^{h_k} \rangle = \langle u, \widetilde{\mathcal{B}} \mathcal{A}^{h_k} \rangle - \langle u, \mathcal{A}^{h_k} \rangle,$$

причем $\langle u, \widetilde{\mathcal{B}} \mathcal{A}^{h_k} \rangle = -\langle u, \mathcal{B} y \rangle = -\sum_{i=1}^m u^i A_i^{h_k q_y}, \ A_i^{h_k q_y} = h_k^T A_i q_y, \ 1 \leq i \leq m$. Для второго слагаемого в (4.12) выполняется, соответственно,

$$2\langle C^{Q_B h_k}, w \rangle = \langle C^{Q_B h_k}, \widetilde{W} y \rangle = \langle C h_k, Q^B \widetilde{W} y \rangle = \langle h_k, C q_y \rangle = C^{h_k q_y}$$

где $C^{h_kq_y}=h_k^TCq_y$. Учтем далее, что согласно (3.4) $C^{h_k}-\langle u,\mathcal{A}^{h_k}\rangle=h_k^TVh_k=\theta^k$. Учтем также, что $Vh_k=\theta^kh_k$ и что вектор $q_y=Q_B\widetilde{W}y$ ортогонален вектору h_k . Тогда получаем $C^{h_kq_y}-\sum_{i=1}^m u^iA_i^{h_kq_y}=h_k^TVq_y=\theta^kh_k^Tq_y=0$. Поэтому $C\bullet\Delta X=\theta^k<0$. Следовательно, вдоль направления ΔX целевая функция убывает.

Утверждение доказано.

Выбор максимально возможного шага α проводится полностью аналогично регулярному случаю. Матрица X положительно полуопределенная, и из (4.3) следует, что симметричная матрица $\bar{X}(\alpha) = X + \alpha \Delta X$ также будет оставаться положительно полуопределенной для α достаточно малых. Определим максимально возможный шаг $\bar{\alpha}$, при котором она сохраняет свою знакоопределенность. Понятно, что этот шаг $\bar{\alpha}$ находится из условия

$$\det \left[\begin{array}{cc} D(\eta_B) + \alpha \Delta Z & \alpha w \\ \alpha w^T & \alpha \end{array} \right] = 0.$$

При $\alpha>0$ имеем $\det\begin{bmatrix}D(\eta_B)+\alpha\Delta Z & \alpha w\\ \alpha w^T & \alpha\end{bmatrix}=\alpha\det[D(\eta_B)+\alpha\Delta Z-\alpha ww^T]$. Поэтому определение $\bar{\alpha}$ сводится к определению максимального по модулю отрицательного α , при котором $\det[D(\eta_B)+\alpha(\Delta Z-ww^T)]=0$. Обе матрицы $D(\eta_B)$ и $G=\Delta Z-ww^T$ — симметрические, матрица $D(\eta_B)$ положительно определена, поэтому они приводятся к диагональному виду с помощью некоторой невырожденной матрицы P, а именно, $D(\eta_B)=PP^T$, $G=PD(\lambda)P^T$.

Если у вектора $\lambda = [\lambda^1, \dots, \lambda^r]^T$ хотя бы одна компонента отрицательна, то $\bar{\alpha}$ конечно и равняется $\bar{\alpha} = -\lambda_*^{-1}$, где λ_* — максимальная по модулю компонента из всех отрицательных компонент λ . В противном случае мы приходим к ситуации, когда в задаче (1.1) нет решения.

Рассмотрим вопрос о сходимости метода, предполагая, что задача (1.1) имеет решение. Считаем также дополнительно, что в качестве отрицательного собственного значения θ^k на каждом шаге берется максимальное по модулю значение.

Теорема. Пусть задача (1.1) является сильно невырожденной и вполне регулярной. Пусть, кроме того, начальная точка $X_0 \in \mathcal{F}_P$ такова, что множество $\mathcal{F}_P(X_0) = \{X \in \mathcal{F}_P : C \bullet X \leq C \bullet X_0\}$ ограничено. Тогда симплекс-метод порождает последовательность точек $\{X_k\} \subset \mathcal{F}_P(X_0)$, которая либо конечна, и тогда последняя точка есть решение задачи, либо последовательность $\{X_k\}$ — бесконечная, и тогда любая ее предельная точка также является решением задачи.

Д о к а з а т е л ь с т в о. Если последовательность $\{X_k\}$ конечная, т.е. метод останавливается на некотором k-м шаге, то это может произойти только в том случае, когда после вычисления u_k получаем, что у матрицы $V_k = V(u_k)$ нет отрицательных собственных значений, т.е. пара $[u_k, V_k]$ является допустимой в двойственной задаче. Но тогда выполняются условия оптимальности (1.3), из которых следует, что X_k — решение задачи (1.1).

Рассмотрим теперь случай, когда последовательность $\{X_k\}$ — бесконечная. Так как она ограниченная, то у нее существуют предельные точки. Пусть $X_{k_s} \to \bar{X}$. В силу сделанных предположений о задаче и правила выбора шага α_k в любом случае, является ли крайняя точка X_k ранга r регулярной или нет, следующая точка X_{k+1} также будет сильно невырожденной крайней точкой, причем того же самого ранга r.

У последовательности $\{X_{k_s}\}$ все соответствующие матрицы Q_B из разложения (3.1) имеют одну и ту же норму Фробениуса, а именно, $\|Q_B\|_F = (\operatorname{tr} Q_B^T Q_B)^{1/2} = \sqrt{r}$, т. е. принадлежат компактному множеству. Поэтому из $\{X_{k_s}\}$ можно извлечь подпоследовательность, для которой матрицы Q_B также сходятся к некоторой матрице \bar{Q}_B такой, что $\bar{Q}_B^T \bar{Q}_B = I_r$. Не умаляя общности, считаем, что сама последовательность $\{X_{k_s}\}$ обладает этим свойством.

Если обратиться к матрице $(A_{svec}^{\bar{Q}_B})^T$, входящей в систему (3.2) для определения вектора двойственных переменных \bar{u} в точке \bar{X} , то поскольку точка \bar{X} сильно невырожденная, матрица $(A_{svec}^{\bar{Q}_B})^T$ будет иметь полный ранг, совпадающий с рангом по столбцам. Отсюда с учетом непрерывности соответствующих векторов svec C^{Q_B} приходим к выводу, что решения системы (3.2), а именно, векторы двойственных переменных u_{k_s} , определяемые либо формулой (3.3), либо формулой (4.2), сходятся к \bar{u} .

Определим матрицу $\bar{V}=V(\bar{u})$. Данная матрица \bar{V} должна быть положительно полуопределенной. В самом деле, если допустить противное, то у \bar{V} имеется отрицательное собственное значение. Но собственные значения матриц непрерывны по Липшицу. Поэтому у матриц V_{k_s} , достаточно близких к \bar{V} , также существуют отрицательные собственные числа. Отсюда следует, что на этих итерациях должен осуществляться переход из точек X_{k_s} в последующие точки X_{k_s+1} с шагом α_{k_s} и с уменьшением значения целевой функции на величину $\alpha_{k_s}\theta^{k_s}$. Однако, шаги α_{k_s} не могут стремиться к нулю, так как из (3.9) или (4.11) следует, что матрицы ΔX_{k_s} ограничены по норме на $\mathcal{F}_P(X_0)$. Поэтому на некоторой k_s -й итерации обязательно получим, что $C \bullet X_{k_s+1} < C \bullet \bar{X}$, что в силу монотонного убывания значений целевой функции вдоль траектории противоречит сходимости $\{X_{k_s}\}$ к \bar{X} .

Теорема доказана.

Можно показать, что если задачи (1.1) и (1.2) достаточно хорошие, а именно, они невырожденные и их решения строго комплементарные, то ограниченное множество $\mathcal{F}_P(X_0)$ из условий теоремы существует по крайней мере для X_0 , достаточно близких к единственному решению X_* задачи (1.1).

СПИСОК ЛИТЕРАТУРЫ

- 1. Еремин И.И. Теория линейной оптимизации. Екатеринбург: Изд-во "Екатеринбург", 1999. 312 с.
- 2. Васильев Ф.П., Иваницкий А.Ю. Линейное программирование. М.: Факториал Пресс, 2008. 347~c
- 3. **Vanderbei R.J.** Linear programming. Foundations and extensions. Boston; London; Dordrecht: Kluwer Acad. Publ., 1997. 418 p.
- 4. Handbook of semidefinite programming / eds. H. Wolkowicz, R. Saigal, L. Vandenberghe. Dordrecht: Kluwer Acad. Publ., 2000. 656 p.
- 5. Lasserre J.B. Linear programming with positive semi-definite matreces // Math. Problems in Engineering. 1996. Vol. 2, iss. 6. P. 499–522.
- 6. **Pataki G.** Cone-LP's and semidefinite programs: geometry and simplex-type method // Proc. Conf. on Integer Programming and Combinatorial Optimization (IPCO 5). Vancouver, 1996. P. 1–13.
- 7. **Косолап А.И.** Симплекс-метод для решения задач полуопределенного программирования // Вестн. Донец. нац. ун-та. 2009. Вып. 2. С. 365–369. (Сер. А: Естественные науки.)

- 8. Жадан В.Г. Об одном варианте допустимого аффинно-масштабирующего метода для полуопределенного программирования // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20, № 2. С. 145–160.
- 9. Магнус Я.Р., Нейдеккер Ч. Матричное дифференциальное исчисление с приложениями к статистике и эконометрике. М.: Физматлит, 2002. 496 с.
- 10. **Арнольд В.И.** О матрицах, зависящих от параметров // Успехи мат. наук. 1971. Т. 26, вып. 2(158). С. 101-114.
- 11. **Alizadeh F., Haeberly J.-P.F., Overton M.L.** Complementarity and nondegeneracy in semidefinite programming // Math. Programming. Ser. B. 1997. Vol. 7, no. 2. P. 129–162.

Жадан Виталий Григорьевич д-р физ.-мат. наук, профессор зав. отделом

Вычислительный центр им. А. А. Дородницына РАН

e-mail: zhadan@ccas.ru

Поступила 08.05.2015